JPS6283549A - Friction type continuously variable transmission - Google Patents

Friction type continuously variable transmission

Info

Publication number
JPS6283549A
JPS6283549A JP22329985A JP22329985A JPS6283549A JP S6283549 A JPS6283549 A JP S6283549A JP 22329985 A JP22329985 A JP 22329985A JP 22329985 A JP22329985 A JP 22329985A JP S6283549 A JPS6283549 A JP S6283549A
Authority
JP
Japan
Prior art keywords
speed change
transmission
output shaft
gear
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22329985A
Other languages
Japanese (ja)
Other versions
JPH0564256B2 (en
Inventor
Shiro Katayama
片山 四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinpo Kogyo KK
Original Assignee
Shinpo Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinpo Kogyo KK filed Critical Shinpo Kogyo KK
Priority to JP22329985A priority Critical patent/JPS6283549A/en
Publication of JPS6283549A publication Critical patent/JPS6283549A/en
Publication of JPH0564256B2 publication Critical patent/JPH0564256B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To permit the rapid operation by installing a pilot motor and a feedback system into a frictional type continuously variable transmission and determining the ratio between the magnitude of speed change range in the positive direction and the magnitude of speed change range in the negative direction according to the selection of the transmission ratio of the gear type transmission. CONSTITUTION:In a frictional type continuously variable transmission equipped with a circular conical roller 3 and a speed change ring 4, a pilot motor 17 and a feedback system 18 are installed in order to constitute a servo-device, and said pilot motor 17 provides the movement in the direction of axis for the speed change ring 4 through a feed screw 19 and a feed nut 20. Further, the feedback system 18 consists of the gear 21 on an output shaft 2, gear 22 on a nut 20, feed screw 19 and the speed change nut 4. The servo-device determines the ratio between the magnitude of speed change in the positive direction determined according to the position of the speed change ring 4 at which the revolution speed of the output shaft 2 becomes zero and the magnitude of speed change range in the negative direction, according to the selection of the transmission ratio of the gear type transmission.

Description

【発明の詳細な説明】 産業上の利用分野: 本発明は重量が比較的大きい物体の操作系(、gAJえ
ばロボットの操作系)に主として使用される摩擦無段変
速機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application: The present invention relates to a friction continuously variable transmission that is mainly used in a control system for relatively heavy objects (for example, a control system for robots).

従来の技術: 非回転の状態に保たれる1個の変速リングに共通に摩擦
係合する円錐面と、入力軸上の伝動車に摩擦係合する凹
断面形の伝動面と、出力軸上の伝動車に摩擦係合する平
坦な伝動面とをもつ複数の円錐形転子が入力軸より出力
軸に至る伝動系上に設けられている「リング非回転形式
の摩擦無段変速機」と、上記平坦な伝動面に摩擦係合す
る要素を非回転要素とすると共に変速リングを回転要素
として変速リングの回転を出力軸に伝達させる「リング
回転形式の摩擦無段変速機」とは、共に、特公昭57−
13221号公報に記載される。これらの形式のものは
、出力軸の回転速度を0とする点を変速範囲に含み、且
つ、発生し得るトルクの最大値を与える点が出力軸の回
転速度を0とする点の近くに置くと云う好ましい特性を
もつので、種々の用途に好適に使用される。
Conventional technology: A conical surface that is commonly frictionally engaged with one transmission ring kept in a non-rotating state, a concave transmission surface that is frictionally engaged with a transmission wheel on an input shaft, and a transmission surface that is frictionally engaged with a transmission wheel on an input shaft. A "ring non-rotating type frictionless continuously variable transmission" in which multiple conical rotors with flat transmission surfaces that frictionally engage with the transmission wheel are installed on the transmission system from the input shaft to the output shaft. , a "ring rotation type frictionless continuously variable transmission" in which the element that frictionally engages with the flat transmission surface is a non-rotating element, and the gear ring is a rotating element to transmit the rotation of the gear ring to the output shaft. , special public official 1977-
It is described in No. 13221. These types include the point where the output shaft rotational speed is 0 in the shifting range, and the point that gives the maximum value of torque that can be generated is located near the point where the output shaft rotational speed is 0. Because of these favorable properties, it is suitable for use in a variety of applications.

第4図および第5図はリング非回転型のものとリング非
回転型のものとにつきそれらの摩擦伝動系を示す。これ
らの図において、(1a)(1b)は入力軸、(2a)
(2b)は出力軸、(3a)(3b)は円錐形転子、(
4a)(4b)は変速リングである。円錐形転子(3a
X3b)は円錐面(5a)(5b)のほかに凹断面形の
伝動面(6a)(6b)と平坦な伝動面(7a)(7b
)とをもつ。出力軸(2a)の回転方向は、第4図に示
すものにおいては入力軸(1a)の回転方向どけ逆の方
向、第5図に示すものにおいては入力軸(1b)の回転
方向と同じ方向である。
4 and 5 show the friction transmission systems of a ring non-rotating type and a ring non-rotating type. In these figures, (1a) and (1b) are the input shafts, (2a)
(2b) is the output shaft, (3a) (3b) is the conical trochanter, (
4a) and (4b) are speed change rings. Conical trochanter (3a
In addition to the conical surfaces (5a) (5b), X3b) has concave cross-section transmission surfaces (6a) (6b) and flat transmission surfaces (7a) (7b).
). The rotation direction of the output shaft (2a) is opposite to the rotation direction of the input shaft (1a) in the case shown in Fig. 4, and the same direction as the rotation direction of the input shaft (1b) in the case shown in Fig. 5. It is.

入力軸の回転方向を一定としつつしかも出力軸を正負例
れの方向にも回転させ得ると共に可成り大きな出力トル
クを低速回転時に発生し得る摩擦無段変速機は特公昭5
0−19807号公報に示される。第6図はこの公報に
示されるものの摩擦伝動系を、円錐形転子に符号(3c
)(3d)を、変速リングに符号(4C)を付して示す
A frictionless continuously variable transmission capable of rotating the output shaft in both positive and negative directions while keeping the direction of rotation of the input shaft constant, and capable of generating a fairly large output torque at low speeds, was developed in the 1970s.
0-19807. Figure 6 shows the friction transmission system shown in this publication, with the conical rotor having the symbol (3c).
) (3d) is shown with the reference numeral (4C) attached to the speed change ring.

発明が解決しようとする問題点: 特公昭57−13221号公報記載の摩擦無段変速機(
以下、表現を簡単にするため、R型変速機と呼ぶことと
する。)は上記利点をもち用途範囲の広いものであるが
、それを使用して構成された重量物の操作装置は、逆負
荷時(操作される重量物の側より変速機および電動機が
駆動されようとする状態にあるとき)において、所定位
置に到達した重量物を該位置に停止させるには、電動機
の電源を切り、変速機を非可逆要素として作用させねば
ならない。これは、逆負荷時においては、出力軸の回転
速度をOとするべき位置に変速リングが到達していても
、逆負荷による出力軸の回転を阻止する力が変速機の側
にないことによるもので、出力軸は極めて微小な速度の
下に回転を継続し、重量物は所定位置を超えて下降して
しまう。
Problems to be solved by the invention: The friction continuously variable transmission described in Japanese Patent Publication No. 57-13221 (
Hereinafter, in order to simplify the expression, this will be referred to as an R-type transmission. ) has the above-mentioned advantages and has a wide range of applications, but a heavy object operating device constructed using it is difficult to use when the load is reversed (the transmission and electric motor are driven from the side of the heavy object being operated). In order to stop a heavy object that has reached a predetermined position, the electric motor must be turned off and the transmission must act as an irreversible element. This is because during reverse load, even if the speed change ring reaches the position where the rotation speed of the output shaft should be O, there is no force on the transmission side to prevent the rotation of the output shaft due to the reverse load. As a result, the output shaft continues to rotate at an extremely low speed, causing the heavy object to fall beyond a predetermined position.

また、このものをロボットの駆動系に使用する場合、制
御対象の移動方向を速やかに反転させることは電動機の
回転子が大きな慣性質量をもつために困難である。
Furthermore, when this motor is used in a robot drive system, it is difficult to quickly reverse the moving direction of the controlled object because the motor rotor has a large inertial mass.

次に、特公昭50−19807号公報に示すもの(第6
図に示す摩擦伝動系をもつもの)について述べると、こ
のものは出力軸(2C)の回転速度が不安定となる点を
含まないと共に入力軸(1c)の回転方向゛を変えるこ
となく出力軸(2C)に正負両方向の回転を与えること
ができるが、正方向の変速範囲の大きさと負方向の変速
範囲の大きさとが必然的に等しいものとなり、一方を小
さくしつつ他方を大きくする要請があっても、そのよう
な要請にはこたえることができない。
Next, what is shown in Japanese Patent Publication No. 50-19807 (No. 6
Regarding the friction transmission system shown in the figure), this one does not include the point where the rotational speed of the output shaft (2C) becomes unstable, and the output shaft does not change the rotational direction of the input shaft (1c). (2C) can be given rotation in both positive and negative directions, but the size of the speed change range in the positive direction and the size of the speed change range in the negative direction are inevitably the same, and there is a need to reduce one while increasing the other. Even if there were, we would not be able to respond to such requests.

本発明は上記公報に示されるものの欠点を伴わない摩擦
無段変速機の提供を目的とする。
The object of the present invention is to provide a friction continuously variable transmission that does not have the drawbacks shown in the above-mentioned publications.

問題点を解決するための手段: 本発明によるものは、1個の変速リングに共通に摩擦係
合する円錐面と入力軸上の伝動車に摩擦係合する凹断面
形の伝動面と出力軸上の伝動車に摩擦係合する平坦な伝
動面とをもつ複数の円錐形転子が設けられている摩擦伝
動系の入力軸と出力軸とを連動させる歯車減速装置を設
けると共に、伝動系を上記摩擦伝動系とするサーボ装置
を構成するためのパイロットモータおよびフィードバッ
ク系を設け、上記サーボ装置が出力軸の回転速度をOと
する変速リングの位置により定まる正方向の変速範囲の
大きさと負方向の変速範囲の大きさとの比を上記歯車減
速装置の減速比の選定により定めたことを特徴とする。
Means for solving the problem: The present invention includes a conical surface that is commonly frictionally engaged with one speed change ring, a concave transmission surface that is frictionally engaged with a transmission wheel on an input shaft, and an output shaft. A gear reduction device is provided to interlock the input shaft and output shaft of the friction transmission system, which is provided with a plurality of conical rotors each having a flat transmission surface that frictionally engages with the upper transmission wheel. A pilot motor and a feedback system are provided for configuring the servo device as the friction transmission system, and the servo device has the size of the speed change range in the positive direction determined by the position of the speed change ring where the rotational speed of the output shaft is O, and the size of the speed change range in the negative direction. The invention is characterized in that the ratio between the size of the speed change range and the size of the speed change range is determined by selecting the reduction ratio of the gear reduction device.

作用: 上記本発明による摩擦無段変速機は一種の機械式サーボ
装置である。このものは第4図に示す摩擦伝動系を基盤
とし該伝動系の利点(例えば、比較的大きな出力トルク
の発生、構造の簡潔さ、大きな耐久性)を生かしている
もので、応答性の高い安定した動作を行うものである。
Function: The friction continuously variable transmission according to the present invention is a kind of mechanical servo device. This system is based on the friction transmission system shown in Figure 4 and takes advantage of the advantages of the transmission system (for example, generation of relatively large output torque, simple structure, and great durability), and has high responsiveness. It performs stable operation.

本発明によるものにおける歯車減速装置の作用について
は次の実施例におりて述べることとする。
The operation of the gear reduction device according to the present invention will be described in the following example.

実施例: 第1図は本発明の一実施例を示し、第2図はその摩擦伝
動系を取出して示す。
Embodiment: FIG. 1 shows an embodiment of the present invention, and FIG. 2 shows a friction transmission system thereof.

第1図において、(1)は入力軸、(2)は出力軸、(
3)は円錐形転子、(4)は変速リングである。
In Figure 1, (1) is the input shaft, (2) is the output shaft, (
3) is a conical trochanter, and (4) is a speed change ring.

円錐形転子(3)には、変速リング(4)に摩擦係合す
る円錐面(5)と、入力軸上の伝動車(6)に摩擦係合
する凹断面形の伝動面(7)と、出力軸(2)上の伝動
車(8)に摩擦係合する平坦な伝動面(9)とが設けら
れる。
The conical trochanter (3) has a conical surface (5) that frictionally engages with the speed change ring (4), and a concave transmission surface (7) that frictionally engages with the transmission wheel (6) on the input shaft. and a flat transmission surface (9) that frictionally engages the transmission wheel (8) on the output shaft (2).

本発明によるものにおいて変速範囲を正方向と負方向と
に跨るものとする歯車減速装置は、入力軸は)上の太陽
歯車01、ケーシングαD上の内歯歯車αz1遊星歯車
IJ31、キャリアa(、変速リング(4)上のスプラ
イン歯車σ9およびキャリアα船上の歯車αQより成り
、キャリア0りの回転が変速リング(4)に伝えられる
In the gear reduction device according to the present invention, which has a speed change range spanning both positive and negative directions, the input shaft includes a sun gear 01 on ), an internal gear αz1 on casing αD, planetary gear IJ31, and carrier a(, It consists of a spline gear σ9 on the speed change ring (4) and a gear αQ on the carrier α, and the rotation of the carrier 0 is transmitted to the speed change ring (4).

以上において指摘した諸要素によりサーボ装置を形成す
るため、信号を受入れて作動するパイロットモータ0′
?)とフィードバック糸回が設けられる。
In order to form a servo device with the various elements pointed out above, a pilot motor 0' which receives a signal and operates
? ) and a feedback thread turn are provided.

パイロットモータαηは送りねじa9および送りナツト
mを介して変速リング(4)に軸線方向の動きを与える
。Qllは出力軸(2)に固着された歯車で、送り≠ッ
ト■上の歯車ツに噛合う。サーボモータのフィードバッ
ク系は歯車(社)の、送りねじ01および変速リング(
4)を含んで構成される。
The pilot motor αη gives axial movement to the speed change ring (4) via the feed screw a9 and the feed nut m. Qll is a gear fixed to the output shaft (2), and meshes with the gear on the feed≠t■. The feedback system of the servo motor is made by Gear Co., Ltd., the feed screw 01 and the speed change ring (
4).

第2図には上記歯車減速装置によりKN、(Kは1より
小さい定数、N1は入力軸の回転速度=変速機を駆動す
る電動機の回転速度)で回転される変速リング(4)を
示す。この図に示す寸法a −fを使用すれば、出力軸
(2)の回転速度N2は次式で示される。
FIG. 2 shows a speed change ring (4) rotated by the gear reduction device at KN (K is a constant smaller than 1, N1 is the rotation speed of the input shaft=the rotation speed of the electric motor that drives the transmission). Using the dimensions a - f shown in this figure, the rotational speed N2 of the output shaft (2) is expressed by the following equation.

なお、変速リングが非回転の状態に保たれるR型変速機
の出力軸の回転速度N2Rは上記式のKを0としたもの
で、 である。
Note that the rotational speed N2R of the output shaft of the R type transmission in which the speed change ring is kept in a non-rotating state is obtained by setting K in the above equation to 0, and is as follows.

これらの式において、aは変速リングの位置によって大
きさを変える変数である。変速リングが非回転の状態に
保たれる第4図に示すものの場合、出力軸の回転方向は
入力軸の回転方向とは逆で、N2Rの絶対値はaの増大
に伴い(変速リングが円錐形転子における円錐面の頂点
より遠ざかるに従い)減少し、a:b=c:dの条件が
満足される点においてQとなる。歯車減速装置の存在に
より付加された常数項(e/f + b/a ) Kは
上記の式(IIの分子が、aの増大に伴い”正の値→0
→負の値”と云う過“程の下に値を変えるようにする。
In these equations, a is a variable whose size changes depending on the position of the speed change ring. In the case shown in Fig. 4 where the gear ring is kept non-rotating, the direction of rotation of the output shaft is opposite to the direction of rotation of the input shaft, and the absolute value of N2R increases as a increases (if the gear ring is conical). (as the distance from the apex of the conical surface in the trochanter) decreases, and it becomes Q at the point where the condition a:b=c:d is satisfied. The constant term (e/f + b/a) K added due to the presence of the gear reduction device is the numerator of the above formula (II), which changes from positive value to 0 as a increases.
→ Change the value under the process of "negative value".

第6図は、N、==1800RPM、 KN、 =33
5RPM 、  400RPM 、  450RPM 
、 500RPMの場合につき、出力軸の回転速度と図
示の寸法x/rとの関係を例示する図面である。Xは変
速リングの位置を示す。
Figure 6 shows N, ==1800RPM, KN, =33
5RPM, 400RPM, 450RPM
, 500 RPM is a drawing illustrating the relationship between the rotational speed of the output shaft and the illustrated dimension x/r. X indicates the position of the speed change ring.

発明の効果: 本発明によるものは、重量物の操作装置に使用されるの
に好適なもので、操作が円滑且つ迅速に行われるように
すると共に、重量物を任意の位置に正確に停止させ得る
ようにするものである。
Effects of the invention: The device according to the present invention is suitable for use in a heavy object operating device, and allows operations to be performed smoothly and quickly, as well as accurately stopping a heavy object at a desired position. It is something that you can get.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による摩擦無段変速機の1例を示す縦断
側面図、第2図は第1図の変速機の伝動系を示す図面、
第6図は本発明によるものの変速性能の説明用グラフ線
図、第4図および第5図は特公昭57−13221号公
報に示すものの摩擦伝動系の説明図、第6図は特公昭5
0−19807号公報に示すものの摩擦伝動系の説明図
である。 (1)・・・入力軸 (2)・・・出力軸 f31・・
・円錐形転子 (41・・・変速リング (5)・・・
円錐面 (6)・・・入力軸上の伝動車 (7)・・・
凹断面形の伝動面 (8)・・・出力軸上の伝動車 (
9)・・・平坦な伝動面 0ト・・太陽歯車 σD・・
・ケーシング ロ3・・・内歯歯車 αト・・遊星歯車
 αa・・・キャリア αS・・・スプライン歯車 α
e・・・キャリア上の歯車 αη・・・パイロットモー
タ 0e・・・フィードバック系 aト・・送りねじ 
■・・・送りナツト 3υの・・・歯車第1図 1−  人力軸   2−−一土f)登山  3−御一
同、・ρ良η→λ子4− Lルフパ】○−−−夫r’A
yfB*  12−  内叱倫)十13−  鉛’L!
!  14−−−〜セリア1フ −+ /X’イ )〕
ソト王−918−m−フィー[゛lび゛)/′率、第2
図 第3図 o3    65     o7     o、cl−
−φ x/r
FIG. 1 is a longitudinal sectional side view showing an example of a continuously variable friction transmission according to the present invention, FIG. 2 is a drawing showing a transmission system of the transmission shown in FIG. 1,
FIG. 6 is a graph diagram for explaining the speed change performance of the device according to the present invention, FIGS.
0-19807 is an explanatory diagram of a friction transmission system. (1)...Input shaft (2)...Output shaft f31...
・Conical trochanter (41...speed change ring (5)...
Conical surface (6)...Transmission wheel on the input shaft (7)...
Transmission surface with concave cross section (8)...Transmission wheel on output shaft (
9)...Flat transmission surface 0...Sun gear σD...
・Casing B3...Internal gear αG...Planetary gear αa...Carrier αS...Spline gear α
e...Gear on carrier αη...Pilot motor 0e...Feedback system a...Feed screw
■...Feeding nut 3υ's...gear Fig. 1 1- Human power shaft 2--Ichito f) Climbing 3-All of you,・ρRyoη→λ子4-L Lufpa】○---Husband r 'A
yfB* 12- Inner scolding) 113- Lead'L!
! 14---~Seria 1f -+ /X'i)]
King Sotho-918-m-fee [゛lbi゛)/'rate, 2nd
Figure 3 o3 65 o7 o, cl-
−φ x/r

Claims (1)

【特許請求の範囲】[Claims] 1個の変速リングに共通に摩擦係合する円錐面と入力軸
上の伝動車に摩擦係合する凹断面形の伝動面と出力軸上
の伝動車に摩擦係合する平坦な伝動面とをもつ複数の円
錐形転子が設けられている摩擦伝動系の入力軸と出力軸
とを連動させる歯車減速装置を設けると共に、伝動系を
上記摩擦伝動系とするサーボ装置を構成するためのパイ
ロットモータおよびフィードバック系を設け、上記サー
ボ装置が出力軸の回転速度を0とする変速リングの位置
により定まる正方向の変速範囲の大きさと負方向の変速
範囲の大きさとの比を上記歯車装置の減速比の選定によ
り定めたことを特徴とする摩擦無段変速機。
A conical surface that frictionally engages in common with one speed change ring, a concave transmission surface that frictionally engages with the transmission wheel on the input shaft, and a flat transmission surface that frictionally engages with the transmission wheel on the output shaft. A pilot motor for configuring a servo device in which a transmission system is the friction transmission system, and a gear reduction device is provided for interlocking an input shaft and an output shaft of a friction transmission system in which a plurality of conical rotors are provided. and a feedback system, in which the servo device determines the ratio between the size of the positive speed change range and the size of the negative speed change range determined by the position of the speed change ring where the rotational speed of the output shaft is 0, and the reduction ratio of the gear device. A continuously variable friction transmission characterized by the following:
JP22329985A 1985-10-07 1985-10-07 Friction type continuously variable transmission Granted JPS6283549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22329985A JPS6283549A (en) 1985-10-07 1985-10-07 Friction type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22329985A JPS6283549A (en) 1985-10-07 1985-10-07 Friction type continuously variable transmission

Publications (2)

Publication Number Publication Date
JPS6283549A true JPS6283549A (en) 1987-04-17
JPH0564256B2 JPH0564256B2 (en) 1993-09-14

Family

ID=16795967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22329985A Granted JPS6283549A (en) 1985-10-07 1985-10-07 Friction type continuously variable transmission

Country Status (1)

Country Link
JP (1) JPS6283549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1228842A1 (en) * 1999-10-28 2002-08-07 Kabushiki Kaisha Yaskawa Denki Robot and method of controlling the robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1228842A1 (en) * 1999-10-28 2002-08-07 Kabushiki Kaisha Yaskawa Denki Robot and method of controlling the robot
EP1228842A4 (en) * 1999-10-28 2010-01-20 Yaskawa Denki Seisakusho Kk Robot and method of controlling the robot

Also Published As

Publication number Publication date
JPH0564256B2 (en) 1993-09-14

Similar Documents

Publication Publication Date Title
US3277745A (en) Drive transfer mechanism
JPH04327055A (en) Continuously variable transmission
JP6182245B1 (en) Clutch using planetary gear mechanism
JPS6283549A (en) Friction type continuously variable transmission
JPH07269668A (en) Non-stage variable-speed power transmitting method and equipment in which clutch function is incorporated
US4258581A (en) Counterbalancing system for nutational traction drive transmissions
EP3846335A1 (en) Motor assembly for stictionless operation
JPS61218864A (en) Frictional stepless speed changer
JPH0280840A (en) Frictional continuously variable transmission
US3336819A (en) Control apparatus
US4522079A (en) Continuously variable transmission unit
KR102087879B1 (en) Gear module having internal gear with 2 point contact
AU544838B2 (en) Continuously variable transmission unit
US20200332860A1 (en) Transmission device
US5297449A (en) Transmission device
JPH0297751A (en) Continuously variable transmission
JPS60155053A (en) Transmission gear unit
JPS60241553A (en) Automatic clutch
JPH0470504B2 (en)
JP2017515073A (en) Continuously variable planetary transmission
WO1992018791A1 (en) Continuously variable transmission with torque regeneration
KR20190074424A (en) Infinite variable speed method and apparatus the same
JPS6088253A (en) Interaction force type transmission
WO2004003405A1 (en) Continuously variable transmission based on gyro effect
JP2001271899A (en) Differential mechanism type continuously variable transmission system