JP2645227B2 - X-ray fluorescence analysis method - Google Patents

X-ray fluorescence analysis method

Info

Publication number
JP2645227B2
JP2645227B2 JP26828694A JP26828694A JP2645227B2 JP 2645227 B2 JP2645227 B2 JP 2645227B2 JP 26828694 A JP26828694 A JP 26828694A JP 26828694 A JP26828694 A JP 26828694A JP 2645227 B2 JP2645227 B2 JP 2645227B2
Authority
JP
Japan
Prior art keywords
intensity
sample
ray
fluorescent
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26828694A
Other languages
Japanese (ja)
Other versions
JPH08105849A (en
Inventor
由行 片岡
庸一 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP26828694A priority Critical patent/JP2645227B2/en
Publication of JPH08105849A publication Critical patent/JPH08105849A/en
Application granted granted Critical
Publication of JP2645227B2 publication Critical patent/JP2645227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、組成が既知の標準試料
についての検量線を用いないで、分析対象試料の元素の
含有率を算出する蛍光X線分析方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescent X-ray analysis method for calculating the content of elements in a sample to be analyzed without using a calibration curve for a standard sample having a known composition.

【0002】[0002]

【従来の技術】従来より、この種の分析方法として、試
料における元素の含有率を仮定して、計算した試料の各
元素の蛍光X線の理論強度と、X線を照射して試料から
発生する各元素の蛍光X線の実測強度とを用い、両強度
が一致するように、前記仮定した元素の含有率を逐次近
似的に修正計算して、試料における元素の含有率を算出
する蛍光X線分析方法、いわゆるファンダメンタルパラ
メータ法がある。ここで、X線を照射して試料から発生
する各元素の蛍光X線の実測強度とは、実際には、例え
ば、以下のようにして求める。
2. Description of the Related Art Conventionally, as an analysis method of this kind, the theoretical intensity of fluorescent X-rays of each element of a sample calculated based on the assumption of the content of the element in the sample and the generation of the X-ray from the sample have been described. Using the measured X-ray fluorescence intensity of each element to be used, the assumed content of the element is corrected by successive approximation so that the two intensities match each other, and the fluorescence X for calculating the content of the element in the sample is calculated. There is a line analysis method, a so-called fundamental parameter method. Here, the measured intensity of the fluorescent X-ray of each element generated from the sample by irradiating the X-ray is actually obtained, for example, as follows.

【0003】まず、あらかじめ使用する蛍光X線分析装
置において、主たる構成元素が相異なりその含有率が既
知である複数の標準試料(一般に純物質または酸化物で
ある)について、1次X線を照射して発生した蛍光X線
の強度Im を測定する。その一方、前記既知の含有率に
おける理論強度It と含有率100%における理論強度
tpとを算出し、その比Itp/It を求める。そして、
前記測定強度Im にその比Itp/It を乗ずることによ
り、前記主たる構成元素ごとに、標準試料におけるその
元素の含有率が100%であるとした場合の標準となる
蛍光X線の強度Im ×Itp/It (以下、この強度を標
準強度と呼ぶことにする)を算出しておく。そして、構
成元素の含有率が未知である分析対象の試料に、1次X
線を照射して発生した蛍光X線の強度Iを測定し、発生
した蛍光X線のスペクトルごとに、その測定強度Iと前
記標準強度との強度比i1 を次式のように算出する。 i1 =I/(Im ×Itp/It )=I×It /Im ×Itp この強度比i1 は、試料から発生した蛍光X線のいわゆ
る相対強度i1 であり、すなわち前記実測強度i1 とし
て用いられる。
First, in a fluorescent X-ray analyzer to be used in advance, primary X-rays are irradiated on a plurality of standard samples (generally a pure substance or an oxide) whose main constituent elements are different and whose contents are known. the intensity I m of the fluorescent X-ray generated by measuring. Meanwhile, to calculate the theoretical intensity I tp in theoretical strength I t and containing 100% of the known content and calculate the ratio I tp / I t. And
By multiplying the ratio I tp / I t in the measured intensity I m, the strength of the each main constituent elements, a fluorescent X-ray content of the element in the standard sample is a standard in the case of a 100% I m × I tp / I t (hereinafter, this intensity is referred to as standard intensity) is calculated in advance. Then, the primary X is added to the sample to be analyzed whose content of constituent elements is unknown.
Measuring the intensity I of the fluorescence X-rays generated by irradiating a line for each spectrum generated fluorescent X-ray, to calculate the intensity ratio i 1 of the standard intensity and the measured intensity I as follows. i 1 = I / (I m × I tp / I t ) = I × I t / I m × I tp This intensity ratio i 1 is the so-called relative intensity i 1 of the fluorescent X-rays generated from the sample. used as the measured intensity i 1.

