JPH01251702A - Plastic magnet and manufacture thereof - Google Patents

Plastic magnet and manufacture thereof

Info

Publication number
JPH01251702A
JPH01251702A JP63079566A JP7956688A JPH01251702A JP H01251702 A JPH01251702 A JP H01251702A JP 63079566 A JP63079566 A JP 63079566A JP 7956688 A JP7956688 A JP 7956688A JP H01251702 A JPH01251702 A JP H01251702A
Authority
JP
Japan
Prior art keywords
powder
magnetic
plastic magnet
fluororesin
fluorine resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63079566A
Other languages
Japanese (ja)
Inventor
Tadao Katahira
片平 忠夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63079566A priority Critical patent/JPH01251702A/en
Publication of JPH01251702A publication Critical patent/JPH01251702A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a plastic magnet having excellent heat resistance and corrosion resistance together with magnet characteristic by interposing a specific amount of fluorine resin among magnetic particles made of rare earth alloy or rare earth cobalt alloy, molding it in a magnetic field, then baking it and fusion-bonding fluorine resin powder. CONSTITUTION:Magnetic particles and fluorine resin layer interposed among the particles are provided, and the particles are bonded each other in the layer. The mixing ratio of the magnetic powder to the fluorine resin powder depends upon magnet characteristics and mechanical strength to be required for a product. If the fluorine resin is excess, the magnetic characteristic is reduced, while if it is excessively less, not only its mechanical strength is reduced, but satisfactory molded piece might not be obtained. The most desirable mixing ratio is magnetic powder/fluorine resin powder =55-75/45-25(vol.%). The resin to be used includes PTFE, tetrafluoroethylene-hexafluoropropylene copolymer (FEP).

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、プラスチックまたはゴムに磁性粉末を分散さ
せたプラスチック磁石に関し、詳しくは耐熱性の向上し
たプラスチック磁石とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plastic magnet in which magnetic powder is dispersed in plastic or rubber, and more particularly to a plastic magnet with improved heat resistance and a method for manufacturing the same.

[従来の技術と問題点] プラスチック磁石は次に挙げるような焼結磁石  ・で
は得られない利点を有するため近年需要が著しく伸長し
ている。
[Prior Art and Problems] Plastic magnets have the following advantages that cannot be obtained with sintered magnets, so demand for them has increased significantly in recent years.

(1)複雑薄肉形状のものが容易に得られる、(2)ラ
ジアル異方性のものが容易に得られる、(3)焼結磁石
に比較して脆弱さが少い、(4)量産性に優れる。こと
など 反面プラスチック磁石は磁性粉末を結合する非磁性のプ
ラスチックを加えであるため、その分だけ磁石特性が低
下するのは不可避であり、このことが焼結磁石と比較し
た場合のプラスチック磁石の短所となっている。そして
プラスチック磁石と焼結磁石を比較した時のプラスチッ
ク磁石の欠点として見逃してはならないものとして耐熱
性が挙げられる。これも前記磁石特性と同様磁性粉末を
結合するプラスチックの特性に起因するもので、プラス
チック磁石の用途が限定される要因となっている。
(1) Complex thin-walled shapes can be easily obtained, (2) Radial anisotropy can be easily obtained, (3) Less brittle than sintered magnets, (4) Mass-producible. Excellent in On the other hand, since plastic magnets contain non-magnetic plastic that binds magnetic powder, it is inevitable that the magnetic properties will deteriorate accordingly, and this is a disadvantage of plastic magnets compared to sintered magnets. It becomes. When comparing plastic magnets and sintered magnets, a drawback of plastic magnets that should not be overlooked is heat resistance. This is also due to the characteristics of the plastic that binds the magnetic powder, similar to the magnetic characteristics described above, and is a factor that limits the uses of plastic magnets.

一方で磁石が組み込まれる電気機器の高機能化、高集積
化への要求は増々増大しているため磁石の高性能化への
要求も高くならざるを得ない。
On the other hand, as the demand for higher functionality and higher integration of electrical equipment in which magnets are incorporated is increasing, the demand for higher performance magnets is also increasing.

このような観点からプラスチック磁石を見ると磁石特性
を向上するため、市場は従来のフェライト系からSmC
oを主とした希土類系へと動きつつある。それに伴うよ
うに耐熱性の向上も図られ、。
Looking at plastic magnets from this perspective, the market has shifted from the conventional ferrite type to SmC to improve magnetic properties.
There is a movement towards rare earth metals, mainly o. As a result, heat resistance has also been improved.

