JP3805590B2 - Solid state laser equipment - Google Patents

Solid state laser equipment Download PDF

Info

Publication number
JP3805590B2
JP3805590B2 JP2000005628A JP2000005628A JP3805590B2 JP 3805590 B2 JP3805590 B2 JP 3805590B2 JP 2000005628 A JP2000005628 A JP 2000005628A JP 2000005628 A JP2000005628 A JP 2000005628A JP 3805590 B2 JP3805590 B2 JP 3805590B2
Authority
JP
Japan
Prior art keywords
laser
solid
light
state laser
ball seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000005628A
Other languages
Japanese (ja)
Other versions
JP2001196674A (en
Inventor
公資 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000005628A priority Critical patent/JP3805590B2/en
Publication of JP2001196674A publication Critical patent/JP2001196674A/en
Application granted granted Critical
Publication of JP3805590B2 publication Critical patent/JP3805590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、計測、医用、加工、通信、印刷などに応用可能なレーザ装置に関する。特に詳しくはレーザ装置のレーザ光出射位置の調節に関する。
【0002】
【従来の技術】
従来より知られているレーザ装置としては、例えば図3に示す構成30のものが知られている。これは、単独で作動する半導体レーザ素子31から出力されたレーザ光を、集光光学系32によって集光して固体レーザ媒質33の端面に照射する。このレーザ光の照射によって固体レーザ媒質33が励起され、その軸方向前後に設けられた鏡面34および35からなる光共振器内で誘導放出することにより、レーザ発振が引き起こされるようになっている。出射レーザ光は、レンズ36などで構成された受動光学系と組み合わせて用いられる。
【0003】
【発明が解決しようとする課題】
上記したように、レーザ装置は、受動光学系と組み合わせて用いるが、レーザ装置と受動光学系との光軸調整には極めて高い精度が要求される場合が多い。この場合、光軸調整を行うためには、レーザ装置自体の位置を動かす必要があり、大掛かりな機構が要求される。
しかも、従来のレーザ装置は、ビーム出射位置精度が比較的悪く、個々のレーザ装置によって、個別の光軸調整が必要であった。
そこで、本発明は、レーザ装置全体の位置調整をせずとも、レーザ装置と受動光学系との光軸調整を簡易にできる新規装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、上記課題を解決するため、少なくとも固体レーザ媒質を含む光共振器を収容するハウジングのレーザ光射出側端部に形成された半球状の凹部と、前記凹部にはめ込まれる透明な平行平面板が固定された球座ホルダと、角度調整機構とを備え、該角度調整機構は、前記球座ホルダを前記凹部内に圧着させると共に、前記球座ホルダを前記凹部内で回転させて平行平面板のレーザ光の光軸に対する配置角度を調整する手段を有することを特徴とする。
すなわち、本発明は、透明板によりレーザ光の出射方向を変位させ、受動光学系との光軸調整を行うのである。更に具体的に説明すれば、図2に示すように厚みt、屈折率nの平行平面板にレーザ光が入射角θで入射した場合、θが十分小さいという仮定のもとでは、平行平面板を透過した光は、d=(n−1)θtの変位を受ける。したがって、θを変えることにより、変位量を変化させ、受動光学系との光軸調整ができる。
【0005】
ここで、レーザ発振器は、固体レーザ、気体レーザ、半導体レーザのいずれでもよく、固体レーザの場合、 レーザ媒質は、Nd:YAG、Nd:YVO4、Nd:glass、Yb:YAG、Ti:Al23などを用いることができ、気体レーザの場合、レーザ媒質はHe−Ne、Ar+、CO2、ArF、KrF、XeCl、XeFなどを用いることができ、半導体レーザの場合、AlGaAs,ZnGaAsP,AlGaNなどを用いることができるが、各々これらに限定されない。また、固体レーザの場合、半導体レーザからの出力光(LD光)を集光して固体レーザ媒質から誘導放出される基本波を、光共振器内に収容した非線形光学結晶に照射することにより第2高調波(SH波)を光共振器内で発振させ出力ミラーを介して外部に出力するようにした波長変換固体レーザ装置でもよい。
【0006】
透明板は、光学素子に用いる材質と同様な材質、例えば、ガラス板、石英板、YVO4、BBO、LN、LTなどを用いることができるが、これらに限定されない。透明板の形状は、平行平面板が好ましいが、レーザ光の方向を入射側と出射側で変位させる屈折率を有するものであれば、どのような形状でもよい。
また、透明板の厚さは、平行平面板の場合0.5〜20mm、特に好ましくは、2〜8mmである。
【0007】
角度調整手段は、レーザ光の光軸に対する透明板の配置角度を調整するもので、例えば、透明板を球座ホルダに取付けて、回転させるもの、透明板の取付け点を支点として左右に揺動させるものなどが挙げられるが、これらに限定されず、手動あるいは自動で配置角度を調整できれば何でもよい。
【0008】
【発明の実施の形態】
本発明の実施の形態を図面に基づいて説明する。図1(a)は、波長変換固体レーザ装置の構成断面を示しており、1が半導体レーザで、例えば810nmのレーザ光を発振し固体レーザ結晶の吸収ピークを効率的に励起する。さらに半導体レーザ自体の電流−光出力効率が高く、余分なエネルギーを必要としないため、固体レーザ励起光源として使用される。
半導体レーザ1からの出力光(以下、LD光)は、コリメータレンズ2a及びフォーカスレンズ2bに照射される。コリメータレンズ2aとフォーカスレンズ2bとでタンデムレンズ系を形成し、コリメータレンズ2aの開口径に相当するLD光を集光し、平行光線にして、フォーカスレンズ2bで集光し、固体レーザ媒質3に照射される。
【0009】
固体レーザ媒質3は、例えばNd:YAG結晶が用いられ、LD光により波長946nmの基本波を発振する。なお、固体レーザ媒質3の片面には、LD光を透過させ、固体レーザ媒質3から誘導放出される基本波を高反射率のもとに反射させる高反射コーティング膜3aが形成されており、この高反射コーティング膜3aと出力ミラー6との間で光共振器が構成されている。
【0010】
光共振器の内部には、SH波発生用の非線形光学素子5、例えばKNbO3結晶が挿入されており、LD光で固体レーザ媒質3を励起することによって誘導放出される946nmの基本波が、非線形光学素子5に照射されることにより473nmのSH波が生成される。6は、出力ミラーであり、共振器の片端面として機能し、基本波946nmを反射し、SH波473nmを透過する高反射コーティングが施されている。したがって、非線形光学素子5からのSH波は出力ミラー6を透過し、外部に射出する。
