JPS6284147A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPS6284147A
JPS6284147A JP22421085A JP22421085A JPS6284147A JP S6284147 A JPS6284147 A JP S6284147A JP 22421085 A JP22421085 A JP 22421085A JP 22421085 A JP22421085 A JP 22421085A JP S6284147 A JPS6284147 A JP S6284147A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
parts
copolymer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22421085A
Other languages
Japanese (ja)
Other versions
JPS6360069B2 (en
Inventor
Kunio Ito
邦雄 伊藤
Toshio Shiobara
利夫 塩原
Koji Futatsumori
二ツ森 浩二
Kazutoshi Tomiyoshi
富吉 和俊
Hisashi Shimizu
久司 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP22421085A priority Critical patent/JPS6284147A/en
Priority to EP86113812A priority patent/EP0218228B1/en
Priority to DE86113812T priority patent/DE3689022T2/en
Publication of JPS6284147A publication Critical patent/JPS6284147A/en
Priority to US07/179,538 priority patent/US4877822A/en
Publication of JPS6360069B2 publication Critical patent/JPS6360069B2/ja
Priority to US07/397,739 priority patent/US5053445A/en
Priority to DE4006450A priority patent/DE4006450A1/en
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the titled composition of high crack resistance, suitable as semiconductor sealing materials, etc., by incorporating an epoxy resin with a copolymer prepared by addition reaction between an alkenyl group-contg. epoxy resin and specific organopoly siloxane. CONSTITUTION:The objective composition can be obtained by blending (I) 100pts. by wt. of (A) a curable epoxy resin selected from substituted and non-substituted novolak and bisphenol type ones plus (B) a curing agent (e.g., phenol novolak one) and (C) 100-1,000pts. by wt. of inorganic filler and (D) 1-100pts. by wt. of a copolymer prepared by addition reaction between (i) an alkenyl group-contg. epoxy resin and (ii) an organopolysiloxane of formula I (R is monovalent hydrocarbon group ; a is 0.01-0.1 ; b is 1.8-2.2 ; n is 20-400, n, a and b satisfying aquations II and III) (pref. both-terminal hydrogen dimethylpolysiloxane).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は成形材料、粉体塗装用材料、半導体の封止材等
として好適に用いられるエポキシ樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an epoxy resin composition suitable for use as a molding material, a powder coating material, a semiconductor encapsulating material, and the like.

従来の技術及び発明が解決しようとする問題点エポキシ
樹脂及びこれに無機充填剤等を配合したエポキシ樹脂組
成物は、一般に他の熱硬化性樹脂に比べて、成形性、接
着性、電気特性2機械特性、耐湿性等に優れているため
、各種成形材料、粉体塗装用材料、電気絶縁材料かとと
して広く利用され、特に最近においては半導体の封止材
として注目されている。
Problems to be Solved by the Prior Art and the Invention Epoxy resins and epoxy resin compositions containing inorganic fillers, etc., generally have poor moldability, adhesion, and electrical properties compared to other thermosetting resins. Because of its excellent mechanical properties and moisture resistance, it is widely used as a variety of molding materials, powder coating materials, and electrical insulation materials, and has recently attracted particular attention as a semiconductor encapsulating material.

しかしながら、従来のエポキシ樹脂組成物は硬化時にク
ラックが入シ、そのため成形、塗装面の外観が損なわれ
たシ、半導体等の素子や装置に欠陥を生じさせるものが
多く、この問題点を解決するために、本発明者らはさき
に硬化性エポキシ樹脂に対して芳香族重合体とオルガノ
ポリシロキサンとからなるブロック共重合体を添加する
ことKより、耐クラツク性の優れたエポキシ樹脂組成物
を提案した(特開昭58−21417号公報)が、更に
耐クラツク性に優れ、かつガラス転移点が高く、膨張係
数が低く、従って成形時の変形量が少ないなど、成形性
に優れ、しかも曲げ強度、曲げ弾性率等の機械的強度な
どの特性を損うことのないエポキシ樹脂組成物が望まれ
ていた。
However, conventional epoxy resin compositions often develop cracks during curing, which impairs the appearance of molded and painted surfaces and causes defects in semiconductor devices and other devices. Therefore, the present inventors first added a block copolymer consisting of an aromatic polymer and an organopolysiloxane to a curable epoxy resin, thereby creating an epoxy resin composition with excellent crack resistance. proposed (Japanese Unexamined Patent Publication No. 58-21417), it has excellent crack resistance, high glass transition point, low expansion coefficient, and therefore less deformation during molding, and has excellent moldability. There has been a desire for an epoxy resin composition that does not impair properties such as strength and mechanical strength such as flexural modulus.

本発明は上記事情に鑑みなされたもので1曲げ強度、曲
げ弾性率だ代表される機械的強度を損うことなく、しか
も低膨張係数、高ガラス転移点を有し、耐クラツク性に
優れて、成形時の変形量が少ないエポキシ樹脂組成物を
提供することを目的とする。
The present invention was developed in view of the above circumstances, and has a low expansion coefficient, a high glass transition point, and excellent crack resistance without impairing the mechanical strength represented by bending strength and bending modulus. The object of the present invention is to provide an epoxy resin composition that has a small amount of deformation during molding.