従来バインダーとして多用されているナイロン6、ナイ
ロン12よりも高融点を持つポリブチレンテレフタレー
ト(PBT)やポリフェニルサルファイド(PPS)を
ベースポリマーとしたものも市販され始めているが、こ
れらは、例えば熱変形温度のような短時間での評価法の
みを基準としたものであり、長期的な耐熱寿命となると
電気機器に組み込まれる他のプラスチック部品のように
は注意が払われていないのが現状である。
Products based on polybutylene terephthalate (PBT) and polyphenylsulfide (PPS), which have higher melting points than nylon 6 and nylon 12, which are commonly used as binders, have begun to be commercially available. It is based only on short-term evaluation methods such as temperature, and the current situation is that the long-term heat-resistant lifespan does not receive the same attention as other plastic parts incorporated into electrical equipment. .

このことはプラスチック磁石が広く使用され始めてから
日が浅いことと、従来の焼結磁石がキューリー温度以下
の温度での耐熱性はほとんど問題にならなかったことか
ら、機器を設計する側がプラスチック磁石についても同
様に考えていることによると思われる。
This is due to the fact that plastic magnets have only recently been widely used, and the heat resistance of conventional sintered magnets at temperatures below the Curie temperature was hardly a problem. It seems that they are thinking the same way.

プラスチックの長期的な信頼性を考えるについては長期
的な耐熱性を確実に評価する必要があり、たとえばUL
では加熱劣化促進試験のデータをもとに各製品毎に使用
温度を規格化している。
When considering the long-term reliability of plastics, it is necessary to reliably evaluate the long-term heat resistance.
has standardized the operating temperature for each product based on data from accelerated heat deterioration tests.

それによると磁性粉末を含まないナイロンそのものでは
概ね100℃以下、ナイロンより熱変形温度が高いPB
T、PPSでも夫々概ね、120”C,200℃である
。また圧縮成形型プラスチック磁石に多用されているエ
ポキシ樹脂では樹脂そのものが熱硬化型であるため、短
期的な耐熱性は高いものの200℃以上の温度では徐々
に分解が始まり、その使用温度は100℃以下と思われ
る。
According to this, nylon itself without magnetic powder is generally below 100℃, and PB has a higher heat deformation temperature than nylon.
The temperatures for T and PPS are approximately 120"C and 200°C, respectively.Also, in the case of epoxy resin, which is often used in compression-molded plastic magnets, the resin itself is thermosetting, so although it has high short-term heat resistance, it can be heated to 200"C. At temperatures above this, decomposition begins gradually, and the operating temperature is thought to be 100°C or lower.

従って長期的な信頼性という視点では現在市販されてい
るプラスチック磁石の中ではPPSをベースポリマーと
するものが最も優れていると言えるが、これ以上の耐熱
性の要求には現状では対応できない状態である。
Therefore, from the perspective of long-term reliability, it can be said that of the plastic magnets currently on the market, those with a base polymer of PPS are the best, but they cannot currently meet the demands for higher heat resistance. be.

[発明が解決しようとする課題] 前述のようにプラスチック磁石の耐熱性はバインダーと
して使用されるポリマーの耐熱性に左右される。現在市
販されているポリマーでPPSより高い耐熱性を具備し
たものの代表的なものにフッ素樹脂がある。しかしたと
えばポリテトラフルオロエチレン(PTFE)は融点が
327℃と高く、溶融粘度も高いため従来のプラスチッ
ク磁石と同様の工程では成形体を得ることができない。
[Problems to be Solved by the Invention] As mentioned above, the heat resistance of plastic magnets depends on the heat resistance of the polymer used as a binder. Fluororesin is a typical polymer currently available on the market that has higher heat resistance than PPS. However, polytetrafluoroethylene (PTFE), for example, has a high melting point of 327° C. and a high melt viscosity, so it is not possible to obtain a molded body through the same process as conventional plastic magnets.

また上記したPTFBの特性に起因する成形性の低さを
改良するため他のモノマーとの共重合体等も市販されて
いるが、これらは耐熱性の点ではPTFEよりも劣った
ものとなる場合が多い。
In addition, copolymers with other monomers are commercially available to improve the poor moldability caused by the above-mentioned characteristics of PTFE, but these may be inferior to PTFE in terms of heat resistance. There are many.

本発明は斯かる問題点に鑑み、PTFE等のフッ素樹脂
そのものの成形品を得る工程見直しを検討し耐熱性又は
耐食性に優れたプラスチック磁石及びその製造方法を提
供することを目的とする。
In view of such problems, an object of the present invention is to provide a plastic magnet with excellent heat resistance or corrosion resistance, and a method for manufacturing the same, by reviewing the process of obtaining a molded product of fluororesin such as PTFE itself.

[課題を解決するための手段] 本発明によれば、磁性粒子と、この磁性粒子間に介在す
るフッ素樹脂層よりなり、このフッ素樹脂層は、磁性粒
子を互いに結合していることを特徴とするプラスチック
磁石が得られる。
[Means for Solving the Problem] According to the present invention, the magnetic particle is composed of magnetic particles and a fluororesin layer interposed between the magnetic particles, and the fluororesin layer is characterized in that the magnetic particles are bonded to each other. A plastic magnet is obtained.

また本発明によれば、50〜100vol%(100を
含まず)の磁性粉末に0〜50vol%(0を含まず)
のフッ素樹脂粉末を混合する混合工程と、混合された粉
末を圧縮成形し成形体を得る成形工程と、この成形体を
上記フッ素樹脂の融点前後の所定温度を保持し炉中で焼
成することを含む焼成工程とを有し、この焼成工程は、
成形体に含有されたフッ素樹脂粉末を融着することを特
徴とするプラスチック磁石の製造方法が得られる。
Further, according to the present invention, 0 to 50 vol% (not including 0) is added to 50 to 100 vol% (not including 100) of the magnetic powder.
A mixing step of mixing fluororesin powders, a molding step of compression molding the mixed powder to obtain a molded body, and firing this molded body in a furnace while maintaining a predetermined temperature around the melting point of the fluororesin. This firing step includes:
A method for producing a plastic magnet is obtained, which comprises fusing fluororesin powder contained in a molded body.

ここで本発明においては成形工程は、磁場中で行うこと
により磁性粉末を配向させることが望ましい。
Here, in the present invention, it is desirable that the molding step be performed in a magnetic field to orient the magnetic powder.

また、フッ素樹脂粉末の平均粒径は、上記磁性粉末より
小なることが望ましい。
Further, it is desirable that the average particle size of the fluororesin powder is smaller than that of the magnetic powder.

即ち磁性粉末と同等以下のPTFE粉末と磁性粉末を混
合した材料を圧縮成形した後焼成することによりPTF
Eで結合されていることを特徴とするプラスチック磁石
が得られる。
In other words, PTF is created by compression molding a material that is a mixture of PTFE powder and magnetic powder, which is equivalent to or smaller than magnetic powder, and then firing it.
A plastic magnet is obtained which is characterized in that it is bonded by E.

ここで使用されるフッ素樹脂としては前記PTPEの他
にテトラフルオロエチレン−ヘキサフルオロプロピレン
共重合体(FEP)が使用できる。フッ素樹脂として上
記以外に市販されているものとしてはポリクロロトリフ
ルオロエチレン、ポリビニリデンフルオライド、ポリビ
ニルフルオライドなどが挙げられるが、これらは融点が
夫々、212〜217℃、165〜185℃、210〜
230℃と低いため本発明の目的には沿わない。
As the fluororesin used here, in addition to the above-mentioned PTPE, a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) can be used. Commercially available fluororesins other than those listed above include polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride, which have melting points of 212 to 217°C, 165 to 185°C, and 210°C, respectively. ~
Since the temperature is as low as 230°C, it does not meet the purpose of the present invention.

これらのフッ素樹脂は前述のように磁性粉末と混合して
成形することから粉末とし使用することが必要であり、
その粒度は磁性粉末を均一に被覆しなければならないこ
とから、少くとも磁性粉末よりは微細にすることが望ま
しい。
As mentioned above, these fluororesins must be mixed with magnetic powder and molded, so they must be used as powder.
Since the particle size must be uniformly coated with the magnetic powder, it is desirable that the particle size be at least finer than that of the magnetic powder.

また磁性粉末とフッ素樹脂粉末の混合比率は製品に要求
される磁石特性、機械的強度によって異なるが、フッ素
樹脂が多過ぎると磁気特性の低下を招き、少な過ぎると
機械的な強度が低下するばかりか満足な成形体が得られ
ないことがあり、その最も望ましい混合比率は磁性粉末
/フッ素樹脂粉末=55〜75/45〜25(容量va
t%)である。
In addition, the mixing ratio of magnetic powder and fluororesin powder varies depending on the magnetic properties and mechanical strength required for the product, but too much fluororesin will cause a decrease in magnetic properties, and too little will only cause a decrease in mechanical strength. The most desirable mixing ratio is magnetic powder/fluororesin powder = 55-75/45-25 (capacity va.
t%).

次に本発明に使用される磁性粉末について述べる0本発
明には粉末として得られる磁性材料であれば基本的に特
に制限なく使用可能で、たとえば硬質磁性材料としてバ
リウム・フェライト、ストロンチウム・フェライト、希
土預・コバルト、ネオジム・鉄・ホウ素などが挙げられ
、軟質磁性材料としてマンガン・亜鉛・フェライト、パ
ーマロイなどが挙げられる。粉末の粒度は特に規制され
るものではないが混合・成形などの作業性、製品の外観
などを考慮すると平均粒径100μm以下を使用した方
が良いが望ましくは20μm以下である。従って使用さ
れるフッ素樹脂粉末の平均粒径も20μm以下とするの
が好ましい。
Next, the magnetic powder used in the present invention will be described. In the present invention, basically any magnetic material obtained in the form of powder can be used without any particular restrictions. For example, as hard magnetic materials, barium ferrite, strontium ferrite, rare Examples include clay deposits, cobalt, neodymium, iron, and boron, and soft magnetic materials include manganese, zinc, ferrite, and permalloy. The particle size of the powder is not particularly restricted, but considering workability in mixing and molding, appearance of the product, etc., it is better to use an average particle size of 100 μm or less, preferably 20 μm or less. Therefore, it is preferable that the average particle size of the fluororesin powder used is also 20 μm or less.

次に本発明の製造方法について説明する0本発明の製造
方法は原料粉末として前述のようにフッ素樹脂粉末と磁
性粉末の混合物を使用する他は焼結磁石を製造する工程
とほぼ同様で、焼成工程の焼成温度が通常の焼結温度よ
りも低い点で異なる。
Next, the manufacturing method of the present invention will be explained.The manufacturing method of the present invention is almost the same as the process of manufacturing sintered magnets, except that a mixture of fluororesin powder and magnetic powder is used as the raw material powder, as described above. The difference is that the firing temperature of the process is lower than the normal sintering temperature.

またフッ素樹脂粉末と磁性粉末の混合にはヘンシェルミ
キサー、リボンブレンダーなどが使用できる。
Further, a Henschel mixer, a ribbon blender, etc. can be used to mix the fluororesin powder and magnetic powder.

圧縮成形は通常の焼結用圧粉体を製造する装置が使用で
き、異方性磁石を得る場合、圧縮成形を磁場中で行うこ
とも焼結磁石と同様であるが、次工程で磁性粉末の焼結
を行うわけではないのでラジアル異方性のものを得るこ
とも容易である。焼成は炉中で行うが、フッ素樹脂を加
熱すると腐食性のガスを発生することがあるので、特に
磁性粉末が合金系の場合はガスを速やかに除去するため
に真空中で行うことが望ましい。
Compression molding can be performed using equipment that normally produces green compacts for sintering, and when obtaining anisotropic magnets, compression molding can be performed in a magnetic field in the same way as sintered magnets, but in the next step, magnetic powder is Since sintering is not performed, it is easy to obtain a product with radial anisotropy. Firing is performed in a furnace, but since corrosive gas may be generated when the fluororesin is heated, it is desirable to perform the firing in a vacuum to quickly remove the gas, especially if the magnetic powder is an alloy.

[実施例] 本発明の実施例を図面を参照し説明する。[Example] Embodiments of the present invention will be described with reference to the drawings.

実施例1 本発明の実施例1について説明する。第1図は、本発明
の実施例に係るプラスチック磁石の各熱劣化試験温度と
成形体の強度の半減期との関係を示す図である。この図
において強度の半減期とは、成形体、曲げ強度が初期値
の50%となるまでの時間である。直線11は、PTF
E樹脂をバインダとした希土類コバルト磁石(試料1)
減期の温度特性を示す。
Example 1 Example 1 of the present invention will be described. FIG. 1 is a diagram showing the relationship between each thermal deterioration test temperature of a plastic magnet according to an example of the present invention and the half-life of the strength of a molded body. In this figure, the half-life of strength is the time it takes for the bending strength of the molded product to reach 50% of its initial value. Straight line 11 is PTF
Rare earth cobalt magnet using E resin as a binder (sample 1)
Shows the temperature characteristics of the expiration period.

直線33は比較の為に、ナイロンを含有する原料粉末か
ら得られた希土類コバルト磁石(試料2)の強度の半減
期の温度特性を示す。
For comparison, a straight line 33 shows the temperature characteristics of the half-life of the strength of a rare earth cobalt magnet (sample 2) obtained from raw material powder containing nylon.

この図から明らかな様に、実施例1に係るプラスチック
希土類コバルト磁石は耐熱性が極めて優れていることが
判る。
As is clear from this figure, it can be seen that the plastic rare earth cobalt magnet according to Example 1 has extremely excellent heat resistance.

第1表は、本発明の実施例に係るプラスチック磁石の磁
石特性を示す、この表において、第1図と同じく試料l
はPTFEv!1脂をバインダとした希土類コバルト磁
石の磁石特性、また比較の為に、ナイロンをバインダと
した希土類コバルト磁石の磁石特性を試料2として併記
した。
Table 1 shows the magnetic characteristics of the plastic magnet according to the example of the present invention.
is PTFEv! The magnetic properties of a rare earth cobalt magnet using nylon as a binder are also shown as Sample 2 for comparison.

以下弦白 この表から明らかな様に、実施例1に係るプラ  1ス
チック磁石の磁石特性がナイロンをバインダと、 ■し
たものよりも優れていることが判明した。     ′
実施例1に係るプラスチック磁石は、次のよう  f:
に製造された2−17系希土類コバルトのインテ  タ
ラ1−をアルゴン雰囲気で1,180℃で3時間溶体化
、急冷し、800℃で4時間時効、炉冷した。c′この
インゴットをショークラッシャー、ディスク  1ミル
で粗粉砕、ボールミルで微粉砕し、平均粒径  イ17
μmの粉末を得た。この磁性粉末と平均粒径5μmのP
TFEの粉末を重量比で88/12と  遍なるように
秤量してリボンブレンダーで均一になるまで撹拌し、成
形用原料粉末を得た。この原料  f粉末をφ15及び
70nn+X15mなる圧縮成形用  2金型に所要量
充填し、400に(] / ts 2の圧力で成  石
彫し、直径15rm、厚さ10市(第1の圧粉体)及び
樅70市、横15市、厚さ10市(第2の圧粉体)形状
の圧粉体をそれぞれ得た。第1の圧粉体の成形は磁性粉
末を配向させるため18kOeの  l磁場中で行った
1次のこの圧粉体を炉に装入し、  6L O−’To
rr以下となるまで真空引きし、200℃rの速度で3
60℃まで昇温し3時間焼成後約300℃/Hrの速度
で冷却し成形体を得た。焼成灸の収縮率は成形時の圧力
方向には無関係で約6≦であった。第1表は得られた円
筒状の成形体(試料1)で磁石特性を、角柱形状の成形
体で曲r強度を夫々測定した結果である。また第1図の
t線11は角柱状の成形体には加熱劣化促進試験ヒ施し
、曲げ強度の変化の測定結果である。
As is clear from this table, the magnetic properties of the plastic magnet according to Example 1 were found to be superior to those using nylon as a binder. ′
The plastic magnet according to Example 1 has the following f:
A 2-17 rare earth cobalt integral 1 produced in 1997 was solution-treated and rapidly cooled at 1,180°C for 3 hours in an argon atmosphere, aged at 800°C for 4 hours, and then furnace-cooled. c' This ingot was coarsely crushed using a show crusher, a disk 1 mill, and finely crushed using a ball mill to obtain an average particle size of 17
A powder of μm size was obtained. This magnetic powder and P with an average particle size of 5 μm
TFE powder was weighed out so that the weight ratio was 88/12, and stirred with a ribbon blender until it became uniform, to obtain a raw material powder for molding. The required amount of this raw material f powder was filled into two compression molding molds of φ15 and 70 nn + x 15 m, and stone-carved at a pressure of 400 mm (] / ts 2, with a diameter of 15 rm and a thickness of 10 mm (first compact). A green compact with a fir size of 70 cm, a width of 15 cm, and a thickness of 10 cm (second compact) was obtained.The first compact was molded using a magnetic field of 18 kOe to orient the magnetic powder. This primary green compact made in the furnace is charged into a furnace, and
Evacuate until the temperature is below rr, and heat at 200℃r for 3
The temperature was raised to 60°C, fired for 3 hours, and then cooled at a rate of about 300°C/Hr to obtain a molded body. The shrinkage rate of firing moxibustion was approximately 6≦, regardless of the pressure direction during molding. Table 1 shows the results of measuring the magnetic properties of the obtained cylindrical molded body (Sample 1) and the bending r strength of the prismatic molded body. In addition, the t-line 11 in FIG. 1 shows the measurement results of changes in bending strength when the prismatic molded body was subjected to a heating deterioration acceleration test.

比教例に係るプラスチック磁石は次のように製置された
や 実施例−1と同様に調整した希土類コバルトの;)末を
ナイロン12粉末と重量比で93/7とな5ように秤量
、混合し、2軸押用機にて混練後粉ヤして射出成形用の
原料ペレットを得た。
The plastic magnet according to the example was prepared as follows: Rare earth cobalt ; The mixture was mixed, kneaded using a twin-screw extruder, and then ground to obtain raw material pellets for injection molding.

この原料を磁場射出成形機にて成形し、直径15柑、厚
さ10開、fil 70 nun、横15IllI、厚
さ10市なる形状の成形体(試料2)を得た。これ−の
成形体について実施例1に係る試料と同様の式験を行い
、第1表、第1図に結果を示した。
This raw material was molded using a magnetic field injection molding machine to obtain a molded article (sample 2) having a diameter of 15 mm, a thickness of 10 mm, a fill of 70 mm, a width of 15 mm, and a thickness of 10 mm. The same tests as for the sample according to Example 1 were conducted on this molded body, and the results are shown in Table 1 and FIG.

実施例2 本発明の実施例2について説明する。第2図は、本発明
の実施例2に係るプラスチック磁石の各熱劣化試験温度
と成形体の強度の半減期との関係を示す図である。
Example 2 Example 2 of the present invention will be described. FIG. 2 is a diagram showing the relationship between each thermal deterioration test temperature of the plastic magnet according to Example 2 of the present invention and the half-life of the strength of the molded body.

この図において直線12は、PTFEI!!脂をバイン
ダとした希土類プラスチック磁石の強度の半減期の温度
の関係を示す。
In this figure, the straight line 12 indicates PTFEI! ! This figure shows the relationship between the half-life of strength and temperature of rare earth plastic magnets using fat as a binder.

直線34は比較の為に、ナイロンをバインダとした希土
類プラスチック磁石の曲げ強度と温度の関係を示す、こ
の図から明らかな様に、実施例に係るプラスチック希土
類磁石は耐熱性が極めて優れていることが判る。
For comparison, the straight line 34 shows the relationship between the bending strength and temperature of a rare earth plastic magnet using nylon as a binder.As is clear from this figure, the plastic rare earth magnet according to the example has extremely excellent heat resistance. I understand.

第2表は本発明の実施例2に係るプラスチック磁石の磁
石特性を示す、この表において実施例2に係る試料3は
PTFE#M脂をバインダとした希土類プラスチック磁
石の磁石特性を示す、比較の為に、ナイロンをバインダ
とした希土類コバルトプラスチック磁石の磁石特性を試
料4として併記した。
Table 2 shows the magnetic characteristics of the plastic magnet according to Example 2 of the present invention. In this table, Sample 3 according to Example 2 shows the magnetic characteristics of a rare earth plastic magnet using PTFE #M resin as a binder. Therefore, the magnetic properties of a rare earth cobalt plastic magnet using nylon as a binder are also listed as sample 4.

この表から明らかな様に、実施例2に係るプラスチック
磁石の磁石特性がナイロンをバインダと  1したもの
より優れていることがわかる。
As is clear from this table, the magnetic properties of the plastic magnet according to Example 2 are superior to those using nylon as a binder.

実施例2に係るプラスチック磁石は次のように製造され
た。                   (純度9
5%以上のNd、電解鉄、フェロボロン  ′を所定量
秤量しアルゴン雰囲気中高周波加熱によ  Iり溶解し
て鋳込み、31.1wt%Nd−67,9wt%Fe−
1,Ovt%Bなる組成の合金インボッ  6トを得た
。                    )次に、
このインゴットをアルゴン雰囲気中で高  プ周波加熱
により再溶解した後、周速度35M/secで回転する
銅製のロール表面に噴射し、厚さ約30μmの合金薄帯
を得、32メツシユ以下と  4なるまで粉砕し、磁性
粉末を得た。この粉末を実  :雄側−1と同様の方法
でプラスチック磁石(試料  /3)とし、実施例−1
と同様の試験を行い、第24表、第2図に結果を示した
The plastic magnet according to Example 2 was manufactured as follows. (Purity 9
Weighed a predetermined amount of 5% or more Nd, electrolytic iron, and ferroboron, melted and cast it by high-frequency heating in an argon atmosphere, and poured it into 31.1wt%Nd-67, 9wt%Fe-
An alloy ingot 6 having a composition of 1.Ovt%B was obtained. )next,
This ingot was remelted by high frequency heating in an argon atmosphere, and then sprayed onto the surface of a copper roll rotating at a circumferential speed of 35 M/sec to obtain an alloy ribbon with a thickness of approximately 30 μm and a thickness of 32 meshes or less. The powder was ground to obtain magnetic powder. This powder was used as a plastic magnet (sample/3) in the same manner as in Male side-1, and Example-1
A similar test was conducted, and the results are shown in Table 24 and Figure 2.

比較の為に実施例2に係るプラスチック磁石と  ス同
様に調整したNd−Fe−8合金粉末を実施例  雛1
の比較例と同様の方法でプラスチック磁石(試t−14
)とし、実施例−1と同様の試験を行い、第2表、第2
図に結果を示した。
For comparison, the plastic magnet according to Example 2 and the Nd-Fe-8 alloy powder prepared in the same manner as in Example 1 were used.
A plastic magnet (trial T-14) was prepared in the same manner as the comparative example.
), the same test as in Example-1 was conducted, and Table 2,
The results are shown in the figure.

また特にNd−Fe−B基磁性粉末を使用したしのでは
耐食性が非常に問題となるが、実施例−2、比較例で得
られた成形体を65℃、95%(Hという条件で恒温恒
温試験を施したところ500Hrで比較例−2では全面
に赤錆が発生したりに対し、実施例−2では外観にはま
ったく変化fなく、耐食性においても著しい改善が認め
られに。
In addition, corrosion resistance is a serious problem especially when using Nd-Fe-B based magnetic powder, but the molded bodies obtained in Example 2 and Comparative Example were When a constant temperature test was conducted for 500 hours, red rust occurred on the entire surface in Comparative Example 2, whereas in Example 2, there was no change in appearance at all, and a significant improvement in corrosion resistance was observed.

[発明の効果] 以上詳しく説明したように、本発明によれば、トまでの
ナイロンを主流としたプラスチック磁石しりも、磁石特
性はもちろん耐熱性ともにすぐれごプラスチック磁石及
びその製造方法が提供でき5゜ また、本発明によれば耐食性が改善された希土n系プラ
スチック磁石及びその製造方法が提供でさる。
[Effects of the Invention] As explained in detail above, according to the present invention, it is possible to provide a plastic magnet and a method for manufacturing the same, which have excellent heat resistance as well as magnetic properties, even when plastic magnets are mainly made of nylon. Further, according to the present invention, a rare earth n-based plastic magnet with improved corrosion resistance and a method for manufacturing the same are provided.

このように、本発明はプラスチック磁石の信頼性向上に
寄与するところは非常に大であり、工業上極めて有益で
ある。
As described above, the present invention greatly contributes to improving the reliability of plastic magnets, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1に係るプラスチック磁石の曲
げ強度半減期と温度との関係を示す図、第2図は本発明
の実施例2に係るプラスチック磁石の曲げ強度半減期と
温度との関係を示す図である。 第1図 成形体曲げ強度減期 (Hr)
FIG. 1 is a diagram showing the relationship between the bending strength half-life and temperature of a plastic magnet according to Example 1 of the present invention, and FIG. 2 is a diagram showing the relationship between the bending strength half-life and temperature of a plastic magnet according to Example 2 of the present invention. FIG. Figure 1 Bending strength loss of molded product (Hr)

Claims (5)

【特許請求の範囲】[Claims] 1.磁性粒子と、該磁性粒子間に介在するフッ素樹脂層
よりなり、上記フッ素樹脂層は、上記磁性粒子を互いに
結合していることを特徴とするプラスチック磁石。
1. A plastic magnet comprising magnetic particles and a fluororesin layer interposed between the magnetic particles, the fluororesin layer bonding the magnetic particles to each other.
2.上記磁性粒子は希土類合金又は希土類コバルト合金
よりなることを特徴とする第1の請求項記載のプラスチ
ック磁石。
2. The plastic magnet according to claim 1, wherein the magnetic particles are made of a rare earth alloy or a rare earth cobalt alloy.
3.50〜100vol%(100を含まず)の磁性粉
末に0〜50vol%(0を含まず)のフッ素樹脂粉末
を混合する混合工程と、混合された粉末を圧縮成形し成
形体を得る成形工程と、 上記成形体を上記フッ素樹脂の融点前後の所定温度を保
持し炉中で焼成することを含む焼成工程とを有し、 上記焼成工程は、上記成形体に含有された上記フッ素樹
脂粉末を融着することを特徴とするプラスチック磁石の
製造方法。
3. A mixing step of mixing 0 to 50 vol% (not including 0) of fluororesin powder to 50 to 100 vol% (not including 100) of magnetic powder, and a molding process in which the mixed powder is compression molded to obtain a molded body. and a firing step including firing the molded body in a furnace while maintaining a predetermined temperature around the melting point of the fluororesin, and the firing step includes firing the fluororesin powder contained in the molded body. A method for manufacturing a plastic magnet, which comprises fusing together.
4.上記成形工程は、磁場中で行うことにより磁性粉末
を配向させることを特徴とする第3の請求項記載のプラ
スチック磁石の製造方法。
4. 4. The method of manufacturing a plastic magnet according to claim 3, wherein the molding step is performed in a magnetic field to orient the magnetic powder.
5.上記フッ素樹脂粉末の平均粒径は上記磁性粉末より
小なることを特徴とする第4又は第5の請求項記載のプ
ラスチック磁石の製造方法。
5. 5. The method of manufacturing a plastic magnet according to claim 4, wherein the average particle size of the fluororesin powder is smaller than that of the magnetic powder.
JP63079566A 1988-03-31 1988-03-31 Plastic magnet and manufacture thereof Pending JPH01251702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63079566A JPH01251702A (en) 1988-03-31 1988-03-31 Plastic magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63079566A JPH01251702A (en) 1988-03-31 1988-03-31 Plastic magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01251702A true JPH01251702A (en) 1989-10-06

Family

ID=13693558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63079566A Pending JPH01251702A (en) 1988-03-31 1988-03-31 Plastic magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01251702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002287502A (en) * 2001-03-23 2002-10-03 Ricoh Co Ltd Developing roller
JP2007220747A (en) * 2006-02-14 2007-08-30 Sumida Corporation Composite magnetic sheet and method of manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754304A (en) * 1980-09-19 1982-03-31 Seiko Epson Corp Manufacture of permanent magnet
JPS6271201A (en) * 1985-09-25 1987-04-01 Hitachi Metals Ltd Bond magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754304A (en) * 1980-09-19 1982-03-31 Seiko Epson Corp Manufacture of permanent magnet
JPS6271201A (en) * 1985-09-25 1987-04-01 Hitachi Metals Ltd Bond magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002287502A (en) * 2001-03-23 2002-10-03 Ricoh Co Ltd Developing roller
JP2007220747A (en) * 2006-02-14 2007-08-30 Sumida Corporation Composite magnetic sheet and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP3986043B2 (en) Powder magnetic core and manufacturing method thereof
EP0831501B1 (en) Process for producing rare earth bond magnet
EP0249973B1 (en) Permanent magnetic material and method for producing the same
JPH10163055A (en) Manufacture of high electric resistance rare earth permanent magnet
JP2000036403A (en) Rare earth bonded magnet composition, rare earth bonded magnet, and manufacture thereof
Brown et al. The dependence of magnetic properties and hot workability of rare earth-iron-boride magnets upon composition
JP2000348918A (en) Rare earth bonded magnet, composition and manufacture of the same
KR102454806B1 (en) Anisotropic bonded magnet and preparation method thereof
JPH01251702A (en) Plastic magnet and manufacture thereof
JPH05315116A (en) Rare earth magnetic material resin composite material
JPH0521220A (en) Method for producing injection-molded pure iron-sintered soft magnetic material with high residual magnetic flux density
JP3658868B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JPS61184804A (en) Manufacture of bond magnet
JP2002343623A (en) Plastic sheet magnet molded body and manufacturing method therefor
JPH09260170A (en) Manufacture of rare earth bond magnet and composition for rare earth bond magnet
JPH09312207A (en) Composition for rare-earth bonded magnet use, rare-earth bonded magnet and manufacture of rare-earth bonded magnet
WO2023120184A1 (en) Resin composition for bonded magnets and bonded magnets using same
JP3208739B2 (en) Manufacturing method of ferrite particle powder material for bonded magnet
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JPH02123703A (en) Inorganic-polymer bonded magnet and manufacture thereof
JPH05211102A (en) Powder for permanent magnet and permanent magnet
JP2003151809A (en) Method of manufacturing rare-earth magnet
JP3060785B2 (en) Compounding raw materials for manufacturing rare earth bonded magnets
JP3941134B2 (en) Raw material powder for manufacturing bond type permanent magnet and manufacturing method
JPH11283817A (en) Rare earth bonded magnet and composition thereof