JPS628585A - Laser light source apparatus - Google Patents

Laser light source apparatus

Info

Publication number
JPS628585A
JPS628585A JP14674085A JP14674085A JPS628585A JP S628585 A JPS628585 A JP S628585A JP 14674085 A JP14674085 A JP 14674085A JP 14674085 A JP14674085 A JP 14674085A JP S628585 A JPS628585 A JP S628585A
Authority
JP
Japan
Prior art keywords
laser
simulation
angle
mirror
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14674085A
Other languages
Japanese (ja)
Inventor
Toshio Yoshida
寿夫 吉田
Tsutomu Kitagawa
勉 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14674085A priority Critical patent/JPS628585A/en
Publication of JPS628585A publication Critical patent/JPS628585A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08081Unstable resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To correct fluctuation in light axis readily, by introducing a simulation laser beam into an unstable type resonator, and arranging a beam-angle correcting mechanism and a beam-angle detector on a path of the laser beam. CONSTITUTION:A simulation beam 15 is supplied through a small hole in a concave mirror 31 and reciprocated between a convex mirror 32 and the concave mirror 31. Thereafter, the beam is projected to the outside of an unstable resonator by a beam taking out mirror 33. The angle of the light axis of the projected simulation beam is detected by a beam angle detector 16 through a plane mirror 14. The detected signal is inputted to a signal processing and motor driving circuit 17. The circuit 17 drives an angle controlling motor 131 in an beam-angle correcting mechanism 13. Thus the plane mirror is turned. The fluctuation in light axis of the simulation beam due to thermal deformation of an oscillator cabinet 1 is corrected in this way. This is equivalent to the correction of the fluctuation in light axis of the laser beam projected from the laser light source apparatus.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、溶接・切断・表面改質などに用いられるレ
ーザ装置の光源,特にそのレーザビームの光軸の安定化
Cこ関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a light source for a laser device used for welding, cutting, surface modification, etc., and particularly to stabilization of the optical axis of the laser beam. .

〔従来の技術〕[Conventional technology]

第2図は従来の不安定型共振器を用いたレーザ光源装置
の要部を示す構成図である。図1こおいて、(1)は発
振器筐体、(2)は電極,(3)は電極(2)による放
電励起空間をはさむように設置ざれた不安定型共振器で
、これは凹面鏡01)、凸面鏡03およびビーム取り出
し鏡(ハ)を含む。(4)は不安定型共振器を固定する
共振器支持構造物、(5)は発振器筐体(1)に取り付
けられたレーザビームの取り出し窓,(6)は放射され
たレーザビーム、(7)は防振ゴムである。
FIG. 2 is a configuration diagram showing the main parts of a conventional laser light source device using an unstable resonator. In Figure 1, (1) is an oscillator housing, (2) is an electrode, and (3) is an unstable resonator installed across the discharge excitation space by the electrode (2), which is a concave mirror 01). , a convex mirror 03, and a beam extraction mirror (c). (4) is the resonator support structure that fixes the unstable resonator, (5) is the laser beam extraction window attached to the oscillator housing (1), (6) is the emitted laser beam, (7) is anti-vibration rubber.

ここで凹面鏡Gυ、凸面鏡働およびビーム取り出し鏡(
ハ)をそれぞれ固定する共振器支持構造物(4)は、温
度分布の変化の影響を少なくするためにインバ棒などか
ら形成されている。しかし、この共振器支持構造物(4
)は防振ゴム(7)などを介して発振器筐体(1)に直
接あるいは間接に取り付けられているので、発振器筐体
(1)が熱変形、すなわち温度変化等により変形すれば
、レーザビーム(6)の光軸は変化することになる。一
般にレーザ出力として取り出されるエネルギは、レーザ
媒質に投入された放電エネルギの数−程度である。そし
て残りの放電エネルギは熱エネルギに変換され、これが
レーザ媒質の温度を上昇させる。また、発振器筐体(1
)の温度分布は、送風機(図示せず)によって循環され
ているレーザ媒質の温度分布に依存するので、放電入力
の変化によって発振器筐体の温度分布が変化して熱変形
し、この変化iこ対応してレーザビーム(6)の光軸が
変化する。したがってレーザ発振の開始後、レーザ装置
が熱平衡状態に達するまではレーザビームの光軸変動が
特に大きい。
Here, concave mirror Gυ, convex mirror and beam extraction mirror (
The resonator support structure (4) that fixes each of (c) is formed from an Invar rod or the like in order to reduce the influence of changes in temperature distribution. However, this resonator support structure (4
) is directly or indirectly attached to the oscillator housing (1) via a vibration-proof rubber (7), etc., so if the oscillator housing (1) is thermally deformed, that is, deformed due to temperature changes, the laser beam The optical axis in (6) will change. Generally, the energy extracted as laser output is approximately the same as the discharge energy input into the laser medium. The remaining discharge energy is then converted into thermal energy, which increases the temperature of the laser medium. In addition, the oscillator housing (1
) depends on the temperature distribution of the laser medium being circulated by a blower (not shown), so changes in the discharge input change the temperature distribution of the oscillator casing, causing thermal deformation, and this change The optical axis of the laser beam (6) changes accordingly. Therefore, after the start of laser oscillation, the fluctuation of the optical axis of the laser beam is particularly large until the laser device reaches a thermal equilibrium state.