問題点を解決するための手段及び作用 本発明者らは、上記目的を達成すべく、硬化性エポキシ
樹脂と硬化剤とを主成分とするエポキシ樹脂組成物に配
合されて、更に耐クラ−ツク性に優れた効果をもたらす
ブロック共重合体成分につぎ鋭意検討を行なった結果、
アルケニル基含有エポキシ樹脂に対して、”SIH基を
含有するオルガノポリシロキサンを付加することによっ
て得られる共重合体がエポキシ樹脂組成物の配合剤とし
て優れた特性を有することを知見した。即ち、この共重
合体は、アルケニル基と7′s l H基との付加反応
によってエポキシ樹脂に結合していない遊離のオルがノ
ポリシロキサンをほとんど含まないものであ−ターが変
シ、分子量が1500〜5000のような比較的低分子
量のオルガノポリシロキサンを用いた場合でも溶解度パ
ラメーターが7゜3〜8.5程度となるものもあり、従
って得られた共重合体の種類によって硬化性エポキシ樹
脂への溶解が防止でき、このため該共重合体をエポキシ
樹脂組成物に配合した場合にはガラス転移点が低下しな
いばかりか、10℃程度向上した膨張係数の低いエポキ
シ樹脂組成物が得られ、しかも上記共重合体は、硬化性
エポキシ樹脂と同一もしくは類似のエポキシ樹脂セグメ
ントを含むために硬化性エポキシ樹脂への親和性が高く
、従ってミクロ分散が可能となシ、耐クラック性が飛躍
的に向上し、更にはアルミニウム電極の変形量の少ない
エポキシ樹脂組成物が得られることを見出し、本発明を
完成するに至ったものである。
Means and Action for Solving the Problems In order to achieve the above object, the present inventors have developed an epoxy resin composition containing a curable epoxy resin and a curing agent as main components, which further improves crack resistance. As a result of intensive research into the block copolymer component that brings about excellent properties,
It has been found that a copolymer obtained by adding an organopolysiloxane containing an SIH group to an epoxy resin containing an alkenyl group has excellent properties as a compounding agent for an epoxy resin composition. The copolymer contains almost no nopolysiloxane in which the free ol that is not bonded to the epoxy resin is modified by an addition reaction between an alkenyl group and a 7'SlH group, and has a molecular weight of 1,500 to 1,500. Even when organopolysiloxanes with a relatively low molecular weight such as 5000 are used, the solubility parameter may be around 7°3 to 8.5, and therefore, depending on the type of copolymer obtained, it may be difficult to make a curable epoxy resin. Dissolution can be prevented, and therefore, when the copolymer is blended into an epoxy resin composition, not only the glass transition point does not decrease, but also an epoxy resin composition with a low expansion coefficient that is improved by about 10°C can be obtained. Since the copolymer contains epoxy resin segments that are the same as or similar to the curable epoxy resin, it has a high affinity for the curable epoxy resin, allowing for microdispersion and dramatically improving crack resistance. Furthermore, the present inventors have discovered that an epoxy resin composition with less deformation of aluminum electrodes can be obtained, and have completed the present invention.

従って本発明は、硬化性エポキシ樹脂と、硬化剤と、無
機充填剤とを含有するエポキシ樹脂組成物に・アルケニ
ル基含有エポキシ樹脂と下記式(1)(但し、式中Rは
置換又は非置換の1価の炭化水素基、aは0.01〜0
.1.bは1.8〜2.2、nは20〜400の整数を
表わし、5≧(n×a)≧1.1.81(a十b<2.
3である。) で示されるオルガノポリシロキサンとの付加反応によシ
得られる共重合体を配合したエポキシ樹脂組成物を提供
するものである。
Therefore, the present invention provides an epoxy resin composition containing a curable epoxy resin, a curing agent, and an inorganic filler, an alkenyl group-containing epoxy resin, and the following formula (1) (wherein R is substituted or unsubstituted). monovalent hydrocarbon group, a is 0.01 to 0
.. 1. b represents an integer of 1.8 to 2.2, n represents an integer of 20 to 400, and 5≧(n×a)≧1.1.81 (a+b<2.
It is 3. ) An epoxy resin composition containing a copolymer obtained by an addition reaction with an organopolysiloxane shown in the following is provided.

以下、本発明を更に詳しく説明する。The present invention will be explained in more detail below.

まず5本発明の組成物を構成する硬化性エポキシ樹脂は
1分子中に2個以上のエポキシ基を有するエポキシ樹脂
であって、このエポキシ樹脂は後述するような各種硬化
剤によって硬化させることが可能な限シ分子構造、分子
量等に特に制限はなく、従来から知られている種々のも
のを使用することができ、これには例えば二一りσルヒ
ドリンとビスフェノールをはじめとする各種ノボラック
樹脂から合成されるエポキシ樹脂、脂環式エボキシ樹脂
あるいは塩素や臭素原子等のハロダン原子を導入したエ
ポキシ樹脂等をあげることができる。
First, the curable epoxy resin constituting the composition of the present invention is an epoxy resin having two or more epoxy groups in one molecule, and this epoxy resin can be cured with various curing agents as described below. However, there are no particular restrictions on the molecular structure, molecular weight, etc., and various conventionally known ones can be used. Examples include epoxy resins such as epoxy resins, alicyclic epoxy resins, and epoxy resins into which halodane atoms such as chlorine and bromine atoms are introduced.

なお、上記エポキシ樹脂の使用に際して、モノエポキシ
化合物を適宜併用することは差支えなく、このモノエポ
キシ化合物としてはスチレンオキシド、シクロヘキセン
オキシド、プロピレンオキシド、メチルグリシゾルエー
テル、エチルグリシジルエーテル、フェニルグリシジル
エーテル、アリルグリシジルエーテル、オクチレンオキ
シド、ドデセンオキシドなどが例示される。上記エポキ
シ樹脂は、その使用にあたっては必ずしも1徨類のみの
使用に限定されるものではなく、2種もしくはそれ以上
を混合して使用してもよい。
In addition, when using the above-mentioned epoxy resin, there is no problem in appropriately using a monoepoxy compound in combination, and examples of this monoepoxy compound include styrene oxide, cyclohexene oxide, propylene oxide, methyl glycysol ether, ethyl glycidyl ether, phenyl glycidyl ether, and allyl. Examples include glycidyl ether, octylene oxide, and dodecene oxide. The above-mentioned epoxy resins are not necessarily limited to the use of only one type, but may be used in combination of two or more types.

また、硬化剤としてはジアミノジフェニルメタン、ジア
ミノジフェニルスルホン、メタフェニレンジアミン等に
代表されるアミン系硬化剤、無水フタル酸、無水ピロメ
リット酸、無水ペンゾフェノンテトラカルゴン酸等の酸
無水物系び化剤、あるいはフェノールノ?ラック、クレ
ゾールノボラック等の1分子中に2個以上の水酸基を有
するフェノールノ?ラック硬化剤等が例示される。
In addition, as curing agents, amine curing agents represented by diaminodiphenylmethane, diaminodiphenylsulfone, metaphenylene diamine, etc., acid anhydride curing agents such as phthalic anhydride, pyromellitic anhydride, penzophenonetetracargonic anhydride, etc. agent or phenol? Phenols with two or more hydroxyl groups in one molecule, such as Lac, Cresol Novolak, etc. Examples include rack hardening agents.