【0004】ここで、標準強度の算出のための測定は、
一般に標準試料を真空中でその表面を露出させて行う。
この測定は、使用する蛍光X線分析装置において、30
元素程度について、最初に1回行って得られた標準強度
を記憶しておけばよく、分析対象の試料の測定ごとに行
う必要はない。
Here, the measurement for calculating the standard intensity is as follows.
Generally, a standard sample is exposed in a vacuum with its surface exposed.
This measurement was carried out on the fluorescent X-ray analyzer used.
It is sufficient to memorize the standard intensity obtained by performing the measurement once for the element level, and it is not necessary to perform the measurement every time the sample to be analyzed is measured.

【0005】[0005]

【発明が解決しようとする課題】ところが、分析対象の
試料は、液体等であることもあり、必ずしも真空中でそ
の表面を露出させて測定できるものとは限らない。その
ような場合は、試料の表面をポリエステル等の樹脂から
なる保護膜で覆って測定を行ったり、ヘリウム等の不活
性ガス雰囲気中で測定を行ったりするが、測定条件が標
準強度を求めたときと異なるので、標準強度を用いたの
では、正しい前記強度比すなわち実測強度i1 を求める
ことができない。また、正しい強度比i1 を求めようと
すると、分析対象試料と同じ測定条件で、すべての標準
試料について、標準強度の算出のための測定をやり直す
必要があり、多大な時間と労力を要する。
However, since the sample to be analyzed may be a liquid or the like, it is not always possible to measure the sample by exposing its surface in a vacuum. In such a case, measurement is performed by covering the surface of the sample with a protective film made of a resin such as polyester, or measurement is performed in an atmosphere of an inert gas such as helium. Since it is different from the conventional case, if the standard intensity is used, the correct intensity ratio, that is, the actually measured intensity i 1 cannot be obtained. Also, when you find the correct intensity ratio i 1, at the same measurement conditions as the analysis sample, for all of the standard sample, it is necessary to repeat the measurement for calculating the standard strength, time consuming and labor.

【0006】本発明は前記従来の問題に鑑みてなされた
もので、試料からの蛍光X線の強度に基づいて元素の含
有率を算出する蛍光X線分析方法において、使用する蛍
光X線分析装置において標準試料を測定した条件とは異
なる測定条件で測定しなければならない分析対象試料に
ついても、容易かつ正確に元素の含有率が算出できる分
析方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and is an X-ray fluorescence analyzer used in an X-ray fluorescence analysis method for calculating the content of an element based on the intensity of X-ray fluorescence from a sample. It is an object of the present invention to provide an analysis method capable of easily and accurately calculating the element content of an analysis target sample which must be measured under measurement conditions different from those under which the standard sample was measured.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の方法では、X線が照射された試料から発
生する蛍光X線の強度に基づいて試料における元素の含
有率を算出する蛍光X線分析方法において、まず、主た
る構成元素が既知で相異なる複数の標準試料について、
真空中でその試料表面が露出している第1の測定条件、
不活性ガス雰囲気中でその試料表面が露出している第2
の測定条件、および真空中でその試料表面が保護膜に覆
われている第3の測定条件において、1次X線を照射し
て前記主たる構成元素から発生した蛍光X線の強度を測
定する。そして、その発生した蛍光X線のスペクトルご
とに、第1の測定条件での蛍光X線の強度に対する第2
および第3の測定条件での蛍光X線の強度の減衰率を算
出して、それらの減衰率を記憶しておく。次に、構成元
素の含有率が未知である分析対象試料に、1次X線を照
射して発生した蛍光X線の強度を測定し、その発生した
蛍光X線のスペクトルごとに、その強度を、その分析対
象試料の測定条件に応じて算出されて記憶された前記減
衰率によって補正する。
According to a first aspect of the present invention, there is provided a method for calculating the content of an element in a sample based on the intensity of fluorescent X-rays generated from the sample irradiated with the X-rays. In the fluorescent X-ray analysis method, first, a plurality of standard samples whose main constituent elements are known and different from each other are
A first measurement condition in which the sample surface is exposed in a vacuum,
Second sample whose surface is exposed in an inert gas atmosphere
Under the measurement conditions described above and the third measurement condition in which the sample surface is covered with a protective film in a vacuum, primary X-rays are irradiated to measure the intensity of fluorescent X-rays generated from the main constituent elements. Then, for each spectrum of the generated fluorescent X-ray, the second to the intensity of the fluorescent X-ray under the first measurement condition is determined.
And the decay rate of the intensity of the fluorescent X-ray under the third measurement condition is calculated, and those decay rates are stored. Next, the intensity of fluorescent X-rays generated by irradiating primary X-rays to a sample to be analyzed whose content of constituent elements is unknown is measured, and the intensity is measured for each spectrum of the generated fluorescent X-rays. The correction is made based on the attenuation rate calculated and stored according to the measurement conditions of the sample to be analyzed.