〔発明が解決しようとする問題点〕 従来のレーザ光源装置は、以上のように構成されている
ので、レーザ発振の開始後レーザ装置が熱平衡状態に達
するまで、レーザビームの光軸が不安定でありかつ光軸
がずれるという問題があり、また、放電入力すなわち、
発振出力によってもし一ザビームの光軸が変化するとい
う問題があった。
[Problems to be solved by the invention] Since the conventional laser light source device is configured as described above, the optical axis of the laser beam is unstable until the laser device reaches a thermal equilibrium state after the start of laser oscillation. There is a problem that the optical axis is shifted, and the discharge input, that is,
There is a problem in that the optical axis of the beam changes depending on the oscillation output.

この発明は、上記のような問題点を解消するためになさ
れたもので、レーザビームの光軸が変化しないレーザ光
源装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to obtain a laser light source device in which the optical axis of the laser beam does not change.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るレーザ光源装置は1発振器筐体の近傍に
おけるレーザビームの経路上Iこレーザビームの角度を
補正する機構(ビーム角度補正機構)を配置するととも
に、不安定置共振器の***からこれに供給したシュミレ
ーションビームの光軸の角度をビーム角度検出器により
計測し、そしてこの計測された信号にもとずいてビーム
角度補正機構を制御するようにしたものである。
In the laser light source device according to the present invention, a mechanism for correcting the angle of the laser beam (beam angle correction mechanism) is disposed on the path of the laser beam in the vicinity of the oscillator housing, and a mechanism for correcting the angle of the laser beam (beam angle correction mechanism) is arranged on the path of the laser beam in the vicinity of the oscillator housing. The angle of the optical axis of the supplied simulation beam is measured by a beam angle detector, and the beam angle correction mechanism is controlled based on this measured signal.

〔作用〕[Effect]

レーザビームの光軸と一致あるいは対応したシュミレー
ションビームの光軸の角度変動量を計測し、これEこよ
ってビーム角度補正機構を制御してシュミレーションビ
ームの光軸を所定の角度に補正し、レーザビームの光軸
を所定の角度に維持する。
The amount of angular variation of the optical axis of the simulation beam that coincides with or corresponds to the optical axis of the laser beam is measured, and based on this, the beam angle correction mechanism is controlled to correct the optical axis of the simulation beam to a predetermined angle, and the laser beam maintains the optical axis at a predetermined angle.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例を示すレーザ光源装置の構
成図である。なお、第2図と同一部分にはこれと同一の
符号を付し、そのU明は省略すaαDは共振器支持構造
物(4)に取り付けられたシュミレーションビーム用の
He−Neレーザ源、■ハHe−Neレーザ源(11)
から凹面鏡01)の***を経て不安定置共振器(3)内
にシュミレーションビーム(L9を供給する平面鏡、α
騰は発振器筐体(1)の近傍でかつレーザビーム(6)
の経路上に配置されたビーム角度補正機構(これはレー
ザビームの光軸の角度を補正する機構である)で、これ
は角度制御モータ(131)と平面鏡(132)を含む
、α荀はレーザビーム(6)を全反射シそしてシュミレ
ーションビーム(151)を透過させる平面鏡、α0は
平面鏡α勇を透過したシュミレーションビーム(151
)の経路上に配置されたビーム角度検出器で、これは集
光用の凸レンズ(161)と位置検出器(162)を含
む。卸はビーム角度検出器αeとビーム角度補正機構(
1階とを電気的に結ぶ信号処理・モータ[動回路である
FIG. 1 is a configuration diagram of a laser light source device showing an embodiment of the present invention. The same parts as in FIG. 2 are given the same reference numerals, and aαD is omitted and aαD is a He-Ne laser source for the simulation beam attached to the resonator support structure (4); He-Ne laser source (11)
A plane mirror, α, which supplies the simulation beam (L9) from the concave mirror 01) through the small hole into the unstable resonator (3).
The rise is near the oscillator housing (1) and the laser beam (6)
A beam angle correction mechanism (this is a mechanism for correcting the angle of the optical axis of the laser beam) is placed on the path of the laser beam, which includes an angle control motor (131) and a plane mirror (132). α0 is a plane mirror that totally reflects the beam (6) and transmits the simulation beam (151), α0 is the simulation beam (151) that has passed through the plane mirror α
), which includes a convex lens for focusing (161) and a position detector (162). The wholesaler is a beam angle detector αe and a beam angle correction mechanism (
The signal processing/motor [dynamic circuit] electrically connects the first floor.