【0011】
なお、9は半導体レーザ・温調器ドライバであり、外部に射出したSH波を図示しない光検出器でモニタし、この検出値を半導体レーザ・温調器ドライバ9にフィードバックし、SH波出力を一定保持するように電流が制御される。
また、非線形光学素子5の真下には温度計11及び温調素子(例えばペルチェ素子)が埋め込まれており、非線形光学素子5の温度を一定保持するように、温度検出値を半導体レーザ・温調器ドライバ9にフィードバックし、図示しない温調素子を制御する。
【0012】
以上の構成のうち、フォーカスレンズ2b、固体レーザ媒質3、非線形光学素子5、出力ミラー6は共通のハウジング10内に固着されており、そのハウジング10の端部には半球状の凹部があいており、そこに球座ホルダ7がはめ込まれている。球座ホルダ7には、透明な平行平面板4が固定されており、また、球座ホルダ7は、板12を介し、2本の押しネジ8及び押しバネ14により凹部内に圧着している。この押しネジ8の締結を強めることにより、球座ホルダ7が回転し、平行平面板4が回転する。なお、板12には、出力光を取り出す窓13があいており、窓13と押しネジ8及び押しバネ14の関係は図1(b)に示す通りである。図1(b)は、図1(a)の装置の右側面図である。
【0013】
次に本装置の作用を説明する。
半導体レーザ・温調器ドライバ9により電流駆動されて半導体レーザ1から励起光810nmが発振し、コリメータレンズ2aの開口径に相当するLD光を集光し、コリメータレンズ2aで平行光線となり、フォーカスレンズ2bで集光し、固体レーザ媒質3に照射される。その励起光を受けて固体レーザ媒質3は、基本波946nmを発振する。その固体レーザ媒質3の端面と出力ミラー6とで形成される共振器内に設けられた非線形光学素子5が、基本波に励起されSH波473nmを発振する。出力ミラー6は基本波を反射しSH波を透過するので、SH波が出力光となって、平行平面板4に入射する。
【0014】
平行平面板4の傾き角度、厚さ、屈折率に基づき、出力光は変位を受け、窓13から外部に射出する。外部には、図示しないがレンズや光ファイバなどで構成された受動光学系が配置している。出力光が受動光学系の光軸と合致していないときは、ドライバなどにより押しネジ8の締結を調整して、平行平面板4での変位量を変え、出力光の光軸を平行移動させる。これによりレーザ装置と受動光学系との光軸合わせが容易に行える。
【0015】
以上の説明において、押しネジ8及び押しバネ9は、微調整後さらなる調整が不必要な場合は取り外すこともできる。この場合、球座ホルダ7は接着剤などで凹部に固定される。
【0016】
【発明の効果】
本発明によれば、レーザ装置全体の位置調整をせずとも、レーザ光と受動光学系との間の光軸調整ができる。また、レーザ光出射位置精度の良好なレーザ装置を提供できるので、個別の光軸調整が必要なくなる。しかもレーザ装置が故障した場合でも、光軸調整を再度行うことなく、レーザ装置の交換が可能である。
【図面の簡単な説明】
【図1】(a)は、波長変換固体レーザ装置の構成断面図、(b)は右側面図
【図2】本発明の原理図
【図3】従来のレーザ装置と受動光学系の関係図
【符号の説明】
1:半導体レーザ
2a:コリメータレンズ
2b:フォーカスレンズ
3:固体レーザ媒質
4:平行平面板
5:非線形光学素子
6:出力ミラー
7:球座ホルダ
8:押しネジ
9:押しバネ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser apparatus applicable to measurement, medical use, processing, communication, printing, and the like. In particular, the present invention relates to adjustment of the laser beam emission position of the laser device.
[0002]
[Prior art]
As a conventionally known laser device, for example, one having the configuration 30 shown in FIG. 3 is known. This condenses the laser light output from the semiconductor laser element 31 that operates alone by the condensing optical system 32 and irradiates the end surface of the solid-state laser medium 33. The laser beam is excited to excite the solid-state laser medium 33, and stimulated emission in an optical resonator composed of mirror surfaces 34 and 35 provided in front and rear of the axial direction causes laser oscillation. The emitted laser light is used in combination with a passive optical system including a lens 36 and the like.
[0003]
[Problems to be solved by the invention]
As described above, the laser device is used in combination with a passive optical system, but very high accuracy is often required for optical axis adjustment between the laser device and the passive optical system. In this case, in order to adjust the optical axis, it is necessary to move the position of the laser device itself, and a large-scale mechanism is required.
In addition, the conventional laser device has relatively poor beam emission position accuracy, and individual optical axis adjustment is required by each laser device.
Accordingly, an object of the present invention is to provide a novel apparatus that can easily adjust the optical axis between the laser apparatus and the passive optical system without adjusting the position of the entire laser apparatus.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a hemispherical recess formed at a laser light emitting side end of a housing that contains an optical resonator including at least a solid laser medium, and a transparent parallel flat surface that is fitted into the recess. A ball seat holder to which the face plate is fixed, and an angle adjustment mechanism are provided. The angle adjustment mechanism presses the ball seat holder into the recess, and rotates the ball seat holder in the recess to obtain a parallel flat surface. It has a means to adjust the arrangement angle of the face plate with respect to the optical axis of the laser beam.
That is, in the present invention, the emission direction of the laser beam is displaced by the transparent plate, and the optical axis is adjusted with the passive optical system. More specifically, as shown in FIG. 2, when laser light is incident on a parallel flat plate having a thickness t and a refractive index n at an incident angle θ, the parallel flat plate is assumed on the assumption that θ is sufficiently small. The light transmitted through is subjected to a displacement of d = (n−1) θt. Therefore, by changing θ, the amount of displacement can be changed to adjust the optical axis with the passive optical system.
[0005]
Here, the laser oscillator may be any of a solid laser, a gas laser, and a semiconductor laser. In the case of a solid laser, the laser medium is Nd: YAG, Nd: YVO 4 , Nd: glass, Yb: YAG, Ti: Al 2. O 3 or the like can be used, and in the case of a gas laser, the laser medium can be He—Ne, Ar + , CO 2 , ArF, KrF, XeCl, XeF, or the like. In the case of a semiconductor laser, AlGaAs, ZnGaAsP, AlGaN or the like can be used, but is not limited thereto. In the case of a solid-state laser, the output light (LD light) from the semiconductor laser is condensed and the fundamental wave stimulated and emitted from the solid-state laser medium is irradiated onto the nonlinear optical crystal housed in the optical resonator, thereby producing the first. A wavelength conversion solid-state laser device that oscillates a second harmonic (SH wave) in an optical resonator and outputs the second harmonic through an output mirror may be used.
[0006]
The transparent plate can be made of a material similar to that used for the optical element, for example, a glass plate, a quartz plate, YVO 4 , BBO, LN, LT, etc., but is not limited thereto. The shape of the transparent plate is preferably a plane parallel plate, but may be any shape as long as it has a refractive index that displaces the direction of the laser light on the incident side and the emission side.
The thickness of the transparent plate is 0.5 to 20 mm, particularly preferably 2 to 8 mm, in the case of a plane parallel plate.
[0007]