【0008】[0008]

【作用および効果】本発明によれば、ある蛍光X線分析
装置において、想定される種々の測定条件で標準試料を
測定し、基準となる測定条件において発生する蛍光X線
強度に対する他の測定条件において発生する蛍光X線強
度の減衰率を求めておけば、他の同型の蛍光X線分析装
置においては、標準試料を測定した条件とは異なる測定
条件で測定しなければならない分析対象試料について
も、発生する蛍光X線強度を前記減衰率によって補正す
るので、容易かつ正確に元素の含有率が算出できる。
According to the present invention, in a certain X-ray fluorescence spectrometer, a standard sample is measured under various assumed measurement conditions, and the other measurement conditions for the intensity of X-ray fluorescence generated under the standard measurement conditions are measured. If the decay rate of the fluorescent X-ray intensity generated in the above is determined, other fluorescent X-ray analyzers of the same type can be used for the analysis target sample which must be measured under measurement conditions different from those under which the standard sample was measured. Since the intensity of the generated fluorescent X-rays is corrected by the decay rate, the content of the element can be calculated easily and accurately.

【0009】[0009]

【実施例】以下、本発明の実施例を図面にしたがって説
明する。図1に示すように、まず、第1の蛍光X線分析
装置において、主たる構成元素が既知で相異なる複数の
標準試料3について、真空中でその試料3の表面が露出
している第1の測定条件、ヘリウム雰囲気中でその試料
3の表面が露出している第2の測定条件、および図2に
示すように真空中であってその試料3が容器9に入れら
れその表面が膜厚一定のポリエステルからなる保護膜8
に覆われている第3の測定条件において、図1のX線源
1から発生させた1次X線2を照射して、発生した2次
X線4を分光器5に入射させ、分光された前記主たる構
成元素から発生した蛍光X線6の強度を、検出器7で測
定する。ここで、第1の測定条件において発生した蛍光
X線6の強度を基準条件強度と呼ぶ。そして、発生した
蛍光X線6のスペクトルごとに、基準条件強度に対する
第2および第3の測定条件での蛍光X線6の強度の減衰
率を算出して、それらの減衰率を記憶しておく。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, first, in a first X-ray fluorescence spectrometer, a plurality of standard samples 3 whose main constituent elements are known and different from each other are exposed in a vacuum to the first sample 3. The measurement conditions, the second measurement condition in which the surface of the sample 3 is exposed in a helium atmosphere, and the sample 3 is put in a container 9 in a vacuum and the surface has a constant film thickness as shown in FIG. Protective film 8 made of polyester
In the third measurement condition covered by, the primary X-rays 2 generated from the X-ray source 1 in FIG. 1 are irradiated, and the generated secondary X-rays 4 are incident on a spectroscope 5 to be separated. The intensity of the fluorescent X-rays 6 generated from the main constituent elements is measured by a detector 7. Here, the intensity of the fluorescent X-ray 6 generated under the first measurement condition is referred to as a reference condition intensity. Then, for each spectrum of the generated fluorescent X-ray 6, the attenuation rate of the intensity of the fluorescent X-ray 6 under the second and third measurement conditions with respect to the reference condition intensity is calculated, and those attenuation rates are stored. .