上記のように構成されたレーザ光源装置tこおいて、凹
面鏡(31)の***から不安定型共振器内に供給サレタ
シュミレーションビーム(L9は、凸面maaと凹面鏡
C(1)との間を大体50回往復した後、ビーム取り出
し鏡(至)によって不安定型共振器外に放射される。こ
のシュミレーションビーム(t9は共振器内を大体50
回在役しているので、シュミレーションビーム住9の光
軸は、レーザ光源装置から放射されるレーザビーム(6
)の光軸と一致あるいはこれに対応している。したがっ
て、シュミレーションビームα→または(151)の光
を監視してこの光軸を所定の角度に補正することは、レ
ーザビーム(6)の光軸を所定の角度に補正することと
等価である。ここでビーム角度検出器α11G1は、平
面鏡0を透過したシュミレーションビームの光軸の角度
を検出している。次に発振器筐体(1)が熱変形して、
シュミレーションビームの光軸が角度乙θ だけ変動し
たとすれば、凸レンズ(161)の焦点近傍に配置され
た位置検出器(162)で集光されたシュミレーション
ビームの位置はムθLだけ変位する。ただし、Lは凸レ
ンズ(161)と位置検出器(162)との距離である
。ここで信号処理・モータ駆動回路αηは上記の変位量
lこ対応した電気信号をビーム角度検出器σQから導入
し、そしてビーム角度補正機構0階における角度制御用
モータ(131)を駆動して平面鏡(132)を−ムθ
L/2だけ回転させ、これIこよって発振器筐体(1)
の熱変形によるシュミレーションビームの光軸の変動を
補正する。これはとりもなおさず、レーザ光源装置から
放射されたレーザビームの光軸の変動を補正したことと
等価である。
In the laser light source device t configured as described above, a sales simulation beam (L9) is supplied from the small hole of the concave mirror (31) into the unstable resonator. After reciprocating several times, the beam is radiated outside the unstable resonator by the beam extraction mirror (t9).
Because of the rotation, the optical axis of the simulation beam 9 is the laser beam (6) emitted from the laser light source device.
) coincides with or corresponds to the optical axis of Therefore, monitoring the light of the simulation beam α→ or (151) and correcting the optical axis to a predetermined angle is equivalent to correcting the optical axis of the laser beam (6) to a predetermined angle. Here, the beam angle detector α11G1 detects the angle of the optical axis of the simulation beam transmitted through the plane mirror 0. Next, the oscillator housing (1) is thermally deformed,
If the optical axis of the simulation beam changes by an angle θ, the position of the simulation beam focused by the position detector (162) placed near the focal point of the convex lens (161) shifts by an amount θL. However, L is the distance between the convex lens (161) and the position detector (162). Here, the signal processing/motor drive circuit αη introduces an electric signal corresponding to the above displacement amount l from the beam angle detector σQ, and drives the angle control motor (131) in the beam angle correction mechanism 0th floor to drive the plane mirror. (132) - m θ
Rotate by L/2, and this causes the oscillator housing (1)
Corrects fluctuations in the optical axis of the simulation beam due to thermal deformation. This is equivalent to correcting the fluctuation of the optical axis of the laser beam emitted from the laser light source device.

