JPS6283464A - Method and apparatus for coating inside surface of cylinderical member - Google Patents

Method and apparatus for coating inside surface of cylinderical member

Info

Publication number
JPS6283464A
JPS6283464A JP22215885A JP22215885A JPS6283464A JP S6283464 A JPS6283464 A JP S6283464A JP 22215885 A JP22215885 A JP 22215885A JP 22215885 A JP22215885 A JP 22215885A JP S6283464 A JPS6283464 A JP S6283464A
Authority
JP
Japan
Prior art keywords
coating
pipe
raw material
cylindrical member
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22215885A
Other languages
Japanese (ja)
Other versions
JPH0210860B2 (en
Inventor
Tetsuo Yashiki
矢敷 哲男
Naoharu Fujimori
直治 藤森
Akira Doi
陽 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22215885A priority Critical patent/JPS6283464A/en
Publication of JPS6283464A publication Critical patent/JPS6283464A/en
Publication of JPH0210860B2 publication Critical patent/JPH0210860B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a dense and uniform film of metal,etc., having excellent adhesiveness on the inside surface of a cylindrical member to be treated without hydrogen embrittlement by inserting a vapor deposition source into the cylindrical member to be treated to locally supply a raw material, making local formation of a film and moving a vapor deposition region according to the consumption of the vapor deposition source along the central axis of the member. CONSTITUTION:The raw material for forming the coating layer is supplied with a conductive pipe 1 which is one of the vapor deposition raw materials inserted into the above-mentioned member 2 under vacuum conditions and the raw material is decomposed or evaporated locally in the raw material supply part to partially deposit the film deposited by evaporation on the inside surface of the member 2. Such operation is executed while the pipe 1 is moved in the longitudinal direction on the inside surface of the member 2 along the central axis there of as the pipe 1 consumes to coat at least part of the inside surface of the member 2. The above-mentioned raw material is preferably selected from the group consisting of metals such as Ti, Al, W, V, Ta, Hf, and Zr and the pipe 1 of the conductive compd. and/or the gaseous raw material is preferably selected from >=1 kinds among NH3, N2, CH4 C2H2, CO2 and Ar.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属、ファインセラミックス等による筒状部材
の被覆に関し、更に詳しく言えば、筒状部材の内面の少
なくとも一部を均一に金属、ファインセラミックス等で
被覆する方法並びにそのための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to coating a cylindrical member with metal, fine ceramics, etc. More specifically, at least a portion of the inner surface of the cylindrical member is coated uniformly with metal, fine ceramics, etc. The present invention relates to a method of coating with a coating material and an apparatus therefor.

従来の技術 筒状部材の産業上の利用分野は極めて広く、気体、液体
等の流体の輸送用配管、化学反応を伴うプロセス用反応
管、熱交換器等、多岐に亘っている。これらの部材は、
高温、高圧、腐食環境、応力、振動等といった苛酷な条
件下で使用されることが多く、従って、材料としてより
信頼性の高いものを使用することが必要となる。
Background of the Invention Cylindrical members are used in a wide range of industrial fields, including pipes for transporting fluids such as gases and liquids, reaction tubes for processes involving chemical reactions, and heat exchangers. These parts are
They are often used under harsh conditions such as high temperatures, high pressures, corrosive environments, stress, vibrations, etc., and therefore it is necessary to use materials with higher reliability.

さらに、これらの管状部材は長尺管として使用されるこ
とが多く、その長さは数mから10m程度である。特殊
な環境に於いては雰囲気中の水素やヘリウムが材料内部
に浸透して材料を脆化さ・ける場合もある。
Furthermore, these tubular members are often used as long tubes, and the length thereof is from several meters to about 10 meters. In special environments, hydrogen or helium in the atmosphere may penetrate into the material and cause it to become brittle.

ところで、これら筒状部材の耐摩耗性、耐食性等を改善
し、該筒状部材の信頼性を高め、これを利用した各種装
置、部材の耐久性等を確保するためには何等かの工夫を
施す必要がある。上記のような目的で使用する筒状部材
を、耐摩耗性、耐食性等に優れたセラミックスで形成す
ることにより目的を達成することができるものと考えら
れるが、セラミックスは加工が困難であり、また機械的
強度、特に靭性等に劣り、更に経済的にも不利である。
By the way, in order to improve the abrasion resistance, corrosion resistance, etc. of these cylindrical members, increase the reliability of the cylindrical members, and ensure the durability of various devices and members that utilize them, some methods have been devised. It is necessary to apply It is thought that the purpose can be achieved by forming the cylindrical member used for the above purpose from ceramics that have excellent wear resistance and corrosion resistance, but ceramics are difficult to process and It is inferior in mechanical strength, particularly in toughness, and is also economically disadvantageous.

従って、一般的には加工の容易性から金属製あるいは有
機高分子材料製のものが主体となっている。
Therefore, in general, those made of metal or organic polymer materials are mainly used for ease of processing.

そこで、加工の容易な金属製等の筒状部材を表面処理す
ることが最も有利な解決策であると考えられる。
Therefore, it is considered that the most advantageous solution is to subject a cylindrical member made of metal or the like, which is easy to process, to surface treatment.

基板」二への薄膜形成法としては、従来から各種の方法
が提案されており、夫々に固有の利点を生かして、広範
囲の技術分野で応用されている。
Various methods have been proposed for forming thin films on substrates, and each method has its own advantages and is applied in a wide range of technical fields.

しかしながら、従来の技術を用いて被覆を行うに際して
は、被処理部材の形状に大きな制約があり、特に上記の
ような筒状部材の内面」−に被覆処理を施す場合には、
管径が太く、長さの短い、いわゆるアスペクト比の小さ
いものに限られていた。
However, when coating using conventional techniques, there are major restrictions on the shape of the member to be treated, especially when coating the inner surface of a cylindrical member as described above.
It was limited to pipes with large diameters and short lengths, so-called low aspect ratios.

この様な状況の下で、本発明等は既に、同心円筒状の電
極を用いた、新しいプラズマCVD法並びに装置を開発
し、既に特許出願しており(特開昭59−35674号
参照)、該方法並びに装置によって、複雑な三次元形状
を有する被処理部材の表面を均一に薄膜被覆することを
可能とした。この方法は、直径を異にする2つの円筒状
電極を同心状に配置し、これらの円筒電極間の空間内で
プラズマを発生させ、該空間内に被処理部材を挿入支持
しておくことを特徴とするものである。
Under these circumstances, the present inventors have already developed a new plasma CVD method and apparatus using concentric cylindrical electrodes, and have already filed a patent application (see Japanese Patent Application Laid-Open No. 59-35674). The method and apparatus made it possible to uniformly coat the surface of a workpiece having a complicated three-dimensional shape with a thin film. This method involves arranging two cylindrical electrodes with different diameters concentrically, generating plasma in the space between these cylindrical electrodes, and inserting and supporting the workpiece into the space. This is a characteristic feature.

さらに、本発明者等は、該プラズマCVD装置に技術的
、設備的改良を加え、筒状部材の内外面の少なくとも一
部に均一なファインセラミ・ノクス被覆を施す技術を確
存し、現在特許出願中である(特願昭6O−39844
i号)。この方法は、−上記特開昭59−35674号
公報に開示されたような同心固状に配置された円筒状電
極の一方の極として筒状被処理部材を利用することを特
徴とするものであり、該方法により、直径30mm以−
1−1長さ2m以下の筒状′部材の内外面に均一なファ
インセラミックスの被覆を形成することが可能となった
Furthermore, the present inventors have made technical and equipment improvements to the plasma CVD apparatus, and have established a technology for uniformly coating at least part of the inner and outer surfaces of a cylindrical member, which is currently patented. Application is pending (Patent application Sho 6O-39844
i). This method is characterized in that a cylindrical member to be treated is used as one pole of cylindrical electrodes arranged concentrically as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 59-35674. Yes, by this method, diameter 30mm or more
1-1 It has become possible to form a uniform coating of fine ceramics on the inner and outer surfaces of a cylindrical member with a length of 2 m or less.

発明が解決しようとする問題点 以上述べたように筒状部材の応用範囲は極めて広く、ま
た苛酷な条件下で使用されるものが多い。
Problems to be Solved by the Invention As mentioned above, the range of applications of cylindrical members is extremely wide, and many of them are used under severe conditions.

そこで、このような部材の該特性を改善し、より信頼性
の高い、また苛酷な条件下でも安定な製品の開発が必要
となる。そのための1つの策としてはセラミックスなど
を表面に被覆することが有利であるが、いわゆるアスペ
クト比の大きな筒状部材の内面を被覆するための有利な
方法は今のところ知られていない。また、核燃料被覆管
などのように極めて特殊な環境において使用される場合
にも水素やヘリウムによる管の損傷を防止し、原子炉等
の安全性、信頼性を高めるためにもこのような技術が必
要となる。
Therefore, it is necessary to improve the properties of such members and develop products that are more reliable and stable even under severe conditions. As one measure for this purpose, it is advantageous to coat the surface with ceramics or the like, but an advantageous method for coating the inner surface of a so-called large aspect ratio cylindrical member is not known so far. In addition, this technology is also used to prevent damage to hydrogen and helium tubes when used in extremely special environments such as nuclear fuel cladding tubes, and to improve the safety and reliability of nuclear reactors. It becomes necessary.

尚、上記の本発明者等の筒状部材の被覆方法でも適用可
能なアスペクト比の範囲は限られており、これを更に改
善し、よりアスペクト比の大きな部材にまで適用できる
方法の開発が望まれる。
It should be noted that the range of aspect ratios that can be applied to the coating method for cylindrical members described above by the present inventors is limited, and it is desired to further improve this and develop a method that can be applied to members with even larger aspect ratios. It will be done.

こうした用途に使用される筒状部材、特に長尺細管の内
面被覆に有利に利用でき、その信頼性、耐久性等を向上
させることができ、しかも上記のような特殊な環境にお
いても使用でき、水素脆化、ヘリウム損傷等を解決し得
る被覆方法を開発することは、各種筒状部材の適用範囲
を拡大するためばかりでなく、このような筒状部材を必
要とする装置等を小型化するためにも大きな意義がある
It can be advantageously used for coating the inner surface of cylindrical members used in such applications, especially long thin tubes, and can improve its reliability, durability, etc., and can also be used in special environments such as those mentioned above. Developing a coating method that can solve hydrogen embrittlement, helium damage, etc. will not only expand the range of applications for various cylindrical members, but also miniaturize devices that require such cylindrical members. It is also of great significance.

そこで、本発明の目的はアスペクト比の大きな長尺細管
にも適用できる筒状部材の被覆方法を提供することにあ
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for coating a cylindrical member that can be applied to long thin tubes having a large aspect ratio.

また、本発明の他の目的は水素脆化の原因となる水素ガ
スを被覆雰囲気成分として必ずしも必要としない筒状部
材の内面被覆法を提供することにある。
Another object of the present invention is to provide a method for coating the inner surface of a cylindrical member that does not necessarily require hydrogen gas, which causes hydrogen embrittlement, as a coating atmosphere component.

本発明の更に別の目的は、上記筒状部(イの内面被覆方
法を実施するのに有利な装置を提供することにある。
Still another object of the present invention is to provide an apparatus which is advantageous for carrying out the method for coating the inner surface of a cylindrical part (a).

問題点を解決するための手段 本発明者等は上記目的を達成すべく種々検討した結果、
被処理基材である筒状部材の内部に原料の供給装置を挿
入し、原料を供給しながら、該供給装置の先端部付近に
原料の分解または蒸発手段を設け、供給された原ネ°l
を活性化しながら被覆を行うことが、細径長尺管の内面
を均一に被覆する上で極めて有利である事を見出した。
Means for Solving the Problems As a result of various studies to achieve the above object, the inventors of the present invention found that
A raw material supply device is inserted into the cylindrical member that is the substrate to be processed, and while the raw material is being supplied, a means for decomposing or evaporating the raw material is provided near the tip of the supply device, and the supplied raw material is
It has been found that coating while activating is extremely advantageous in uniformly coating the inner surface of a small diameter long tube.

本発明はこのような知見に基づき完成されたものである
The present invention was completed based on such knowledge.

即ち、本発明の筒状部材内面の被覆方法は、真空条件下
に置かれた筒状被処理部材の内部に蒸着源を挿入し、そ
こから原料を導入すると共に分解または蒸発させ、該被
処理物表面を蒸着膜で被覆する方法であり、蒸着領域を
蒸着源の移動によって移動させ、該被覆処理物の内面の
少なくとも1部を被覆することを特徴とする。
That is, in the method of coating the inner surface of a cylindrical member of the present invention, a vapor deposition source is inserted into a cylindrical member to be treated placed under vacuum conditions, a raw material is introduced from there, and the raw material is decomposed or evaporated. This is a method of coating the surface of an object with a vapor deposited film, and is characterized in that the vapor deposition area is moved by moving a vapor deposition source to cover at least a part of the inner surface of the object.

本発明の特に好ましい方法は、上記原料の分解・蒸発操
作中に、グロー放電発生電源を動作させてグロー放電を
励起し、導入原料を活性化することを含む。
A particularly preferred method of the present invention includes operating a glow discharge generating power source to excite glow discharge and activate the introduced raw material during the decomposition and evaporation of the raw material.

本発明の方法において、グロー放電励起源としては、直
流電源、商用周波数電源、高周波電源、マイクロ被電源
またはこれらのうちの2種以上を1重畳させた電力を用
いる事が出来る。
In the method of the present invention, as the glow discharge excitation source, a direct current power source, a commercial frequency power source, a high frequency power source, a micro power source, or a power obtained by superimposing two or more of these can be used.

また、被覆層は各種の金属、セラミックス等からなる群
から選ばれる少なくとも1種又はそれらの混合物であり
得る。この様な被覆層形成原料としては、Ti、 M、
 W、  V、 Ta、 Iff Zr等の金属等並び
にTiC,TiN、WC,VC,TaC,TaN、Hf
C。
Further, the coating layer may be at least one selected from the group consisting of various metals, ceramics, etc., or a mixture thereof. Such coating layer forming raw materials include Ti, M,
Metals such as W, V, Ta, Iff Zr, etc., as well as TiC, TiN, WC, VC, TaC, TaN, Hf
C.

11fN、Zrc等の導電性化合物のパイプ、窒素源と
してのNH3,N2等、炭素源としてのCH,、CZ 
H2など、酸素源としてのCo2及びAr等が使用でき
る。
11fN, pipes of conductive compounds such as Zrc, NH3, N2, etc. as nitrogen sources, CH,, CZ as carbon sources
H2, Co2 and Ar as oxygen sources can be used.

上記の金属管もしくは導電性化合物のパイプについては
、原料の選択が許される場合にはパイプの作成の容易さ
並びに取扱いの容易さ等の観点から、金属パイプを用い
ることが好ましい。
Regarding the above-mentioned metal pipe or conductive compound pipe, if the selection of raw materials is allowed, it is preferable to use a metal pipe from the viewpoint of ease of manufacturing and handling of the pipe.

これら被覆層形成用ガス原1’lの供給方法としては、
パイプの内部を通してその先端部から放出されるように
実施できる。
The method for supplying 1'l of gas source for forming the coating layer is as follows:
It can be carried out so that it passes through the interior of the pipe and is emitted from its tip.

これらの原料の分解・蒸発は、導電性パイプ(これが原
料自体の1つとなる。以下同様。)と、該パイプ先端部
近傍に設けられた電極との間に電圧を印加することによ
り発生ずるアーク放電により、あるいはフィラメントか
ら放出され、これと金属線との間に印加された電位によ
り原料に流入する熱電子により行うことができる。
The decomposition and evaporation of these raw materials is caused by an arc generated by applying a voltage between a conductive pipe (this is one of the raw materials itself; the same applies hereinafter) and an electrode provided near the tip of the pipe. This can be done by electric discharge or by hot electrons emitted from the filament and flowing into the raw material due to the potential applied between it and the metal wire.

本発明は、また上記のような筒状被処理部)A、特に長
尺細管にも適用可能な、内面被覆方法を実施するための
装置にも係り、該装置はυト気系を備えた真空槽と、該
真空槽内に配置される被処理部材の支持手段と、該部材
内に挿入されその内面に蒸着層を形成するための、蒸着
源とを備えたものである。
The present invention also relates to an apparatus for carrying out an inner surface coating method that can be applied to the above-mentioned cylindrical treated part (A), especially a long thin tube, and the apparatus is equipped with an air system. The apparatus includes a vacuum chamber, a means for supporting a member to be processed placed in the vacuum chamber, and a vapor deposition source inserted into the member to form a vapor deposition layer on the inner surface thereof.

上記蒸着源は、被覆層形成用原料供給用導電性パイプと
、該パイプ先端近傍に設けられたフィシメントまたは電
極と、該フィラメントに、あるいはフィラメントまたは
電極と金属線との間に電圧を印加するための電源とから
主になっている。
The vapor deposition source is for applying voltage between a conductive pipe for supplying raw materials for coating layer formation, a ficiment or an electrode provided near the tip of the pipe, and the filament, or between the filament or electrode and a metal wire. Mainly from the power source.

また、上記金属線、フィラメントまたは電極と、被処理
部材との間にグロー放電を励起するための電源を設ける
こともできる。
Further, a power source for exciting glow discharge may be provided between the metal wire, filament or electrode and the member to be treated.

作   用 筒状部材細径長尺管の内面被覆に適した方法は従来知ら
れていなかったが、本発明によって内径50IIII1
1、長さ20m程度のアスペクトの大きなものまで均一
な被覆層を形成することが可能となった。
Although a method suitable for coating the inner surface of a cylindrical member with a small diameter and a long tube has not been known in the past, the present invention provides a coating with an inner diameter of 50III1.
1. It became possible to form a uniform coating layer even on objects with a large aspect of about 20 m in length.

また、従来のプラズマCVD法などにおいて問題となっ
ていた水素化物形成による皮膜あるいは被処理部材の脆
化の問題も回避することが可能となる。
Furthermore, it is possible to avoid the problem of embrittlement of the film or the member to be processed due to the formation of hydrides, which has been a problem in conventional plasma CVD methods.

本発明の方法は、例えば第1図に示すような構成の蒸着
源を用いて有利に実施できる。第1図から明らかなごと
く、この蒸着源は被覆層形成用原料供給用パイプlと、
該パイプの上端近傍に配置されたフィラメント3と、そ
の駆動電源4と、フ】 2 イラメント3と金属管1との間に電圧を印加するための
直流電源8およびグロー放電励起電源9から構成されて
いる。電源9は被処理部材2との間にグロー放電を励起
し得るようになっている。
The method of the present invention can be advantageously carried out using, for example, a vapor deposition source configured as shown in FIG. As is clear from FIG. 1, this vapor deposition source includes a pipe l for supplying raw materials for forming a coating layer,
It consists of a filament 3 disposed near the upper end of the pipe, its driving power source 4, a DC power source 8 for applying voltage between the filament 3 and the metal tube 1, and a glow discharge excitation power source 9. ing. The power source 9 is capable of exciting glow discharge between the power source 9 and the member 2 to be processed.

この態様では上記のように、被覆層形成用原料ガスの加
熱分解は上記フィラメント3から放出される熱電子5に
より得ることができ、また、被覆層形成用原料パイプ1
は、フィラメント3と該パイプとの間に印加する直流電
圧で該熱電子5を該パイプに集め、これによる発熱によ
って該パイプ1を蒸発させる事により所定の蒸着膜を被
処理部材2の内面に堆積することができる。
In this embodiment, as described above, thermal decomposition of the raw material gas for forming the coating layer can be obtained by thermionic electrons 5 emitted from the filament 3, and the raw material gas for forming the coating layer 1
The thermoelectrons 5 are collected in the pipe by applying a direct current voltage between the filament 3 and the pipe, and the heat generated by this evaporates the pipe 1 to form a predetermined vapor deposited film on the inner surface of the member to be processed 2. Can be deposited.

原料の供給量は、ガス体7の場合にはその流量を調節す
ることにより、また金属又は導電性化合物1の蒸発量は
フィラメント3への印加電力、電子の加速電圧8および
パイプ1の直径及び肉厚によりコントロール出来る。
The amount of raw material supplied can be determined by adjusting the flow rate in the case of the gas body 7, and the amount of evaporation of the metal or conductive compound 1 can be determined by adjusting the power applied to the filament 3, the electron acceleration voltage 8, the diameter of the pipe 1, and the amount of evaporation of the metal or conductive compound 1. Can be controlled by wall thickness.

更に、グロー放電励起電源9により、パイプ1と被処理
部材2の間にグロー放電を励起し、反応ガス7及び蒸発
物質6を励起させ、被膜の性質を向上する事ができる。
Furthermore, the glow discharge excitation power source 9 excites glow discharge between the pipe 1 and the member to be treated 2, thereby exciting the reaction gas 7 and the evaporated substance 6, thereby improving the properties of the coating.

また、本発明の蒸発源の別の態様を第2図に示した。こ
の蒸発源は第1図のフィラメント3の代わりにアーク放
電々極10が使用される。その他の部分は第1図と同様
であり、同一番号を付して説明の代わりとする。このも
う一つの態様によれば、ガス体はパイプ1によって供給
され、その先端近傍に設置したアーク放電々極10との
間に直流電圧8を印加する事によりアーク放電11を生
ぜしめ、これによる発熱によって金属又は導電性化合物
を蒸発さセ、あるいはガス状原料を分解させることによ
り所定の蒸着膜を被処理部材内面に堆積することができ
る。
Further, another embodiment of the evaporation source of the present invention is shown in FIG. As this evaporation source, an arc discharge electrode 10 is used instead of the filament 3 shown in FIG. The other parts are the same as those in FIG. 1, and are given the same numbers and will not be described further. According to this other embodiment, the gas body is supplied through a pipe 1, and an arc discharge 11 is generated by applying a DC voltage 8 between the gas body and an arc discharge pole 10 installed near the tip of the pipe 1. A predetermined vapor deposition film can be deposited on the inner surface of the member to be processed by vaporizing the metal or conductive compound or decomposing the gaseous raw material by heat generation.

原料の供給量についてはガス体7についてはその流量を
、またパイプ1の蒸発量はアーク放電々極10とパイプ
1に印加する電力およびパイプ1の直径及び肉厚を調節
することによりコントロールすることが出来る。また、
グロー放電励起電源9により、パイプ1と被処理部材2
の間にグロー放電を励起し、反応ガス7及び、蒸発金属
6を励起さ廿、被膜の性質、特に緻密性、密着性などを
向上することができる。
The amount of raw material supplied is controlled by the flow rate of the gas body 7, and the amount of evaporation from the pipe 1 is controlled by adjusting the electric power applied to the arc discharge pole 10 and the pipe 1, and the diameter and wall thickness of the pipe 1. I can do it. Also,
The pipe 1 and the workpiece 2 are heated by the glow discharge excitation power source 9.
During this process, a glow discharge is excited and the reaction gas 7 and the evaporated metal 6 are excited, thereby improving the properties of the coating, especially the denseness and adhesion.

また、本発明によれば、上記2つの態様に於いて、被処
理部材の加熱を必要とする場合には、加熱装置を用いて
被覆領域を所期の温度に加熱する事が出来る。即ち、例
えば該加熱装置は筒状被処理部材の外側に設置される温
度センサーおよびヒーターとこれを筒状部材の軸方向に
移動させる事の出来る駆動機構と、さらに系外に設置す
る温度制御装置、ヒーター用電源、駆動部制御装置から
なる。
Further, according to the present invention, in the above two embodiments, when it is necessary to heat the member to be processed, the coating region can be heated to a desired temperature using a heating device. That is, for example, the heating device includes a temperature sensor and a heater installed outside the cylindrical member to be processed, a drive mechanism capable of moving the heater in the axial direction of the cylindrical member, and a temperature control device installed outside the system. , a power supply for the heater, and a drive control device.

実施例 以下、実施例によって本発明の方法並びに装置を更に具
体的に説明すると共に、その奏する効果を実証する。し
かしながら、本発明の範囲は以下の実施例によって何隻
制限されない。
EXAMPLES Hereinafter, the method and apparatus of the present invention will be explained in more detail using examples, and the effects thereof will be demonstrated. However, the scope of the present invention is not limited by the following examples.

実施例1 材質5KD−11で外径120mm、内径112n+I
++、長さ2(100mmの管状被処理部材の内面を窒
化チタン(TIN)で被覆する為に第1図で示した装置
を用いた。原料としては直径5m/n+、肉厚0.5m
10+の金属チタン、窒素、水素を用いた。処理中の真
空度I X 10−’Torr、フィラメント電力5(
10w、フィラメント−TI骨管間電圧1(10v、電
流3A、TI骨管被処理材間に13.56MHzの高周
波(3(10w)を印加して、2時間の処理で管内面に
均一に約10μmのTiNを被覆することができた。
Example 1 Material: 5KD-11, outer diameter 120mm, inner diameter 112n+I
++, length 2 (100 mm) The apparatus shown in Fig. 1 was used to coat the inner surface of a tubular member to be treated with titanium nitride (TIN).The raw material was a material with a diameter of 5 m/n+ and a wall thickness of 0.5 m.
10+ metal titanium, nitrogen, and hydrogen were used. Vacuum degree during processing I x 10-' Torr, filament power 5 (
10W, filament-TI bone canal voltage 1 (10V, current 3A, 13.56MHz high frequency (10W) was applied between the TI bone canal material to be treated, and the inner surface of the canal was uniformly coated with approx. It was possible to coat TiN with a thickness of 10 μm.

実施例2 材質ジルカロイ−4で外径55mm、内径5011長さ
1(100nvの管状被処理部材7の内面をアルミニウ
ムで被覆する為に、第2図で示した装置を用いた。
Example 2 The apparatus shown in FIG. 2 was used to coat the inner surface of a tubular member 7 made of Zircaloy-4 with an outer diameter of 55 mm, an inner diameter of 5011 mm, and a length of 1 (100 nV) with aluminum.

原料としては直径3n+/m肉厚0.3m/mの金属M
管、アルゴンを用いた。処理中の真空度I X 10”
’Torr、アーク電極とW線間の電圧10V、電流5
0A、アーク電極と被処理部材間の電圧IKV、電流5
mAで1時間処理したところ、管内面を約2μmの均一
なMで被覆することができた。
The raw material is metal M with a diameter of 3n+/m and a wall thickness of 0.3m/m.
tube, using argon. Vacuum degree during processing I x 10”
'Torr, voltage between arc electrode and W line 10V, current 5
0A, voltage IKV between arc electrode and workpiece, current 5
When treated with mA for 1 hour, the inner surface of the tube could be coated with a uniform M of about 2 μm.

発明の効果 以上詳しく説明したように、本発明の方法並びに装置に
よれば、長尺細径の、いわゆるアスペクト比の大きな筒
状被処理部材の内面の少なくとも1部に均一な、金属、
ファインセラミックス等の被覆を有利に形成することが
可能となる。これは、本発明に従う蒸着源を用いて、こ
れを被処理部材内に挿入し、原料を局部的に供給すると
共に、被膜形成も局部的に行い、上記部材の中心軸に沿
って蒸着源の消耗に従って蒸着領域を移動させつつ行う
ことで可能となった。
Effects of the Invention As explained in detail above, according to the method and apparatus of the present invention, uniform metal,
It becomes possible to advantageously form a coating of fine ceramics or the like. This uses the vapor deposition source according to the present invention, inserts it into the member to be processed, supplies the raw material locally, and forms a film locally, and moves the vapor deposition source along the central axis of the member. This was made possible by moving the deposition area according to consumption.

また′、本発明においては、必ずしも水素脆化の原因と
なる水素ガスを被覆雰囲気成分をする必要がないので、
被処理部材、被膜の水素脆化を防止できる。
Furthermore, in the present invention, it is not necessary to include hydrogen gas, which causes hydrogen embrittlement, as a coating atmosphere component.
Hydrogen embrittlement of the treated member and coating can be prevented.

更に、本発明の好ましい態様によれば被処理部材は、原
料の分解・蒸発手段としてのフィラメント、金属管、あ
るいはアーク放電々極との間にグロー放電を励起させる
ので、得られる膜は緻密性、下地金属などとの密着性に
優れており、従って被処理部材の応用範囲は大巾に拡大
されることとなる。
Furthermore, according to a preferred embodiment of the present invention, glow discharge is excited between the member to be treated and the filament, metal tube, or arc discharge electrode serving as a means for decomposing and evaporating the raw material, so that the resulting film has a high density. , has excellent adhesion to underlying metals, etc., and therefore the range of applications for treated members will be greatly expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は夫々本発明に関わる被覆装置の、特に
蒸着源を説明する為の模式的な縦断面図である。 (主な参照番号) ■・・金属又は導電性化合物のパイプ 2・・被覆処理部材 3・・フィラメント 4・・フィラメント加熱電源 5・・熱電子 6・・蒸発金属 7・・原料ガス 8・・熱電子捕集用電源 9・・グロー放電励起用電源 10・・アーク放電々極 11・・アーク放電 第 2図
FIGS. 1 and 2 are schematic vertical cross-sectional views of a coating apparatus according to the present invention, particularly for explaining a vapor deposition source. (Main reference numbers) ■ Metal or conductive compound pipe 2 Coating member 3 Filament 4 Filament heating power source 5 Thermal electron 6 Evaporation metal 7 Raw material gas 8 Thermionic collection power source 9... Glow discharge excitation power source 10... Arc discharge poles 11... Arc discharge Figure 2

Claims (15)

【特許請求の範囲】[Claims] (1)真空条件下に置かれた筒状被処理部材内部に挿入
した蒸着原料の一つとなる導電性パイプにより、局部的
に被覆層形成用原料を供給し、原料供給部分で局所的に
原料を分解または蒸発することにより、上記被覆処理部
材内面に部分的に蒸着膜を堆積する操作を、該被覆処理
部材の中心軸に沿ってその内面の長尺方向に該パイプの
消耗に従って移動しつつ行うことを特徴とする筒状部材
内面の少なくとも一部の被覆方法。
(1) A conductive pipe, which serves as one of the vapor deposition raw materials, is inserted into the cylindrical workpiece placed under vacuum conditions to locally supply the raw material for forming the coating layer. The operation of partially depositing a vapor deposited film on the inner surface of the coating member by decomposing or evaporating the coating member is performed while moving in the longitudinal direction of the inner surface along the central axis of the coating member as the pipe wears out. 1. A method of coating at least a portion of an inner surface of a cylindrical member.
(2)上記被覆層形成用原料ガスがNH_3、N_2、
CH_4、C_2H_2、CO_2およびArの少なく
とも1種から選ばれることを特徴とする特許請求の範囲
第1項記載の筒状部材内面の被覆方法。
(2) The raw material gas for forming the coating layer is NH_3, N_2,
The method for coating the inner surface of a cylindrical member according to claim 1, characterized in that the coating is selected from at least one of CH_4, C_2H_2, CO_2 and Ar.
(3)上記被覆層形成用原料ガスの供給を、上記被覆処
理部材の内部に挿入した導電性パイプを通して行い、該
原料の分解・活性化を該パイプ先端近傍を加熱すること
により行うことを特徴とする特許請求の範囲第2項に記
載の筒状部材内面の被覆方法。
(3) The raw material gas for forming the coating layer is supplied through a conductive pipe inserted into the coating member, and the raw material is decomposed and activated by heating the vicinity of the tip of the pipe. A method for coating the inner surface of a cylindrical member according to claim 2.
(4)上記加熱を上記導電性パイプ先端近傍のフィラメ
ントから放出され、該フィラメントと該パイプとの間に
印加された直流電圧によって加速される電子ビームによ
って行うことを特徴とする特許請求の範囲第3項に記載
の筒状部材内面の被覆方法。
(4) The heating is performed by an electron beam emitted from a filament near the tip of the conductive pipe and accelerated by a DC voltage applied between the filament and the pipe. The method for coating the inner surface of a cylindrical member according to item 3.
(5)上記原料の供給を上記被覆処理部材の内部に挿入
した導電性パイプを通して行い、該原料の分解・活性化
を該パイプの先端付近に設置した電極と該パイプとの間
に電圧を印加し、発生するアーク放電によって行うこと
を特徴とする特許請求の範囲第3項に記載の筒状部材内
面の被覆方法。
(5) The raw material is supplied through a conductive pipe inserted into the coating member, and a voltage is applied between the pipe and an electrode installed near the tip of the pipe to decompose and activate the raw material. 4. The method for coating the inner surface of a cylindrical member according to claim 3, wherein the coating method is carried out by arc discharge generated.
(6)上記被覆層形成用原料がTi、Al、W、V、T
a、Hf、Zr等の金属および導電性化合物のパイプか
らなる群から選ばれることを特徴とする特許請求の範囲
第1項記載の筒状部材内面の被覆方法。
(6) The raw material for forming the coating layer is Ti, Al, W, V, T.
The method for coating the inner surface of a cylindrical member according to claim 1, characterized in that the coating material is selected from the group consisting of pipes made of metals such as a, Hf, and Zr, and conductive compounds.
(7)上記金属および導電性化合物原料の蒸発を該パイ
プの先端付近に設けられたフィラメントから放出され、
フィラメントと原料との間に印加された直流電圧によっ
て該原料パイプに流入する電子ビームによって行うこと
を特徴とする特許請求の範囲第6項記載の筒状部材内面
の被覆方法。
(7) the metal and conductive compound raw materials are evaporated from a filament provided near the tip of the pipe;
7. The method for coating the inner surface of a cylindrical member according to claim 6, characterized in that the coating is carried out by an electron beam flowing into the raw material pipe using a DC voltage applied between the filament and the raw material.
(8)上記導電性化合物原料の加熱を、上記導電性パイ
プの先端付近に設置された電極と該導電性パイプとの間
に電圧を印加し、発生するアーク放電によって行うこと
を特徴とする特許請求の範囲第6項記載の筒状部材内面
の被覆方法。
(8) A patent characterized in that the conductive compound raw material is heated by arc discharge generated by applying a voltage between the conductive pipe and an electrode installed near the tip of the conductive pipe. A method for coating the inner surface of a cylindrical member according to claim 6.
(9)前記分解または蒸発操作を、前記フィラメント、
アーク放電々極または導電性パイプと、上記被処理部材
との間に直流高電圧、交流高電圧、高周波電力、マイク
ロ波電力のいずれかを、もしくはこれを重畳したものを
印加した状態で実施することを特徴とする特許請求の範
囲第1〜8項のいずれか1項に記載の筒状部材内面の被
覆方法。
(9) The decomposition or evaporation operation is performed on the filament,
The process is carried out while applying DC high voltage, AC high voltage, high frequency power, or microwave power, or a combination of these, between the arc discharge electrode or conductive pipe and the above-mentioned member to be treated. A method for coating an inner surface of a cylindrical member according to any one of claims 1 to 8.
(10)排気系を備えた真空槽と、該真空槽内に配置さ
れる筒状被処理部材の支持手段と、該部材内に挿入され
、その内面に蒸着層を形成するための、蒸着源とを含む
、上記筒状部材の被覆装置。
(10) A vacuum chamber equipped with an exhaust system, a means for supporting a cylindrical member to be processed placed in the vacuum chamber, and a vapor deposition source inserted into the member to form a vapor deposition layer on the inner surface thereof. A coating device for the above-mentioned cylindrical member, comprising:
(11)上記蒸着源が被覆層形成原料供給用金属パイプ
又は導電性化合物パイプと、該パイプ先端部近傍に設置
された加熱フィラメントおよびその駆動電源を含むもの
であることを特徴とする特許請求の範囲第10項記載の
筒状部材の被覆装置。
(11) Claims characterized in that the vapor deposition source includes a metal pipe or a conductive compound pipe for supplying raw materials for coating layer formation, a heating filament installed near the tip of the pipe, and a driving power source for the heating filament. The coating device for a cylindrical member according to item 10.
(12)上記金属又は導電性化合物とフィラメントとの
間に電圧を印加するための直流電源を有することを特徴
とする特許請求の範囲第11項記載の筒状部材の被覆装
置。
(12) The apparatus for coating a cylindrical member according to claim 11, further comprising a DC power source for applying a voltage between the metal or conductive compound and the filament.
(13)上記蒸着源が、被覆層形成原料供給用金属又は
導電性化合物のパイプと、該パイプの先端近傍に設置さ
れた電極と、これと上記パイプとの間にアーク放電を生
ずるための電源とを含むことを特徴とする特許請求の範
囲第10項記載の筒状部材の被覆装置。
(13) The vapor deposition source is a metal or conductive compound pipe for supplying raw materials for coating layer formation, an electrode installed near the tip of the pipe, and a power source for generating an arc discharge between this and the pipe. 11. A coating device for a cylindrical member according to claim 10, comprising:
(14)上記フィラメント、アーク放電電極または導電
性パイプと、上記被覆処理部材との間にグロー放電を励
起する為の電源を含むことを特徴とする特許請求の範囲
第10〜13項のいずれか1項に記載の筒状部材の被覆
装置。
(14) Any one of claims 10 to 13, characterized in that a power source for exciting glow discharge is included between the filament, arc discharge electrode, or conductive pipe and the coated member. The coating device for a cylindrical member according to item 1.
(15)上記電源が直流高圧電源、交流高圧電源、高周
波電源またはマイクロ波電源であることを特徴とする特
許請求の範囲第14項記載の筒状部材の被覆装置。
(15) The coating device for a cylindrical member according to claim 14, wherein the power source is a DC high voltage power source, an AC high voltage power source, a high frequency power source, or a microwave power source.
JP22215885A 1985-10-04 1985-10-04 Method and apparatus for coating inside surface of cylinderical member Granted JPS6283464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22215885A JPS6283464A (en) 1985-10-04 1985-10-04 Method and apparatus for coating inside surface of cylinderical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22215885A JPS6283464A (en) 1985-10-04 1985-10-04 Method and apparatus for coating inside surface of cylinderical member

Publications (2)

Publication Number Publication Date
JPS6283464A true JPS6283464A (en) 1987-04-16
JPH0210860B2 JPH0210860B2 (en) 1990-03-09

Family

ID=16778087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22215885A Granted JPS6283464A (en) 1985-10-04 1985-10-04 Method and apparatus for coating inside surface of cylinderical member

Country Status (1)

Country Link
JP (1) JPS6283464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518555A (en) * 1999-12-24 2003-06-10 テトラ ラバル ホールデングス アンド ファイナンス エス エイ Apparatus for coupling microwave energy into a processing chamber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973385A (en) * 1972-11-15 1974-07-16
JPS531139A (en) * 1976-06-25 1978-01-07 Ulvac Corp Method of coating inner surface of tube with metal* etc*

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973385A (en) * 1972-11-15 1974-07-16
JPS531139A (en) * 1976-06-25 1978-01-07 Ulvac Corp Method of coating inner surface of tube with metal* etc*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518555A (en) * 1999-12-24 2003-06-10 テトラ ラバル ホールデングス アンド ファイナンス エス エイ Apparatus for coupling microwave energy into a processing chamber
JP4831591B2 (en) * 1999-12-24 2011-12-07 テトラ ラバル ホールデングス アンド ファイナンス エス エイ Apparatus for coupling microwave energy into a processing chamber

Also Published As

Publication number Publication date
JPH0210860B2 (en) 1990-03-09

Similar Documents

Publication Publication Date Title
US7763231B2 (en) System and method of synthesizing carbon nanotubes
US4749587A (en) Process for depositing layers on substrates in a vacuum chamber
JP5043657B2 (en) Method and system for on-site coating of internal surfaces of pre-assembled process piping
US20020102353A1 (en) Method of producing a nanotube layer on a substrate
JP2003515675A (en) Method for producing a composite layer using a plasma radiation source
JP2008532255A (en) Method and system for coating portions of an inner surface
JP2002275635A (en) Process and apparatus for microwave plasma treatment
JP2003515676A (en) Method of manufacturing functional layer using plasma radiation source
AU2002332200B2 (en) Method for carrying out homogeneous and heterogeneous chemical reactions using plasma
JP3463091B2 (en) Method for producing carbon nanotube
Heberlein et al. Thermal plasma deposition of nanophase hard coatings
JPS6283464A (en) Method and apparatus for coating inside surface of cylinderical member
JPH059735A (en) Vapor synthesis of diamond
Pierson et al. Low temperature ZrB2 remote plasma enhanced chemical vapor deposition
JPS6274068A (en) Method and apparatus for coating inside surface of cylindrical member
JP4085000B2 (en) How to generate a functional layer
JPS6270578A (en) Coating method for inside surface of pipe
US4433408A (en) Cantilever for pickup cartridge
JP3152548B2 (en) High frequency induction plasma deposition equipment
JPH0233786B2 (en) KAGOBUTSUMAKUNOKEISEIHOHO
JPS6358226B2 (en)
JP2005226107A (en) Hydrogen barrier-coated article for stainless steel pipe, vessel or the like, and production method therefor
KR100367455B1 (en) Vacuum multi-chamber plasma CVD system for synthesizing carbon nanotubes and method for synthesizing carbon nanotubes using the system
JP2587636B2 (en) Diamond synthesis method and equipment
Niiranen Electrically Modified Quartz Crystal Microbalance to Study Surface Chemistry Using Plasma Electrons as Reducing Agents