【0010】例えば、シリコンウエハを標準試料3に用
いたとき、主たる構成元素である珪素から発生するSi
−Kα線6の基準条件強度をIS 、第2の測定条件での
強度をIH 、第3の測定条件での強度をIF とすると、
基準条件強度IS に対する第2および第3の測定条件で
の強度IH ,IF の各減衰率dH ,dF は、それぞれ次
式で表される。 dH =IH /ISF =IF /IS これらの減衰率は、同一のX線源1、分光器5および検
出器7を用いる同一機種の蛍光X線分析装置であれば同
等の数値となり、他の装置にも適用可能である。
For example, when a silicon wafer is used for the standard sample 3, Si generated from silicon as a main constituent element
The reference conditions intensity I S of -Kα line 6, intensity I H of the second measurement condition, when the intensity of the third measurement condition and I F,
The attenuation rates d H and d F of the intensities I H and I F under the second and third measurement conditions with respect to the reference condition intensity I S are expressed by the following equations, respectively. d H = I H / I S d F = I F / I S These decay rates are the same for the same type of fluorescent X-ray analyzer using the same X-ray source 1, spectroscope 5 and detector 7. And can be applied to other devices.

【0011】次に、第1の蛍光X線分析装置と同型であ
って、第1の測定条件での標準強度のみを求めてある第
2の蛍光X線分析装置において、珪素を含み加圧成形し
ても固まりにくい粉末試料13を分析する必要が生じた
とする。成形性が悪く十分に固まっていない分析対象試
料13は、真空中でその試料表面を露出させると飛散し
てしまうので、図2に示すように容器9に入れ、前記第
3の測定条件での強度IF を求めたときと同じ材質およ
び膜厚のポリエステルからなる保護膜8で覆って、真空
中で図1に示した第1の蛍光X線分析装置での測定と同
様に測定し、得られたSi−Kα線6の強度をI2Fとす
る。第2の蛍光X線分析装置であらかじめ求めてあった
Si−Kα線6の標準強度をIS2とすると、ファンダメ
ンタルパラメーター法に用いるべき実測強度i2Fは、次
式で表される強度比として求めることができる。 i2F=(I2F/dF )/IS2
Next, in a second X-ray fluorescence analyzer of the same type as the first X-ray fluorescence analyzer, which obtains only the standard intensity under the first measurement condition, the second X-ray fluorescence analyzer containing silicon is press-formed. Assume that it is necessary to analyze the powder sample 13 which is hard to harden. The sample 13 to be analyzed, which has poor moldability and is not sufficiently hardened, is scattered when the sample surface is exposed in a vacuum. Therefore, the sample 13 is placed in the container 9 as shown in FIG. It was covered with a protective film 8 made of polyester having the same material and thickness as when the intensity IF was obtained, and was measured in vacuum in the same manner as in the first X-ray fluorescence analyzer shown in FIG. The intensity of the obtained Si-Kα ray 6 is defined as I 2F . When the standard strength of Si-K [alpha line 6 had been obtained in advance in the second X-ray fluorescence spectrometer and I S2, the measured intensity i 2F to be used in fundamental parameter method is determined as the intensity ratio represented by the following formula be able to. i 2F = (I 2F / d F ) / I S2

【0012】また、分析対象試料13がヘリウム雰囲気
中で測定すべきものである場合は、ヘリウム雰囲気中で
測定して得られたSi−Kα線6の強度をI2Hとする
と、ファンダメンタルパラメーター法に用いるべき実測
強度i2Hは、同様に次式で表される強度比として求める
ことができる。 i2H=(I2H/dH )/IS2 さらにまた、分析対象試料13がヘリウム雰囲気中でか
つポリエステルからなる保護膜8(図2)で覆って測定
すべきものである場合は、その条件で測定して得られた
Si−Kα線6の強度をI2HF とすると、ファンダメン
タルパラメーター法に用いるべき実測強度i2HF は、同
様に次式で表される強度比として求めることができる。 i2HF =(I2HF /(dH ×dF ))/IS2 以上に分析対象試料13に含まれる元素のうち、珪素に
ついて説明したが、他の元素でも同様である。また、保
護膜には、ポリエステル等の樹脂フィルムのほか、X線
の透過率のよいベリリウム等の金属箔を用いることもで
きる。
When the sample 13 to be analyzed is to be measured in a helium atmosphere, the intensity of the Si-Kα ray 6 obtained by measuring in a helium atmosphere is defined as I 2 H , which is used for the fundamental parameter method. The actual measured intensity i 2H can be similarly obtained as an intensity ratio represented by the following equation. i 2H = (I 2H / d H ) / I S2 Further, when the sample 13 to be analyzed is to be measured in a helium atmosphere and covered with the protective film 8 made of polyester (FIG. 2), the conditions are as follows. Assuming that the intensity of the Si-Kα ray 6 obtained by the measurement is I 2HF , the actually measured intensity i 2HF to be used in the fundamental parameter method can be similarly obtained as an intensity ratio represented by the following equation. i 2HF = (I 2HF / ( d H × d F)) / I S2 above analysis of the elements contained in the target sample 13, has been described silicon is the same in other elements. Further, as the protective film, a metal foil such as beryllium having a good X-ray transmittance can be used in addition to a resin film such as polyester.