なお、上記の実施例ではシュミレーション用レーザ源に
Ne−Heレーザ源を用いた場合について駅間したが、
これは半導体レーザなどのレーザ源であっても上記実施
例と同様の効果を奏すること明らかである。また、上記
実施例では放射されるレーザビーム(6)の経路上に、
このビーム(6)を全反射シソシてシュミレーションビ
ーム(151)めみを透過させる平rf1鏡αくを配設
したが、これはレーザビーム(6)の経路上lこチ目ツ
バを配設し、そしてこのチョッパから反射したビームを
シュミレーションビームとレーザビームとに分離すると
ともに、このシュミレーションビームの伝搬方向ヲビー
ム角度検出器σので監視しでも上記実施例と同様の効果
を奏する、さらに、レーザ発振器が間欠発振する場合に
は、その発振停止時にレーザビーム(6)の経路上に鏡
を挿入し、これによってシュミレーションヒ−A(15
1)をビーム角度検出器aQに伝送しても、上記実施例
と同様の効果を奏する゛ことができる。
In addition, in the above example, the distance between stations is based on the case where a Ne-He laser source is used as the simulation laser source.
It is clear that even if a laser source such as a semiconductor laser is used, the same effect as in the above embodiment can be achieved. In addition, in the above embodiment, on the path of the emitted laser beam (6),
A flat RF1 mirror was installed to completely reflect this beam (6) and transmit the simulation beam (151), but this was done by placing a flat RF1 mirror on the path of the laser beam (6). , the beam reflected from this chopper is separated into a simulation beam and a laser beam, and the propagation direction of this simulation beam is monitored by a beam angle detector σ to produce the same effect as the above embodiment. In the case of intermittent oscillation, a mirror is inserted on the path of the laser beam (6) when the oscillation is stopped, and this causes the simulation
Even if 1) is transmitted to the beam angle detector aQ, the same effect as in the above embodiment can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば不安定型共振器にシュ
ミレーション用し−ザピームヲ導入し、このシュミレー
ションビームの経路上にビーム角度補正機構とビーム角
度検出器を配置したので。
As described above, according to the present invention, a beam for simulation is introduced into an unstable resonator, and a beam angle correction mechanism and a beam angle detector are arranged on the path of this simulation beam.

レーザビームの光軸の変動が容易に補正され、その結果
光軸の安定化が図られる。
Fluctuations in the optical axis of the laser beam are easily corrected, resulting in stabilization of the optical axis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるレーザ光源装置の要
部を示す構成図、第2図は従来のレーザ光源装置の要部
を示す構成図である。 図中、(1)は発振器筐体、(3)は不安定製共振器。 (4)は共振器支持構造物、(5)はビーム取り出し窓
、(6)はレーザビーム、al)はHe−Naレーザ源
、峙はビーム角度補正機構、α→は平面鏡、 (t!1
9s (151)はシュミレーション用レーザビーム、
αeはビーム角度検出器、住ηは信号処理・モータ駆動
回路である。 なお、各図中同一符号は同一または相当部分を示、す。 代理人 弁理士 佐 藤 正 年 第2図 1:雇撮妹g1本 2:箪殿 3;不電定iノ咲葡層各 4:拭覗巴女将膠走り 5 : ビーc”ルソよ・− 6: し−寸°°ビ′−ム
FIG. 1 is a block diagram showing the main parts of a laser light source device according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the main parts of a conventional laser light source device. In the figure, (1) is the oscillator housing, and (3) is the unstable resonator. (4) is the resonator support structure, (5) is the beam extraction window, (6) is the laser beam, al) is the He-Na laser source, the opposite is the beam angle correction mechanism, α→ is the plane mirror, (t!1
9s (151) is a simulation laser beam,
αe is a beam angle detector, and η is a signal processing/motor drive circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent: Patent Attorney Tadashi Sato Year 2 Figure 1: Hiring Sister G1 Book 2: Kandono 3; 6: Dimension beam

Claims (2)