The angle adjusting means adjusts the arrangement angle of the transparent plate with respect to the optical axis of the laser beam. For example, the transparent plate is attached to the ball seat holder and rotated, and swings from side to side with the attachment point of the transparent plate as a fulcrum. However, the present invention is not limited to these, and any device can be used as long as the arrangement angle can be adjusted manually or automatically.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1A shows a structural cross section of a wavelength conversion solid-state laser device, where 1 is a semiconductor laser, which oscillates a laser beam of, for example, 810 nm and efficiently excites an absorption peak of a solid-state laser crystal. Furthermore, since the current-light output efficiency of the semiconductor laser itself is high and no extra energy is required, it is used as a solid-state laser excitation light source.
Output light (hereinafter referred to as LD light) from the semiconductor laser 1 is applied to the collimator lens 2a and the focus lens 2b. The collimator lens 2a and the focus lens 2b form a tandem lens system, condenses the LD light corresponding to the aperture diameter of the collimator lens 2a, condenses it into a parallel light beam, condenses it with the focus lens 2b, and enters the solid-state laser medium 3. Irradiated.
[0009]
For example, an Nd: YAG crystal is used as the solid-state laser medium 3, and a fundamental wave having a wavelength of 946 nm is oscillated by LD light. On one surface of the solid-state laser medium 3, there is formed a highly reflective coating film 3a that transmits LD light and reflects the fundamental wave stimulated and emitted from the solid-state laser medium 3 with high reflectivity. An optical resonator is configured between the highly reflective coating film 3 a and the output mirror 6.
[0010]
A nonlinear optical element 5 for generating SH waves, such as a KNbO 3 crystal, is inserted inside the optical resonator, and a fundamental wave of 946 nm that is stimulated and emitted by exciting the solid-state laser medium 3 with LD light, By irradiating the nonlinear optical element 5, a 473 nm SH wave is generated. Reference numeral 6 denotes an output mirror, which functions as one end face of the resonator and is provided with a highly reflective coating that reflects the fundamental wave of 946 nm and transmits the SH wave of 473 nm. Therefore, the SH wave from the nonlinear optical element 5 passes through the output mirror 6 and is emitted to the outside.
[0011]
Reference numeral 9 denotes a semiconductor laser / temperature controller driver. The SH wave emitted to the outside is monitored by a photodetector (not shown), and the detected value is fed back to the semiconductor laser / temperature controller driver 9 to output the SH wave output. The current is controlled to keep constant.
Further, a thermometer 11 and a temperature control element (for example, a Peltier element) are embedded immediately below the nonlinear optical element 5, and the temperature detection value is set to a semiconductor laser / temperature control so as to keep the temperature of the nonlinear optical element 5 constant. The temperature control element (not shown) is controlled by feeding back to the heater 9.
[0012]