【0013】以上のように本実施例によれば、第1の蛍
光X線分析装置において、真空中でその試料3の表面が
露出している第1の測定条件、ヘリウム雰囲気中でその
試料3の表面が露出している第2の測定条件、および真
空中でその試料3の表面が膜厚一定のポリエステルから
なる保護膜8(図2)に覆われている第3の測定条件に
おいて標準試料3を測定し、第1の測定条件において発
生する蛍光X線6の強度に対する第2および第3の測定
条件において発生する蛍光X線6の強度の減衰率dH
F を求めておけば、同型の第2の蛍光X線分析装置に
おいては、第1の測定条件での標準強度しかあらかじめ
求めていなくても、第2、第3、または第2と第3を組
み合わせた測定条件で測定しなければならない分析対象
試料13についても、発生する蛍光X線6の強度を前記
減衰率dH ,dF によって補正してファンダメンタルパ
ラメーター法に用いるべき実測強度を算出するので、容
易かつ正確に元素の含有率が算出できる。
As described above, according to the present embodiment, in the first X-ray fluorescence spectrometer, the first measurement condition under which the surface of the sample 3 is exposed in a vacuum, Under the second measurement condition in which the surface of the sample 3 is exposed, and in the third measurement condition in which the surface of the sample 3 is covered with a protective film 8 (FIG. 2) made of polyester having a constant thickness in a vacuum. 3 and the attenuation rate d H of the intensity of the fluorescent X-rays 6 generated in the second and third measurement conditions with respect to the intensity of the fluorescent X-rays 6 generated in the first measurement condition.
If d F is determined, the second, third or second and third fluorescence X-ray analyzers of the same type can be used even if only the standard intensity under the first measurement condition is determined in advance. For the sample 13 to be measured which needs to be measured under the measurement conditions combining the above, the intensity of the generated fluorescent X-ray 6 is corrected by the decay rates d H and d F to calculate the actually measured intensity to be used in the fundamental parameter method. Therefore, the content of the element can be easily and accurately calculated.

【0014】なお、本実施例が有効であることを示す分
析データを表1に示す。
Table 1 shows analytical data indicating that this embodiment is effective.

【0015】[0015]

【表1】 [Table 1]

【0016】表1は、ある岩石を分析対象試料13とし
て、本実施例の方法により、3種類の測定条件でその成
分含有率(単位%)を算出したもので、測定条件の違い
による誤差がきわめて小さいことが分かる。
Table 1 shows the results obtained by calculating the component content (unit%) of a certain rock as a sample 13 to be analyzed under three kinds of measurement conditions by the method of the present embodiment. It turns out that it is very small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す側面図である。FIG. 1 is a side view showing an embodiment of the present invention.

【図2】本発明の実施例に用いる保護膜で覆われた試料
を示す側面断面図である。
FIG. 2 is a side sectional view showing a sample covered with a protective film used in an example of the present invention.

【符号の説明】[Explanation of symbols]