【特許請求の範囲】[Claims] (1)不安定型共振器を構成する凸面鏡および凹面鏡と
、この凹面鏡の近傍に配設されたシユミレーシヨン用レ
ーザ源と、上記凹面鏡の***からシユミレーシヨン用レ
ーザビームを不安定型共振器内に供給する光学系と、不
安定型共振器の近傍でかつ放射されたレーザビームの経
路上に設置されたビーム角度補正機構と、このビーム角
度補正機構から反射されたシユミレーシヨンビームの経
路上に配設されたビーム角度検出器と、このビーム角度
検出器からの信号を処理して上記ビーム角度補正機構を
制御する信号処理・モータ駆動回路とより成るレーザ光
源装置。
(1) A convex mirror and a concave mirror that constitute an unstable resonator, a simulation laser source placed near the concave mirror, and an optical system that supplies a simulation laser beam into the unstable resonator from a small hole in the concave mirror. , a beam angle correction mechanism installed near the unstable resonator and on the path of the emitted laser beam, and a beam placed on the path of the simulation beam reflected from the beam angle correction mechanism. A laser light source device comprising an angle detector and a signal processing/motor drive circuit that processes signals from the beam angle detector to control the beam angle correction mechanism.
(2)シユミレーシヨン用レーザ源としてHe−Neレ
ーザ源を用いたことを特徴とする前記特許請求の範囲第
1項記載のレーザ光源装置。
(2) The laser light source device according to claim 1, wherein a He-Ne laser source is used as a simulation laser source.
JP14674085A 1985-07-05 1985-07-05 Laser light source apparatus Pending JPS628585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14674085A JPS628585A (en) 1985-07-05 1985-07-05 Laser light source apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14674085A JPS628585A (en) 1985-07-05 1985-07-05 Laser light source apparatus

Publications (1)

Publication Number Publication Date
JPS628585A true JPS628585A (en) 1987-01-16

Family

ID=15414519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14674085A Pending JPS628585A (en) 1985-07-05 1985-07-05 Laser light source apparatus

Country Status (1)

Country Link
JP (1) JPS628585A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280168A (en) * 1987-05-13 1988-11-17 酒井 信世 Magnetic card key
KR101079488B1 (en) 2007-09-14 2011-11-03 캐논 가부시끼가이샤 Displacement sensing method and motor control apparatus
JP2019134122A (en) * 2018-02-02 2019-08-08 住友重機械工業株式会社 Laser oscillator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280168A (en) * 1987-05-13 1988-11-17 酒井 信世 Magnetic card key
KR101079488B1 (en) 2007-09-14 2011-11-03 캐논 가부시끼가이샤 Displacement sensing method and motor control apparatus
JP2019134122A (en) * 2018-02-02 2019-08-08 住友重機械工業株式会社 Laser oscillator

Similar Documents

Publication Publication Date Title
US5267252A (en) Solid-state laser device comprising a temperature-controlled thermal conductive support
US9743503B2 (en) Laser device and extreme ultraviolet light generation system
EP0759538A2 (en) Laser system for surveying
US10505336B2 (en) Laser adjustment method and laser source device
RU2540452C2 (en) Gyrolaser with solid intensifying medium and with annular optic resonator
US3579140A (en) Laser
WO1997035370A1 (en) Laser and method of controlling laser
JPH0961858A (en) Acousto-optic optical scanner
JPS628585A (en) Laser light source apparatus
US3801929A (en) Gas laser apparatus having low temperature sensitivity
JP2005101504A (en) Laser apparatus
US4751712A (en) Variable frequency short cavity dye laser
JP2970927B2 (en) Laser beam collimator
JP4067167B2 (en) Beam axis deviation detecting device and beam axis position control device for laser resonator
JP3670397B2 (en) Laser surveying equipment
JPS61237487A (en) Laser device
CN220138927U (en) Pulse laser
JPS60247489A (en) Laser beam machining equipment
JPH0744034Y2 (en) High frequency excitation gas laser device
JPH109867A (en) Laser apparatus
JPH07106681A (en) Laser
JPS60254683A (en) Laser oscillation device
JPH07101767B2 (en) Excimer laser device
JP3805590B2 (en) Solid state laser equipment
JPH10107361A (en) Excimer laser device