Of the above configuration, the focus lens 2b, the solid-state laser medium 3, the nonlinear optical element 5, and the output mirror 6 are fixed in a common housing 10, and the end of the housing 10 has a hemispherical recess. The ball seat holder 7 is fitted there. A transparent parallel flat plate 4 is fixed to the ball seat holder 7, and the ball seat holder 7 is pressed into the recess by the two push screws 8 and the push spring 14 via the plate 12. . By strengthening the fastening of the push screw 8, the ball seat holder 7 rotates and the parallel flat plate 4 rotates. The plate 12 has a window 13 through which output light is extracted. The relationship between the window 13, the push screw 8 and the push spring 14 is as shown in FIG. FIG.1 (b) is a right view of the apparatus of Fig.1 (a).
[0013]
Next, the operation of this apparatus will be described.
The current is driven by the semiconductor laser / temperature controller driver 9, the pumping light 810nm is oscillated from the semiconductor laser 1, the LD light corresponding to the aperture diameter of the collimator lens 2a is condensed, and the collimator lens 2a becomes a parallel light beam. The light is condensed by 2b and irradiated to the solid-state laser medium 3. In response to the excitation light, the solid-state laser medium 3 oscillates the fundamental wave of 946 nm. The nonlinear optical element 5 provided in the resonator formed by the end face of the solid-state laser medium 3 and the output mirror 6 is excited by the fundamental wave and oscillates the SH wave of 473 nm. Since the output mirror 6 reflects the fundamental wave and transmits the SH wave, the SH wave becomes output light and enters the parallel flat plate 4.
[0014]
Based on the tilt angle, thickness, and refractive index of the plane parallel plate 4, the output light is displaced and exits from the window 13 to the outside. Although not shown, a passive optical system composed of a lens, an optical fiber, or the like is disposed outside. When the output light does not coincide with the optical axis of the passive optical system, the fastening of the push screw 8 is adjusted by a driver or the like to change the amount of displacement in the parallel plane plate 4 and translate the optical axis of the output light. . Thereby, the optical axis alignment between the laser device and the passive optical system can be easily performed.
[0015]
In the above description, the push screw 8 and the push spring 9 can be removed when further adjustment is unnecessary after fine adjustment. In this case, the ball seat holder 7 is fixed to the recess with an adhesive or the like.
[0016]
【The invention's effect】
According to the present invention, the optical axis between the laser beam and the passive optical system can be adjusted without adjusting the position of the entire laser device. In addition, since a laser device with good laser beam emission position accuracy can be provided, individual optical axis adjustment is not necessary. In addition, even when the laser apparatus fails, the laser apparatus can be replaced without performing optical axis adjustment again.
[Brief description of the drawings]
1A is a sectional view of a structure of a wavelength conversion solid-state laser device, FIG. 1B is a right side view thereof, and FIG. 2 is a principle diagram of the present invention. [Explanation of symbols]
1: Semiconductor laser 2a: Collimator lens 2b: Focus lens 3: Solid laser medium 4: Parallel plane plate 5: Non-linear optical element 6: Output mirror 7: Ball seat holder 8: Push screw 9: Push spring

Claims (1)

少なくとも固体レーザ媒質を含む光共振器を収容するハウジングのレーザ光射出側端部に形成された半球状の凹部と、前記凹部にはめ込まれる透明な平行平面板が固定された球座ホルダと、角度調整機構とを備え、該角度調整機構は、前記球座ホルダを前記凹部内に圧着させると共に、前記球座ホルダを前記凹部内で回転させて平行平面板のレーザ光の光軸に対する配置角度を調整する手段を有することを特徴とするレーザ装置。A hemispherical recess formed at an end of a laser beam emitting side of a housing that contains an optical resonator including at least a solid laser medium, a ball seat holder to which a transparent plane-parallel plate fitted in the recess is fixed, and an angle An adjustment mechanism, and the angle adjustment mechanism presses the ball seat holder into the recess, and rotates the ball seat holder in the recess to change an arrangement angle of the parallel plane plate with respect to the optical axis of the laser beam. A laser device comprising means for adjusting.
JP2000005628A 2000-01-14 2000-01-14 Solid state laser equipment Expired - Lifetime JP3805590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000005628A JP3805590B2 (en) 2000-01-14 2000-01-14 Solid state laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000005628A JP3805590B2 (en) 2000-01-14 2000-01-14 Solid state laser equipment

Publications (2)

Publication Number Publication Date
JP2001196674A JP2001196674A (en) 2001-07-19
JP3805590B2 true JP3805590B2 (en) 2006-08-02

Family

ID=18534267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000005628A Expired - Lifetime JP3805590B2 (en) 2000-01-14 2000-01-14 Solid state laser equipment

Country Status (1)

Country Link
JP (1) JP3805590B2 (en)

Also Published As

Publication number Publication date
JP2001196674A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
JP5100990B2 (en) Driver laser for extreme ultraviolet light source device and LPP type extreme ultraviolet light source device
JP4517698B2 (en) Wavelength conversion laser device
US20070264734A1 (en) Solid-state laser device and method for manufacturing wavelength conversion optical member
WO2016181488A1 (en) Passive q-switch laser and method for optimizing action of same
WO2013084608A1 (en) Co2 laser device and co2 laser processing device
JP2629621B2 (en) UV laser equipment
JP3805590B2 (en) Solid state laser equipment
JP3857236B2 (en) High repetition rate UV excimer laser
JPH06130328A (en) Polarization control element and solid laser device
JPH10107356A (en) Polarization control element and solid-state laser
JP2008130848A (en) Laser frequency stabilizing apparatus, and laser frequency stabilizing method
US6839374B2 (en) Barium fluoride high repetition rate UV excimer laser
JP2005039093A (en) Laser device
JP3968868B2 (en) Solid state laser equipment
JP2000208849A (en) Semiconductor laser exciting solid-state laser device
JP2849032B2 (en) Laser device
JP4146207B2 (en) Nonlinear wavelength conversion laser device
KR20090100393A (en) Laser pulse generator and generation method
JPS63254776A (en) Solid-state laser device
KR102436507B1 (en) polarization saturation absorber and pulsed laser apparatus including the same
JP2000138405A (en) Semiconductor laser-excited solid-state laser system
JP5242758B2 (en) Driver laser for extreme ultraviolet light source device and LPP type extreme ultraviolet light source device
JP2009004818A (en) Solid-state laser beam oscillator and solid-state laser beam oscillation device
JP2000349371A (en) Semiconductor laser-stimulating solid-state laser
JP2004311719A (en) Solid-state laser beam oscillator and solid-state laser beam oscillation device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3805590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

EXPY Cancellation because of completion of term