2…1次X線、3…標準試料、6…蛍光X線、8…保護
膜、13…分析対象試料。
2 ... primary X-ray, 3 ... standard sample, 6 ... fluorescent X-ray, 8 ... protective film, 13 ... sample to be analyzed.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 X線が照射された試料から発生する蛍光
X線の強度に基づいて試料における元素の含有率を算出
する蛍光X線分析方法において、 主たる構成元素が既知で相異なる複数の標準試料につい
て、真空中でその試料表面が露出している第1の測定条
件、不活性ガス雰囲気中でその試料表面が露出している
第2の測定条件、および真空中でその試料表面が保護膜
に覆われている第3の測定条件において、1次X線を照
射して前記主たる構成元素から発生した蛍光X線の強度
を測定し、 その発生した蛍光X線のスペクトルごとに、第1の測定
条件での蛍光X線の強度に対する第2および第3の測定
条件での蛍光X線の強度の減衰率を算出して、それらの
減衰率を記憶しておき、 構成元素の含有率が未知である分析対象試料に、1次X
線を照射して発生した蛍光X線の強度を測定し、 その発生した蛍光X線のスペクトルごとに、その強度
を、その分析対象試料の測定条件に応じて算出されて記
憶された前記減衰率によって補正することを特徴とする
蛍光X線分析方法。
An X-ray fluorescence analysis method for calculating the content of an element in a sample based on the intensity of X-ray fluorescence generated from the sample irradiated with X-rays, the method comprising: For the sample, the first measurement condition in which the sample surface is exposed in vacuum, the second measurement condition in which the sample surface is exposed in an inert gas atmosphere, and the sample surface in vacuum Under the third measurement condition covered by the above, the intensity of the fluorescent X-rays generated from the main constituent elements by irradiating the primary X-rays is measured, and the first X-ray spectra are generated. The decay rate of the intensity of the fluorescent X-ray under the second and third measurement conditions with respect to the intensity of the fluorescent X-ray under the measurement condition is calculated, and those decay rates are stored, and the content rate of the constituent elements is unknown. Primary X
The intensity of the fluorescent X-rays generated by irradiating the X-rays is measured, and for each spectrum of the generated fluorescent X-rays, the intensity is calculated according to the measurement conditions of the sample to be analyzed and stored. X-ray fluorescence analysis.
JP26828694A 1994-10-05 1994-10-05 X-ray fluorescence analysis method Expired - Fee Related JP2645227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26828694A JP2645227B2 (en) 1994-10-05 1994-10-05 X-ray fluorescence analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26828694A JP2645227B2 (en) 1994-10-05 1994-10-05 X-ray fluorescence analysis method

Publications (2)

Publication Number Publication Date
JPH08105849A JPH08105849A (en) 1996-04-23
JP2645227B2 true JP2645227B2 (en) 1997-08-25

Family

ID=17456430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26828694A Expired - Fee Related JP2645227B2 (en) 1994-10-05 1994-10-05 X-ray fluorescence analysis method

Country Status (1)

Country Link
JP (1) JP2645227B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9594037B2 (en) * 2014-05-20 2017-03-14 Horiba, Ltd. Analyzing apparatus and calibration method

Also Published As

Publication number Publication date
JPH08105849A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
Seah Summary of ISO/TC 201 Standard: VII ISO 15472: 2001—surface chemical analysis—x‐ray photoelectron spectrometers—calibration of energy scales
US20190018824A1 (en) Analysis of X-ray spectra using fitting
JP2011099749A (en) Concentration measuring method and x-ray fluorescence spectrometer
JPH05240808A (en) Method for determining fluorescent x rays
EP4105649A1 (en) Quantitative analysis method, quantitative analysis program, and fluorescence x-ray analysis device
JP2848751B2 (en) Elemental analysis method
Bennun et al. Data processing technique for mercury determination by total-reflection X-ray fluorescence, using amalgamation with gold
JP2928688B2 (en) Pollution element analysis method and device
JP3610256B2 (en) X-ray fluorescence analyzer
JP2645227B2 (en) X-ray fluorescence analysis method
JP3291251B2 (en) X-ray fluorescence analyzer
JP6838754B1 (en) X-ray fluorescence analyzer
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JP3569734B2 (en) X-ray fluorescence analyzer
JP2006118941A (en) Electronic probe x-ray analyzer for displaying surface analyzing data
JP3059403B2 (en) X-ray analysis method and apparatus
JP2013205080A (en) Fluorescent x-ray analyzer
RU2240543C2 (en) Method for x-ray fluorescent analysis of elemental composition of substance
JP2645226B2 (en) X-ray fluorescence analysis method
JPH071311B2 (en) Method for peak separation of fluorescent X-ray spectrum
JP4279983B2 (en) X-ray fluorescence analyzer
JP3377328B2 (en) X-ray fluorescence analysis method
JPH08334481A (en) X-ray fluorescent analysis
JPS6170444A (en) Concentration analyzing method in electron ray micro-analysis instrument
JP3069305B2 (en) X-ray fluorescence analysis method and apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees