JPS6273145A - Method for splitting waveform of x-ray optoelectronic spectrum - Google Patents

Method for splitting waveform of x-ray optoelectronic spectrum

Info

Publication number
JPS6273145A
JPS6273145A JP60214034A JP21403485A JPS6273145A JP S6273145 A JPS6273145 A JP S6273145A JP 60214034 A JP60214034 A JP 60214034A JP 21403485 A JP21403485 A JP 21403485A JP S6273145 A JPS6273145 A JP S6273145A
Authority
JP
Japan
Prior art keywords
waveform
component
spectrum
waveforms
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60214034A
Other languages
Japanese (ja)
Inventor
Michiko Sato
佐藤 美知子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60214034A priority Critical patent/JPS6273145A/en
Publication of JPS6273145A publication Critical patent/JPS6273145A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To eliminate uncertainty and inaccuracy of component waveform, which is given beforehand, by using a differential spectral waveform, which is obtained from the measured waveforms of one or more actual samples, as a waveform component. CONSTITUTION:In the analysis of an X-ray optoelectronic spectrum 1, a differential spectral waveform 3s, which is obtained from the measured waveforms of at least one or more actual samples, is used as a waveform component. The waveform 3s is obtained from the CIS spectrum after the samples are allowed to remain in an XPS device one day after etching and the spectrum immediately after the etching. Thus, uncertainty and inaccuracy of component waveform, which is given beforehand, are eliminated.

Description

【発明の詳細な説明】 〔ミリ〕 本イ1石明は、rvθの成分が重畳しているX線光ば子
スペクトルの合成的波形分離処沖において、あらかじめ
与える成分波形の不確実性あるいは不正礒性を解決する
ため、実試料の+!1j定波形からPiられる差スペク
トル波形を成分波形の一つデたはいくつか(用いること
により、妥当性のあるあるいは誤差の小さい波形分離を
可能にしたものである。
[Detailed Description of the Invention] [Millimeter] The first feature of this invention is that, in the synthetic waveform separation process of the In order to solve the problem of itching, +! of actual samples! By using the difference spectrum waveform obtained from the 1j constant waveform as one or several of the component waveforms, valid waveform separation or waveform separation with small errors is made possible.

〔産業上の利用分野〕[Industrial application field]

本発明は、X線光電子分光分析法において、複数の成分
が重畳している一光電子スベクトルを各成分に分離する
方法VC関する。
The present invention relates to a method VC for separating a photoelectron vector in which multiple components are superimposed into each component in X-ray photoelectron spectroscopy.

X線光電子分光法では、試料を構成する原子から放出さ
れた光電子のエネルギースペクトルのエネルギー酸と強
度から、原子のf4FJ、坩および化学旧結合状態を解
析するが、複数の8なる状帥にある原子からのIt電子
スペクトルA「なり合うので、分#!fるJ必伸が生じ
る。一般に用いられている合成的波形分離では、あらか
じめガウス関数などの波形あるいは測定波形?成分び形
として与え、最小二乗法VC基づいて最適成分量を求め
ることか行われ゛(いるが、与える成分波形は確かに構
成成分である押部的根拠があることと、構成ty分の波
形にできる限り近いことが要求される。
In X-ray photoelectron spectroscopy, the f4FJ, crucible, and chemical prior bonding states of atoms are analyzed from the energy acid and intensity of the energy spectrum of photoelectrons emitted from the atoms that make up the sample. Since the It electron spectra A from the atoms become equal to each other, a necessary expansion occurs. In commonly used synthetic waveform separation, it is given in advance as a waveform such as a Gaussian function or a measured waveform? It is possible to find the optimal component amount based on the least squares method VC (although it is necessary to make sure that the given component waveform has a solid basis for being a constituent component and that it is as close as possible to the waveform for the constituent ty). required.

〔従来の技術〕[Conventional technology]

従来のガウス関数波形のみによる波形分離結果を第5図
に、測定波形のみによる6y形分岨結果な第6図に示す
。図中点#2は全成分波形の和と彼処RMtIIl形1
との誤差である。図示のごとく、従来の方法では誤差が
大きくなる場合がある。また成分波形を与える際に試行
錯誤が必要な場合が多い。
FIG. 5 shows the waveform separation results using only the conventional Gaussian function waveform, and FIG. 6 shows the 6y-shape separation results using only the measured waveforms. Point #2 in the figure is the sum of all component waveforms and its RMtIIl form 1
This is the error. As shown in the figure, the conventional method may result in large errors. Furthermore, trial and error is often required when providing component waveforms.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来用いているガウス関数などの成分波形では、実際の
構成成分の波形がガウス分布に一致しない場合があるこ
と、全ての構成成分を単一のガウス九 関数に分割すると、1===するコンピュータのメモリ
オーバーになる可能性がちり、また処押時間がかかるこ
と、ピーク位闘や拡がりについて試行錯誤する必要が生
じることが量定であった。また、測定波形を用いること
ができるのは、実際の構成成分の波形を測定によって得
られる場合に限られていた。
With conventionally used component waveforms such as Gaussian functions, the actual component waveforms may not match the Gaussian distribution, and if all the components are divided into a single Gaussian nine function, the computer There was a risk of memory overload, and it took a long time to process, and it was necessary to use trial and error to determine the peak position and spread. Furthermore, the measurement waveforms can only be used when the waveforms of the actual constituent components can be obtained by measurement.

〔問題点をIW決するための手I9〕 まず、彼ヤ分トl郊沖の成分として月いる差スペクトル
を、二つDJ上の41)1定スペクトルあるいは6!1
)定スペクトルとガウス関数スペクトルから作成し、こ
れとその他の波形を成分波形としてρり形分鵡処叩を実
行する。波形分離処理では、各成分鼓形を合成した波形
の被溶l1liI鼓形とのfA差の二乗和が最小となる
ように、成分のfよを決定する。
[Measures to resolve the problem IW] First, the difference spectrum of the moon as the component of the 41) 1 constant spectrum or 6! 1 on the two DJs.
) It is created from a constant spectrum and a Gaussian function spectrum, and this and other waveforms are used as component waveforms to perform rheomorphic division. In the waveform separation process, f of the component is determined so that the sum of squares of fA differences between the waveform obtained by synthesizing each component's drum shape and the fA difference between the waveform and the to-be-dissolved l1liI drum is minimized.

〔作用〕[Effect]

本発明で用いる差スペクトルは、波形分離処理において
、陰論上、実際の構成成分の波形とみなせる場合があり
、不確実性を除き、試行錯騙の必g!!に生じさせない
。また測定によって得られない〔実施例〕 第1図はt発明の一夷廁例による波形分離処理を示すも
ので、破処卸波形1は%XPS装瞼内で+ Ar ビームエツチングによって清浄表面を露出させた
アルマイト躾のCISスペクトルである。エツチング直
後から測定しても、数分間で得たスペクトルにはすでに
装贋内残留ガスの吸着による汚染カーボン成分が重な−
てしまっている。図中3sは、エツチング後XPS装忙
内に一日放置後とエツチング直後のCISスペクトルか
ら得た差スペクトルであり、放置によって穂加した成分
なので装r嘗弓内汚染成分と想定できる。他に、図中4
5のガウス聞紗ハに分を想定して、図中2のごとく小さ
い誤差のe1ヒ分4結果がptられ、捗tri内汚染カ
ーボン成分と試料中のカーボン成分の定1!t゛的解析
が口f酷となるっ ?J!、2図はf発明の俄の才施例を示すものである。
In the waveform separation process, the difference spectrum used in the present invention can implicitly be regarded as the waveform of the actual component. ! Do not allow this to occur. [Example] Fig. 1 shows waveform separation processing according to one example of the invention, and the broken waveform 1 was obtained by cleaning the clean surface by +Ar beam etching in the XPS eyelid. This is a CIS spectrum of exposed anodized aluminum. Even if measurements are taken immediately after etching, the spectrum obtained within a few minutes is already overlaid with contaminating carbon components due to adsorption of residual gas in the counterfeit.
It's gone. In the figure, 3s is the difference spectrum obtained from the CIS spectra after being left in the XPS equipment for one day after etching and immediately after etching, and since it is a component that has been added due to being left in the XPS equipment, it can be assumed that it is a contamination component in the equipment. In addition, 4 in the figure
Assuming a Gaussian noise of 5, the result of e1himin4 with a small error as shown in 2 in the figure is calculated, and the difference between the contaminant carbon component in the sample and the carbon component in the sample is calculated. T゛-like analysis becomes cruel? J! , 2 shows a preliminary example of the invention.

 。.

43トのような、表面から深さ方向lC層構造を成す物
質上だ第4図のごとく薄いl1914を形成し、分析深
さが第3.4図中の1)であるようtCH合、8g2図
中1に示す破如押波形には、第4図中14の表面腿成分
と4+4図中13の基根上層■分とが3′まれでいる。
As shown in Figure 4, a thin layer of 1914 is formed on a material having an LC layer structure in the depth direction from the surface, such as 43g, and when the tCH is combined with 8g2, the analysis depth is 1) in Figure 3.4. In the broken push waveform shown in 1 in the figure, the surface leg component 14 in FIG. 4 and the suprabasal layer component 13 in 4+4 figure are rare by 3'.

1表面1成分と基板上階成分に波形分離するために、基
板成分波形として第3図中1)の範囲の測定波ノrな用
いると%基枦下Rツ叡分12が含まれているためのH’
:+Kk生じる。5β、当なガウス関数波形や測定波形
で近似したwi板下層成分を各し引いた7Iスペクトル
を用いることによって、基板上l傷成分だけの鼓形が得
られ、第2図中2のごとく小さい誤差の波形分離かげ能
となるつ〔発明の効果〕 本発明によれば、X酬光酊子スペクトルの合成的、M形
分=h’s 埋において、あらかじめ与える成分倣形の
不確実性と不正イ4性をル1消でさ藝場÷→餉るつ
In order to separate the waveform into one surface component and the upper layer component of the substrate, if the measurement waveform in the range 1) in Figure 3 is used as the substrate component waveform, 12% of the measured waveform will be included. H' for
:+Kk occurs. By using the 5β and 7I spectra obtained by subtracting the lower layer component of the WI plate approximated by the appropriate Gaussian function waveform and the measured waveform, an hourglass shape with only the scratch component on the substrate can be obtained, and it is small as shown in 2 in Figure 2. [Effect of the invention] According to the present invention, in the synthetic M-form component = h's of the X-reflection spectrum, the uncertainty of the component shape given in advance and Injustice, 4 sex, 1 erase, Geiba ÷ → 餉るつ

【図面の簡単な説明】[Brief explanation of drawings]

41.2図は′$発明の実施例を示し第3.4区間中1
)は分析深さ、12は基板下層、■3は第 1 名 % 2 児
Figure 41.2 shows an embodiment of the '$ invention and 1 in section 3.4.
) is the analysis depth, 12 is the lower layer of the substrate, and ■3 is the 1st person% 2 child.

Claims (1)

【特許請求の範囲】[Claims] X線光電子スペクトル(1)の解析において、少くとも
一つ以上の実試料の測定波形から得られる差スペクトル
波形(3)を波形構成成分として用いることを特徴とす
るX線光電子スペクトルの波形分離処理方法。
A waveform separation process for an X-ray photoelectron spectrum, characterized in that, in the analysis of the X-ray photoelectron spectrum (1), a difference spectrum waveform (3) obtained from measurement waveforms of at least one actual sample is used as a waveform component. Method.
JP60214034A 1985-09-27 1985-09-27 Method for splitting waveform of x-ray optoelectronic spectrum Pending JPS6273145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60214034A JPS6273145A (en) 1985-09-27 1985-09-27 Method for splitting waveform of x-ray optoelectronic spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60214034A JPS6273145A (en) 1985-09-27 1985-09-27 Method for splitting waveform of x-ray optoelectronic spectrum

Publications (1)

Publication Number Publication Date
JPS6273145A true JPS6273145A (en) 1987-04-03

Family

ID=16649178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60214034A Pending JPS6273145A (en) 1985-09-27 1985-09-27 Method for splitting waveform of x-ray optoelectronic spectrum

Country Status (1)

Country Link
JP (1) JPS6273145A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457156A (en) * 1987-08-28 1989-03-03 Mitsubishi Heavy Ind Ltd Material inspecting method utilizing x-ray diffraction method
JP2007247881A (en) * 2006-03-20 2007-09-27 Honda Motor Co Ltd Multi-stage transmission

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457156A (en) * 1987-08-28 1989-03-03 Mitsubishi Heavy Ind Ltd Material inspecting method utilizing x-ray diffraction method
JP2615064B2 (en) * 1987-08-28 1997-05-28 三菱重工業株式会社 Material inspection method by X-ray diffraction method
JP2007247881A (en) * 2006-03-20 2007-09-27 Honda Motor Co Ltd Multi-stage transmission

Similar Documents

Publication Publication Date Title
Hricovini et al. Electronic structure and its dependence on local order for H/Si (111)-(1× 1) surfaces
Joyce et al. Quantitative analysis of synchrotron radiation photoemission core level data
Košler et al. U–Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICPMS and SIMS techniques
US7420163B2 (en) Determining layer thickness using photoelectron spectroscopy
US6271519B1 (en) Analysis of semiconductor surfaces by secondary ion mass spectrometry
Raccah et al. Comparative study of defects in semiconductors by electrolyte electroreflectance and spectroscopic ellipsometry
Troxler et al. Isomer-specific spectra and ionization potentials of van der Waals clusters
JPS6273145A (en) Method for splitting waveform of x-ray optoelectronic spectrum
Bertoni et al. Chemisorption of H on GaAs (110): a first-principles calculation
KR910009611B1 (en) Trench etching method
JP2928688B2 (en) Pollution element analysis method and device
Breese et al. Applications of scanning transmission ion microscopy
Liu et al. Laser‐induced selective deposition of micron‐size structures on silicon
Mårtensson et al. Temperature dependence in UV photoemission from Cu (111)
JP2973638B2 (en) Impurity analysis method
Kendelewicz et al. Surface core level shifts on InP (110) use of Sb overlayers
Kendelewicz et al. The interaction of Pd with the InP (110) surface
DE68907437T2 (en) Methods for measuring impurities.
Simpson et al. Room‐temperature chlorination of As‐rich GaAs (110)
JP2819716B2 (en) X-ray spectroscopy for thin film determination and film thickness measurement
Saisho X-ray fluorescence analysis using synchrotron radiation
JP2645227B2 (en) X-ray fluorescence analysis method
Phillips Theoretical descriptions of surface state photoelectron spectroscopy
Champeau et al. High resolution optical spectroscopy in neon using a tunable laser and an excited atomic beam
Müller et al. High resolution in EUV spectroscopy of foil-excited fast ion beams