更に、本発明においては上記した硬化剤とエポキシ樹脂
との反応を促進させる目的で各種硬化促進剤、例えばイ
ミダゾールあるいはその誘導体、三級アミン系誘導体、
ホスフィン系誘導体、シクロアミノン誘導体等を併用す
ることは何ら差支えない。
Furthermore, in the present invention, various curing accelerators such as imidazole or its derivatives, tertiary amine derivatives,
There is no problem in using phosphine derivatives, cycloaminone derivatives, etc. in combination.

なお、前記硬化剤の使用量は通常使用される量であり、
硬化促進剤の配合量も通常の範囲とすることができる。
In addition, the amount of the curing agent used is the amount normally used,
The amount of the curing accelerator can also be within a normal range.

本発明において使用される無機充填剤は、エポキシ樹脂
と硬化剤の総量100重量部に対し100重量部歩満で
は得られるエポキシ樹脂組成物が低応力となる場合があ
り、また耐クラツク性などの物性面でも満足する結果が
得られない場合が生じ、一方1000重量部を越えると
流動性が悪くなシ、無機充填剤の分牧が困難となる場合
があるので、100〜1000重量部とすることが好ま
しく、より好ましくr1250〜750重量部である。
When the inorganic filler used in the present invention is used in an amount of 100 parts by weight per 100 parts by weight of the total amount of epoxy resin and curing agent, the resulting epoxy resin composition may have low stress and may have poor crack resistance. Satisfactory results may not be obtained in terms of physical properties, and on the other hand, if it exceeds 1000 parts by weight, fluidity may be poor and it may be difficult to divide the inorganic filler, so the amount should be 100 to 1000 parts by weight. It is preferable, and more preferably r1250 to 750 parts by weight.

なお、無機充填剤の種類、単独使用あるいは複数種の併
用等に制限はなく、エポキシ樹脂組成物の用途等に応じ
て適宜選択され、例えば結晶性シリカ、非結晶性シリカ
等の天然シリカ、合成高純度シリカ、合成球状シリカ、
タルク、マイカ、窒化ケイ素、がロンナイトライド、ア
ルミナなどから選ばれる1種又は2種以上を使用するこ
とができる。
There are no restrictions on the type of inorganic filler, whether it is used alone or in combination, and may be selected appropriately depending on the use of the epoxy resin composition. High purity silica, synthetic spherical silica,
Talc, mica, silicon nitride, lonitride, alumina, and the like can be used at least one kind selected from the group consisting of talc, mica, silicon nitride, and alumina.

本発明のエポキシ樹脂組成物に配合する共重合体は、ア
ルケニル基含有エポキシ樹脂と下記式(1)(但し、式
中Ra置換又は非置換の1価の炭化水素基、a u 0
.01〜0.1、bは1.8〜2.2、nは20〜40
0の整数を表わし、5≧(nX凰)≧1.1、81 <
 a +b < 2.3である。)で示されるオルがノ
ボリシロキサンとの付加反応にニジ得らnる反応生成物
である。
The copolymer blended into the epoxy resin composition of the present invention is an alkenyl group-containing epoxy resin and the following formula (1) (however, in the formula, Ra substituted or unsubstituted monovalent hydrocarbon group, a u 0
.. 01-0.1, b is 1.8-2.2, n is 20-40
Represents an integer of 0, 5≧(nX凰)≧1.1, 81<
a + b < 2.3. ) is a reaction product obtained by addition reaction with novolisiloxane.

ここで、アルケニル基含有エポキシ樹脂としては、アル
ケニル基含有フェノール樹脂をエビクロロヒドリンにエ
フエポキシ化したり、従来公知のエポキシ樹脂に2−ア
リルフェノールなどを部分的に反応させたりすることな
どにより得ることができ、具体的には下記式(2)〜(
4)の化合物などが挙げられる。
Here, the alkenyl group-containing epoxy resin can be obtained by F-epoxidizing an alkenyl group-containing phenol resin to shrimp chlorohydrin, or by partially reacting a conventionally known epoxy resin with 2-allylphenol, etc. Specifically, the following formulas (2) to (
Examples include the compound 4).

式(2) (但し、上記式(2)〜(4ンにおいて、p 、 qF
i通常1(p(10,1(q(3で示される正数を表わ
す。) 他方、上記式(1)で示されるオリがノポリ・シロキサ
ンとしては、1分子中に少なくとも1個の7S x H
基をもつものであればよいが、特に両末端ハイドロジエ
ンメチルポリシロキサン、両末端ハイドロツエンメチル
フェニルポリ70キサン、両末端ハイドロジエンメチル
・(2−)リメトキシシリルエチル)ポリシロキサンが
好適である。具体的には下記(5)〜(9)の化合物な
どが挙げられる。
Formula (2) (However, in the above formulas (2) to (4), p, qF
i usually 1(p(10,1(q (represents a positive number indicated by 3) H
Any material having a group may be used, but particularly preferred are hydrodiene methyl polysiloxane at both ends, hydrothene methylphenyl poly70xane at both ends, and hydrodiene methyl/(2-)rimethoxysilylethyl)polysiloxane at both ends. . Specifically, the following compounds (5) to (9) may be mentioned.

式(5) 式(6) 式(7) 式(8) 式(9) 上記式(1)で表わされるオルガノポリシロキサンの重
合度は20〜400.好ましくは30〜200の範囲に
あることが必要であり、nが20未満では十分な可撓性
を付与することも高いガラス転移点(Tg)を得ること
もできず、またnが400を越える場合には共重合体を
得ることが合成技術上極めて困難であり、仮りに共重合
体が得られたとしても容易に分散させることができず、
本発明の目的を達成することはできない。一般に、オル
がノボリシロキサンは、同一シリコーン含有量の場合、
nが大きくなるに従って耐クラツク性、高Tg化には好
結果を与えることができるが、反面、分数性、素子との
密着性が低下する傾向がある。この分散性素子との密着
性を改良するために1例えば上記式(9)で示されるよ
うな側鎖に−C2H4SICOCH3)3.−CH2−
CH2C00CH3SICOCH,)3、を導入するこ
とが有効であり、望ましい。
Formula (5) Formula (6) Formula (7) Formula (8) Formula (9) The degree of polymerization of the organopolysiloxane represented by the above formula (1) is 20 to 400. It is preferably in the range of 30 to 200; if n is less than 20, it will not be possible to provide sufficient flexibility or obtain a high glass transition temperature (Tg), and if n exceeds 400. In some cases, it is extremely difficult to obtain a copolymer due to synthetic technology, and even if a copolymer is obtained, it cannot be easily dispersed.
The purpose of the invention cannot be achieved. Generally, novolisiloxanes have the same silicone content;
As n increases, good results can be achieved in terms of crack resistance and high Tg, but on the other hand, fractional properties and adhesion to elements tend to decrease. In order to improve the adhesion with this dispersive element, 1.For example, -C2H4SICOCH3)3. -CH2-
It is effective and desirable to introduce CH2C00CH3SICOCH,)3.

本発明のエポキシ樹脂組成物に配合する共重合体は、上
記アルケニル含有エポキシ樹脂と式(1ンのン5II(
xをもつオルガノポリシロキサンとを従来公知の付加触
媒、例えば塩化白金酸のような白金系触媒の存在下で加
熱反応させることによって得ることかできる。上記共重
合体は、エポキシ樹脂組成物中のエポキシ樹脂(硬化性
エポキシ樹脂)に相溶することなく、かつ微細な海鳥構
造をとることが高ガラス転移点、低膨張係数でしかも耐
クラツク性に優れたエポキシ樹脂組成物を得ることにと
って望ましく、このために共重合体の溶解度パラメータ
ーを7.3〜8.5、特に7.6〜8.2とすることが
好ましい。上記溶解度パラメーターの共重合体を得るた
めには、オルガノJ IJシロキサンの、>SIH通量
をA、アルケニル基含有エポキシ樹脂の分子量をBとし
た場合、0.7<φ<7.0の範囲で反応させることが
好ましい。
The copolymer blended into the epoxy resin composition of the present invention is a copolymer of the above alkenyl-containing epoxy resin and the formula (1-5II (
It can be obtained by subjecting an organopolysiloxane having x to a heating reaction in the presence of a conventionally known addition catalyst, for example a platinum-based catalyst such as chloroplatinic acid. The above copolymer is not compatible with the epoxy resin (curable epoxy resin) in the epoxy resin composition, and has a fine seabird structure, resulting in a high glass transition point, low expansion coefficient, and crack resistance. It is desirable to obtain an excellent epoxy resin composition, and for this purpose it is preferred that the solubility parameter of the copolymer is between 7.3 and 8.5, particularly between 7.6 and 8.2. In order to obtain a copolymer with the above solubility parameter, the range of 0.7<φ<7.0 is required, where A is the >SIH weight of the organo J IJ siloxane and B is the molecular weight of the alkenyl group-containing epoxy resin. It is preferable to react with

上述した共重合体のエポキシ樹脂組成物中の配合量は、
エポキシ樹脂と硬化剤の総量100重量部に対し1重量
部未満とするとエポキシ樹脂組成物のガラス転移点の向
上、耐クラツク性の改良、アルミニウム配線移動の抑止
等に対する効果が不十分となる場合があシ、また100
重量部を越えるとエポキシ樹脂組成物の機械的強度が低
下する傾向を示すので、1〜100重量部、特に2〜6
0重量部とすることが好ましい。
The amount of the above-mentioned copolymer in the epoxy resin composition is
If the amount is less than 1 part by weight based on 100 parts by weight of the total amount of epoxy resin and curing agent, the effect of improving the glass transition point of the epoxy resin composition, improving crack resistance, suppressing aluminum wiring movement, etc. may be insufficient. Ashi, 100 again
If it exceeds 1 to 100 parts by weight, especially 2 to 6 parts by weight, the mechanical strength of the epoxy resin composition tends to decrease.
Preferably, the amount is 0 parts by weight.

本発明の組成物には、更に必要によシその目的、用途な
どに応じ、各種の添加剤を配合することができる。例え
ばワックス類、ステアリン酸などの脂肪酸及びその金属
塩等の離型剤、カーゲンブラック等の顔料、染料、酸化
防止剤、難燃化剤、表面処理剤(γ−グリコシドキシ7
”oぎルトリメトキシシラン等)、その他の添加剤を配
合することは差支えない。
The composition of the present invention may further contain various additives depending on its purpose, use, etc., as necessary. For example, waxes, fatty acids such as stearic acid and mold release agents such as metal salts thereof, pigments such as Cargen Black, dyes, antioxidants, flame retardants, surface treatment agents (γ-glycosidoxy 7
There is no problem in adding other additives such as "Ogyltrimethoxysilane, etc.".

本発明の組成物は、上述した成分の所定量を均一に攪拌
、混合し、予め70〜95℃に加熱してアルニーグー、
ロール、エクストルーダーなどで混線、冷却し、粉砕す
るなどの方法で得ることができる。なお、成分の配合順
序に特忙制限はない本発明のエポキシ樹脂組成物は、成
形材料、粉体塗装用材料として好適に使用し得るほか、
IC。
The composition of the present invention can be prepared by uniformly stirring and mixing predetermined amounts of the above-mentioned components, heating the mixture to 70 to 95°C in advance, and preparing the alnigoo.
It can be obtained by mixing, cooling, and pulverizing using a roll or extruder. The epoxy resin composition of the present invention, which has no particular restrictions on the order of mixing the components, can be suitably used as a molding material and a powder coating material, as well as
I.C.

LSI 、 )ランジスタ、サイリスタ、ダイオード等
の半導体装置の封止層、プリント回路板の展進などにも
有効に使用できる。
It can also be effectively used as a sealing layer for semiconductor devices such as LSI, ) transistors, thyristors, and diodes, and for the development of printed circuit boards.

なお、半導体装置の封止を行なう場合は、従来よシ採用
されている成形法、例えばトランスファ成形、インジェ
クン!ン成形、注型法などを採用して行なうことができ
る。この場合、エポキシ樹脂組成物の成形温度は150
〜180’C,ポストキュアーは150〜1801:で
2〜16時間行うことが好ましい。
When sealing semiconductor devices, conventional molding methods such as transfer molding and inject! This can be done using methods such as molding or casting. In this case, the molding temperature of the epoxy resin composition is 150
-180'C, and post-cure is preferably carried out at 150-1801C for 2-16 hours.

発明の詳細 な説明したように、本発明は硬化性エポキシ樹脂と、硬
化剤と、無機充填剤忙加えて、アルケニル基含有工Iキ
シ樹脂と特定の重合度を有するンSIB構造のオルガノ
ポリシロキサンとの付加反応によシ得られる共重1合体
を配合した−ことKよシ、Sけ強度1曲げ弾性等の機械
的強度を低下させる、 ことなく、しかも低膨張係数、
高ガラス転移点で耐クラツク性に優れ、アルミニウム電
極の変形量が微少で、成形材料、粉体塗装用材料、ある
いは半導体の封止材等として好適に用いられるエポキシ
樹脂組成物が得られるものである。
As described in detail, the present invention comprises a curable epoxy resin, a curing agent, an inorganic filler, an alkenyl group-containing engineered resin, and an SIB structure organopolysiloxane having a specific degree of polymerization. By blending a copolymer obtained by an addition reaction with K, it has a low coefficient of expansion without reducing mechanical strength such as flexural strength and bending elasticity.
An epoxy resin composition with a high glass transition point, excellent crack resistance, minimal deformation of aluminum electrodes, and suitable for use as a molding material, powder coating material, semiconductor encapsulation material, etc. can be obtained. be.

次に参考例を示す。なお、参考例1.2は本発明に用い
る共重合体の製造例であり、参考例3は比較品として用
いた共重合体の製造例である。
A reference example is shown below. Note that Reference Example 1.2 is an example of manufacturing a copolymer used in the present invention, and Reference Example 3 is an example of manufacturing a copolymer used as a comparative product.

〔参考例1〕 リフラックスコンデンサー、温度計、攪拌機および滴下
ロートを具備した内容積11の四つロフラスコへ軟化点
80℃のエポキシ化フェノールノ?ラック樹脂(エポキ
シ当量195)300.9’を入れ、温度110℃で攪
拌しなから2−アリルフェノール32Iiとトリブチル
アミンIIiとの混合物を滴下時間10分くて滴下し、
更に温度110℃にて2FIFP間攪拌を続けた。得ら
れた内容物から未反応の2−アリルフェノール及びトリ
ブチルアミンを減圧下で留去し、アリル基含有のエポキ
シ樹脂(アリルat1490、エポキシ当量235)を
得た。
[Reference Example 1] Epoxidized phenol having a softening point of 80°C was charged into a four-bottle flask with an internal volume of 11 equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel. 300.9' of lac resin (epoxy equivalent: 195) was added, and while stirring at a temperature of 110°C, a mixture of 2-allylphenol 32Ii and tributylamine IIi was added dropwise for 10 minutes.
Further, stirring was continued for 2 FIFPs at a temperature of 110°C. Unreacted 2-allylphenol and tributylamine were distilled off from the resulting contents under reduced pressure to obtain an allyl group-containing epoxy resin (allyl at 1490, epoxy equivalent 235).

次に、上記と同様の四つロフラスコに、上記方法で得た
アリル基含有のエポキシ樹@120.f。
Next, the allyl group-containing epoxy tree @120. f.

メチルイソブチルケトン100.9.)ルエン200y
、2%の白金濃度の2−エチルへキサノールi性基化白
金酸浴fiO,04,9をそれぞれ入れ、工時間の共沸
脱水を行ない、還流温度にて第1表に示すオルがノポリ
シロキサンgoIiを滴下時間30分にて滴下し、更に
同一温度で4時間攪拌して反応させた後、得られた内容
物を水洗し、溶剤を減圧下で留去することにょシ、fa
1表に示す反応生成物(共重合体1.II、III)を
得た。
Methyl isobutyl ketone 100.9. ) Luen 200y
, 2-ethylhexanol i-based platinic acid baths fiO, 04, 9 with a platinum concentration of 2% were added, and azeotropic dehydration was carried out for a working time. Siloxane goIi was added dropwise for 30 minutes, and the reaction was further stirred for 4 hours at the same temperature.The resulting contents were washed with water and the solvent was distilled off under reduced pressure.
The reaction products (copolymers 1.II, III) shown in Table 1 were obtained.

第  1  表 (注1)化合物A: (注2)化合物B; (注3)化合物C; 〔参考例4〕 参考例1と同様の四つロフラスコを用いて、この中にア
リルグリシジルエーテルで変性された軟化点100℃の
7エノールノゴラツク樹ff1(フェノール当量125
.アリル当量1100)200#。
Table 1 (Note 1) Compound A: (Note 2) Compound B; (Note 3) Compound C; [Reference Example 4] Using a four-loaf flask similar to Reference Example 1, denatured with allyl glycidyl ether was added into the flask. 7-enol Nogorak tree ff1 with a softening point of 100°C (phenol equivalent: 125
.. Allyl equivalent weight 1100) 200#.

クロロメチルオキシシラン800g、セチルトリメチル
アンモニウムブロマイド0.6.9をそれぞれ入れて加
熱し、温度1101:で3時間攪拌混合した。これを冷
却して温度70℃とし、160fiI(gに減圧してか
ら、この中に水酸化ナトリウムの50%水溶1128f
lを共沸脱水しながら3時間かけて滴下した。得られた
内容物を減圧して浴剤を留去し、次いでメチルイソブチ
ルケトン300yとアセトン300Fの混合溶剤にて溶
解させた後、水洗し、これを減圧下で溶剤留去してアリ
ル基含有のエポキシ樹脂(アリル当1i1590.エポ
キシ当量190)を得た。これに第2表に示すオルガノ
ポリシロキサンを用い、参考例1と同様にして第2表に
示す反応生成物(共重合体IV、V)を得た。
800 g of chloromethyloxysilane and 0.6.9 g of cetyltrimethylammonium bromide were added, heated, and stirred and mixed at a temperature of 1101:1 for 3 hours. This was cooled to a temperature of 70°C, and the pressure was reduced to 160fiI (g).
1 was added dropwise over 3 hours while performing azeotropic dehydration. The obtained contents were distilled off under reduced pressure to remove the bath agent, then dissolved in a mixed solvent of methyl isobutyl ketone 300y and acetone 300F, washed with water, and the solvent was distilled off under reduced pressure to obtain allyl group-containing material. An epoxy resin (allyl equivalent: 1590, epoxy equivalent: 190) was obtained. Using the organopolysiloxane shown in Table 2, the reaction products (copolymers IV and V) shown in Table 2 were obtained in the same manner as in Reference Example 1.

第  2  表 〔参考例3〕 参考例1のアリール基含有のエポキシ樹脂に代えてアリ
ルフェノールを含むフェノールノがラック樹脂(フェノ
ール当量125、アリル当量1100)と第3表に示す
種類のオルガノポリシロキサンを用い、参考例1と同様
にして第3表に示す反応生成物(共重合体■、■)を得
た。
Table 2 [Reference Example 3] In place of the aryl group-containing epoxy resin of Reference Example 1, a phenolic resin containing allylphenol (phenol equivalent: 125, allyl equivalent: 1100) and an organopolysiloxane of the type shown in Table 3 were used. The reaction products shown in Table 3 (copolymers ① and ①) were obtained in the same manner as in Reference Example 1.

@ 3 表 以下、実施例と比較例を示し、本発明を具体的に示すが
、本発明は下記実施例に制限されるものではない。なお
下記の例において部は重量部を示す。
@ 3 Below in the table, Examples and Comparative Examples are shown to specifically illustrate the present invention, but the present invention is not limited to the following Examples. Note that in the following examples, parts indicate parts by weight.

〔実施例1〜8.比較例1〜3〕 エポキシ当量200のエポキシ化りレゾールノがう′ツ
ク樹脂(硬化性エポキシ樹脂■)、フェノール当量゛1
10のフェノールノ?ラック樹脂、参考例で得られた共
重合体、トリフェニルホスフィン(TPP )、1.8
−ゾアザ?シクロウンデセン−7(DBU)をそれぞれ
第4表に示す配合量で使用し、これ疋臭素化エボキシノ
デラック樹脂IO部、石英粉末260部、3−グリシド
キシプロビルトリメトキシシラン1.5部、ワックス8
1.5部、カーダンブラック1.0 sを加えて得られ
た配合物を熱2本ロールで均一に浴融混合して11徨の
エポキシ樹脂組成物(実施例1〜8.比較例1〜3)を
製造した。
[Examples 1 to 8. Comparative Examples 1 to 3] Epoxidized resol resin (curable epoxy resin) with epoxy equivalent of 200, phenol equivalent ゛1
10 phenols? Lac resin, copolymer obtained in reference example, triphenylphosphine (TPP), 1.8
-Zoaza? Cycloundecene-7 (DBU) was used in the amounts shown in Table 4, and was combined with 10 parts of brominated epoxy nodelac resin, 260 parts of quartz powder, and 1.5 parts of 3-glycidoxypropyltrimethoxysilane. part, wax 8
The mixture obtained by adding 1.5 parts of cardan black and 1.0 s of cardan black was uniformly bath melt-mixed using two heated rolls to obtain an epoxy resin composition of 11 parts (Examples 1 to 8. Comparative Example 1). -3) were produced.

これらのエポキシ樹脂組成物につき、以下の四〜(ホ)
の諸試験を行なった。
For these epoxy resin compositions, the following four to (e)
Various tests were conducted.

(イ) スフ9イラルフロー値 EMMI規格に準じた金車を使用して、175℃。(a) Suf9 iral flow value 175℃ using a gold wheel that complies with EMMI standards.

70 kg/an”の条件で測定した。The measurement was carried out under the condition of 70 kg/an''.

(ロ)機械的強度(曲げ強度及び曲げ弾性率)JISK
6911に準じて175℃、 70 kg/cWr2.
成形時間2分の条件で110X4X100の抗折棒を成
形し、180℃で4時間ポストキーアーしたものについ
て測定した。
(b) Mechanical strength (bending strength and bending modulus) JISK
175℃, 70 kg/cWr2.
Measurements were made on a 110 x 4 x 100 bending rod that was molded under conditions of a molding time of 2 minutes and post-keyed at 180° C. for 4 hours.

(ハ)膨張係数、ガラス転移温度 4wφX15mの試験片を用いて、ディラドメーターに
より毎分5℃の速さで昇温した時の値を測定した。
(c) Expansion coefficient: Using a test piece with a glass transition temperature of 4 wφ x 15 m, the value was measured using a diradometer when the temperature was raised at a rate of 5° C. per minute.

に) 耐クラツク性 9、OX 4.5 X O,5簡の大きさのシリコンチ
ップを14 PIN−4Cフレーム(4270イ)に接
着し、これにエポキシ樹脂組成物を成形条件180℃×
2分で成形し、180℃で4時間ポストキュアーした後
、−196℃×1分〜260℃X30秒の熱サイクル全
繰返して加え、50サイクル後の樹脂クラック発生率を
測定した。(n=50) (ホ)アルミニウム電極の変形量 3.4 X 10.2 X O,3■の大きさのシリコ
ンチップ上にアルミニ9ム電極を蒸着した変形量測定素
子を14ピンICフレーム(4270イ)にゲンディン
グし、これに工4キシ樹脂組成物全成形条件180℃×
2分で成形し、180℃で4時間ポストキーアーした後
、−196℃×1分〜260℃×30秒の熱サイクルを
繰返して加え、200サイクル後のアルミニウム電極の
変形量を調べた。(n = 3 )以上の諸試験の結果
を第4表に併記する。
2) Crack resistance 9, OX 4.5 x 0. A silicon chip of the size of 5 pieces was glued to a 14 PIN-4C frame (4270), and an epoxy resin composition was applied to it under molding conditions of 180°C.
After molding for 2 minutes and post-curing at 180°C for 4 hours, a complete thermal cycle of -196°C x 1 minute to 260°C x 30 seconds was repeated, and the resin crack occurrence rate after 50 cycles was measured. (n=50) (e) Deformation amount of aluminum electrode A deformation measurement element made by depositing an aluminum 9mm electrode on a silicon chip with a size of 3.4 x 10.2 x O, 3cm was mounted on a 14-pin IC frame ( 4270), and then the resin composition was molded under all molding conditions at 180°C.
After molding for 2 minutes and post-keying at 180°C for 4 hours, a heat cycle of -196°C x 1 minute to 260°C x 30 seconds was repeatedly applied, and the amount of deformation of the aluminum electrode after 200 cycles was examined. (n = 3) The results of the above tests are also listed in Table 4.

第4表の結果から、本発明に係るエポキシ樹脂と特定の
オルガノポリシロキサンとの反応により得られた共重合
体を配合したエポキシ樹脂組成物は、該共重合体を配合
していないエポキシ樹脂組成物に比し、曲げ強度、曲げ
弾性率といった機械的強度が損なわれず、しかも膨張係
数も同等以下である上、高ガラス転移温度を有して、耐
クラツク性が優れ、アルミニウム電極の変形量が小さく
なり、成形材料、粉体塗装用材料、あるいは半導体の封
止材等として好適であることが知見される。
From the results in Table 4, it can be seen that the epoxy resin composition containing the copolymer obtained by reacting the epoxy resin of the present invention with a specific organopolysiloxane is different from the epoxy resin composition containing no copolymer. Compared to aluminum electrodes, mechanical strength such as bending strength and flexural modulus is not impaired, and the coefficient of expansion is the same or lower, and it also has a high glass transition temperature, excellent crack resistance, and the amount of deformation of the aluminum electrode is reduced. It is found that it is suitable as a molding material, a powder coating material, a semiconductor sealing material, etc.

〔実施列9〜12〕 実施例1で用いたエポキシ樹脂Iの代りにエポキシ当t
220のエポキシ化ビスフェノール人のノビラック樹脂
(エポキシ樹脂n)又はエポキシ当量195のトリス(
4−グリシドキシフェニル)メタンダイマー(エポキシ
樹脂111)’を用い、フェノール樹脂及び共重合体の
配合ittMs表に示される通りとしたほかは実施例1
と同様の成分、配を用いて前記(イ)〜(ホ)の諸試験
を行なった。
[Execution rows 9 to 12] Epoxy resin I used in Example 1 was replaced with epoxy resin I.
Nobilac resin (epoxy resin n) of epoxidized bisphenols with a weight of 220 or Tris (epoxy resin n) with an epoxy equivalent weight of 195
Example 1 except that 4-glycidoxyphenyl)methane dimer (epoxy resin 111)' was used, and the phenolic resin and copolymer were blended as shown in the ittMs table.
The various tests (a) to (e) above were conducted using the same ingredients and arrangements.

以上の諸試験の結果を第5表て併記する。The results of the above tests are also listed in Table 5.

第5表 第5表の結果からも、本発明に係る共重合体を配合した
エポキシ樹脂組成物は、流動性、機械的強度が損なわれ
ることなく、しかも低膨張係数、高ガラス転移温度で、
耐クラツク性が優れ、アルミニウム配線移動量が小さい
ことが知見される。
The results in Table 5 also show that the epoxy resin composition blended with the copolymer according to the present invention has a low coefficient of expansion, a high glass transition temperature, without loss of fluidity and mechanical strength.
It is found that the crack resistance is excellent and the amount of aluminum wiring movement is small.

Claims (1)

【特許請求の範囲】 1、硬化性エポキシ樹脂と、硬化剤と、無機充填剤とを
含有するエポキシ樹脂組成物に、アルケニル基含有エポ
キシ樹脂と下記式(1) 〔H_aR_bSiO_{_[_4_−_(_a_+_
b_)_]_/_2_}〕_n・・・(1)(但し、式
中Rは置換又は非置換の1価の炭化水素基、aは0.0
1〜0.1、bは1.8〜2.2、nは20〜400の
整数を表わし、5≧(n×a)≧1、1.81<a+b
<2.3である。)で示されるオルガノポリシロキサン
との付加反応により得られる共重合体を配合したことを
特徴とするエポキシ樹脂組成物。 2、硬化性エポキシ樹脂が置換及び非置換のノボラック
型エポキシ樹脂並びにビスフェノールA型エポキシ樹脂
から選ばれる1種又は2種以上である特許請求の範囲第
1項記載の組成物。 3、式(1)で示されるオルガノポリシロキサンとして
、両末端ハイドロジエンジメチルポリシロキサン、両末
端ハイドロジエンメチルフェニルポリシロキサン及び両
末端ハイドロジエンメチル・(2−トリメトキシシリル
エチル)ポリシロキサンの中から選ばれる1種又は2種
以上を使用した特許請求の範囲第1項又は第2項に記載
の組成物。 4、共重合体の配合量が硬化性エポキシ樹脂と硬化剤と
の総量100重量部当り1〜100重量部である特許請
求の範囲第1項乃至第3項のいずれか1項に記載の組成
物。 5、無機充填剤の含有量が硬化性エポキシ樹脂と硬化剤
との総量100重量部当り100〜1000重量部であ
る特許請求の範囲第1項乃至第4項のいずれか1項に記
載の組成物。
[Claims] 1. An epoxy resin composition containing a curable epoxy resin, a curing agent, and an inorganic filler, an alkenyl group-containing epoxy resin and the following formula (1) [H_aR_bSiO_{_[_4_-_ (_a_+_
b_)_]_/_2_}]_n...(1) (However, in the formula, R is a substituted or unsubstituted monovalent hydrocarbon group, a is 0.0
1 to 0.1, b is 1.8 to 2.2, n is an integer from 20 to 400, 5≧(n×a)≧1, 1.81<a+b
<2.3. ) An epoxy resin composition comprising a copolymer obtained by an addition reaction with an organopolysiloxane. 2. The composition according to claim 1, wherein the curable epoxy resin is one or more selected from substituted and unsubstituted novolak epoxy resins and bisphenol A epoxy resins. 3. As the organopolysiloxane represented by formula (1), selected from both-terminated hydrodiene dimethyl polysiloxane, both-terminated hydrodiene methylphenyl polysiloxane, and both-terminated hydrodiene methyl/(2-trimethoxysilylethyl) polysiloxane. The composition according to claim 1 or 2, which uses one or more selected types. 4. The composition according to any one of claims 1 to 3, wherein the amount of the copolymer is 1 to 100 parts by weight per 100 parts by weight of the curable epoxy resin and curing agent. thing. 5. The composition according to any one of claims 1 to 4, wherein the content of the inorganic filler is 100 to 1000 parts by weight per 100 parts by weight of the total amount of curable epoxy resin and curing agent. thing.
JP22421085A 1985-10-07 1985-10-07 Epoxy resin composition Granted JPS6284147A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP22421085A JPS6284147A (en) 1985-10-07 1985-10-07 Epoxy resin composition
EP86113812A EP0218228B1 (en) 1985-10-07 1986-10-06 Epoxy resin composition
DE86113812T DE3689022T2 (en) 1985-10-07 1986-10-06 Epoxy resin composition.
US07/179,538 US4877822A (en) 1985-10-07 1988-04-08 Epoxy resin composition
US07/397,739 US5053445A (en) 1985-10-07 1989-08-23 Epoxy resin composition
DE4006450A DE4006450A1 (en) 1985-10-07 1990-03-01 POLYIMIDE RESINS AND ENCLOSED SEMICONDUCTOR COMPONENTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22421085A JPS6284147A (en) 1985-10-07 1985-10-07 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPS6284147A true JPS6284147A (en) 1987-04-17
JPS6360069B2 JPS6360069B2 (en) 1988-11-22

Family

ID=16810247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22421085A Granted JPS6284147A (en) 1985-10-07 1985-10-07 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS6284147A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320325A (en) * 1986-07-14 1988-01-28 Toshiba Corp Epoxy resin composition and resin-sealed semiconductor device
JPS63114243A (en) * 1986-10-31 1988-05-19 Nitto Electric Ind Co Ltd Semiconductor device
JPH0216118A (en) * 1988-07-05 1990-01-19 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH02117958A (en) * 1988-07-05 1990-05-02 Shin Etsu Chem Co Ltd Polyamide resin composition and semiconductor device using same
JPH03100015A (en) * 1989-09-13 1991-04-25 Sumitomo Bakelite Co Ltd Semiconductor-sealing epoxy resin composition
JPH03100014A (en) * 1989-09-13 1991-04-25 Sumitomo Bakelite Co Ltd Semiconductor-sealing epoxy resin composition
US5114994A (en) * 1990-03-23 1992-05-19 Mitsubishi Denki Kabushiki Kaisha Epoxy resin composition for sealing semiconductor
JPH05129475A (en) * 1991-11-05 1993-05-25 Shin Etsu Chem Co Ltd Sealing material for tab type semiconductor device, and tab type semiconductor device
JP2007182561A (en) * 2005-12-08 2007-07-19 Hitachi Chem Co Ltd Liquid resin composition for electronic element and electronic element device using the same
JP2015061899A (en) * 2013-08-20 2015-04-02 信越化学工業株式会社 Organosiloxane-modified novolac resin and production method of the same
JP2016160317A (en) * 2015-02-27 2016-09-05 信越化学工業株式会社 Resin composition for sealing semiconductor and semiconductor device
EP3190144A1 (en) 2016-01-07 2017-07-12 Shin-Etsu Chemical Co., Ltd. Epoxy-modified silicone resin, making method, curable composition, and electronic part

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376923B1 (en) 1999-06-08 2002-04-23 Shin-Etsu Chemical Co., Ltd. Flip-chip type semiconductor device sealing material and flip-chip type semiconductor device
US6429238B1 (en) 1999-06-10 2002-08-06 Shin-Etsu Chemical Co., Ltd. Flip-chip type semiconductor device sealing material and flip-chip type semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821417A (en) * 1981-07-29 1983-02-08 Shin Etsu Chem Co Ltd Curable epoxy composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821417A (en) * 1981-07-29 1983-02-08 Shin Etsu Chem Co Ltd Curable epoxy composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320325A (en) * 1986-07-14 1988-01-28 Toshiba Corp Epoxy resin composition and resin-sealed semiconductor device
JPS63114243A (en) * 1986-10-31 1988-05-19 Nitto Electric Ind Co Ltd Semiconductor device
JPH0216118A (en) * 1988-07-05 1990-01-19 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH02117958A (en) * 1988-07-05 1990-05-02 Shin Etsu Chem Co Ltd Polyamide resin composition and semiconductor device using same
JPH03100015A (en) * 1989-09-13 1991-04-25 Sumitomo Bakelite Co Ltd Semiconductor-sealing epoxy resin composition
JPH03100014A (en) * 1989-09-13 1991-04-25 Sumitomo Bakelite Co Ltd Semiconductor-sealing epoxy resin composition
US5114994A (en) * 1990-03-23 1992-05-19 Mitsubishi Denki Kabushiki Kaisha Epoxy resin composition for sealing semiconductor
JPH05129475A (en) * 1991-11-05 1993-05-25 Shin Etsu Chem Co Ltd Sealing material for tab type semiconductor device, and tab type semiconductor device
JP2007182561A (en) * 2005-12-08 2007-07-19 Hitachi Chem Co Ltd Liquid resin composition for electronic element and electronic element device using the same
JP2015061899A (en) * 2013-08-20 2015-04-02 信越化学工業株式会社 Organosiloxane-modified novolac resin and production method of the same
JP2016160317A (en) * 2015-02-27 2016-09-05 信越化学工業株式会社 Resin composition for sealing semiconductor and semiconductor device
EP3190144A1 (en) 2016-01-07 2017-07-12 Shin-Etsu Chemical Co., Ltd. Epoxy-modified silicone resin, making method, curable composition, and electronic part
KR20170082972A (en) 2016-01-07 2017-07-17 신에쓰 가가꾸 고교 가부시끼가이샤 Epoxy-modified silicone resin, making method, curable composition, and electronic part
US9896550B2 (en) 2016-01-07 2018-02-20 Shin-Etsu Chemical Co., Ltd. Epoxy-modified silicone resin, making method, curable composition, and electronic part

Also Published As

Publication number Publication date
JPS6360069B2 (en) 1988-11-22

Similar Documents

Publication Publication Date Title
EP0218228B1 (en) Epoxy resin composition
US5298548A (en) Epoxy resin composition and semiconductor devices encapsulated therewith
JPH0617458B2 (en) Epoxy resin composition
JPS6284147A (en) Epoxy resin composition
JPH0627180B2 (en) Epoxy resin composition and semiconductor device
US5190995A (en) Naphthalene ring containing epoxy resin composition and semiconductor device encapsulated therewith
JPS62212417A (en) Epoxy resin composition
US6274251B1 (en) Semiconductor encapsulating epoxy resin composition and semiconductor device
JPH0346486B2 (en)
JPS6055025A (en) Epoxy resin composition
JPS5981328A (en) Epoxy resin composition for semiconductor sealing
JP2705493B2 (en) Liquid epoxy resin composition and semiconductor device
JPH06256364A (en) Organic silicon compound, its production and resin composition containing the same
JPS63238123A (en) Epoxy resin composition
JPH02302426A (en) Epoxy resin composition
JPH05206331A (en) Resin composition for sealing semiconductor
JP2541015B2 (en) Epoxy resin composition for semiconductor device encapsulation and semiconductor device
JPS63238125A (en) Epoxy resin composition
JP2000309678A (en) Epoxy resin composition and semiconductor device
JP4045146B2 (en) Epoxy resin composition and semiconductor device
JPH01249826A (en) Epoxy resin molding material for sealing semiconductor
JPS62116654A (en) Epoxy resin composition
JPH0573768B2 (en)
JP3279084B2 (en) Epoxy resin composition for sealing
JPH0697324A (en) Resin-sealed semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term