JPS6263603A - Formation of metallic colloid by photochemical reaction - Google Patents

Formation of metallic colloid by photochemical reaction

Info

Publication number
JPS6263603A
JPS6263603A JP20275685A JP20275685A JPS6263603A JP S6263603 A JPS6263603 A JP S6263603A JP 20275685 A JP20275685 A JP 20275685A JP 20275685 A JP20275685 A JP 20275685A JP S6263603 A JPS6263603 A JP S6263603A
Authority
JP
Japan
Prior art keywords
colloid
metal
soln
metallic
photochemical reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20275685A
Other languages
Japanese (ja)
Inventor
Motomu Yoshimura
求 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20275685A priority Critical patent/JPS6263603A/en
Publication of JPS6263603A publication Critical patent/JPS6263603A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form stable metallic colloid with the controlled grain size and formation amt. by irradiating light on an aq. soln. of a metallic ion compd. and soln. contg. reducing org. material and protective colloid to induce a reduction reaction by a photochemical reaction. CONSTITUTION:The aq. soln. 1 prepd. by dissolving the metallic ion compd. such as potassium platinichloride, reducing org. material such as ethanol and protective colloid of PVA, etc. is contained into a vessel 2. The light from a light source 3 such as xenon lamp is irradiated via a heat ray absorptive filter 4 on the soln. 1 to induce the photochemical reaction. The above-mentioned metallic ion compd. is thereby reduced to form metallic particles and the particles are held in the colloidal state. A catalyst, etc. can be produced by using noble metal ions as the above-mentioned metallic ions. >=1 kinds of either water soluble polymers and surface active agents are used as the protective colloid. The grain size and formation amt. of the metallic colloid are easily controlled by adjusting the respective component concns. of the above-mentioned soln. and the irradiation light.

Description

【発明の詳細な説明】 C産業上の利用分野〕 この発明は、例えば光化学反応による水分解の触媒とし
て用いらhる金属コロイドの生成方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing metal colloids used as catalysts for water splitting by photochemical reactions, for example.

〔従来の技術〕[Conventional technology]

従来、金属コロイドの生成方法として、金属塩の水溶液
に還元剤と保護コロイド金添加し、その溶液を加熱還流
することにより、金属イオン金付元させて金属微粒子全
析出させると同時jご、析出した金属微杓子金溶液中の
保護コロイドにより被覆することにより、溶液中にて金
属微粒子全析出にコロイド状態に保持させておく方法が
ある。(中尾他、雉彷名:表面、17巻(4号) 、 
279頁(19’i’9年)) 次に、金属コロイド々してロジウム(Rh)コロイドを
生成する場合全列Sこ具体的に説明する。原料としては
塩化ロジウム(Rh C1,・3H20)音用い、保護
コロイドとしてポリビニルアルコール音用いる。
Conventionally, as a method for producing metal colloids, a reducing agent and a protective colloid of gold are added to an aqueous solution of a metal salt, and the solution is heated and refluxed to cause metal ion gold to be attached and all metal fine particles to be precipitated. There is a method in which all precipitated metal particles are kept in a colloidal state in the solution by coating them with a protective colloid in a finely laminated gold solution. (Nakao et al., Kakina: Oboe, Volume 17 (No. 4),
(Page 279 (19'i'9)) Next, a detailed explanation will be given of the entire series S when a rhodium (Rh) colloid is produced as a metal colloid. Rhodium chloride (Rh C1,.3H20) is used as a raw material, and polyvinyl alcohol is used as a protective colloid.

まず、(イ)塩化ロジウムとポリビニルアルコールとを
水に溶解し、こhらの水溶液を作る。
First, (a) rhodium chloride and polyvinyl alcohol are dissolved in water to form an aqueous solution.

(ロ)ば)の水溶液に、水酸化ナトリウム(Nail(
)全黄色透明の溶液になるまで加える。
Add sodium hydroxide (Nail) to the aqueous solution of
) Add until the solution becomes completely yellow and clear.

(ハ)(ロ)の溶液を加熱して黒かつ色の溶液にした後
、室温になるまで冷却する。
(c) The solution in (b) is heated to a black and colored solution, and then cooled to room temperature.

に)ρ→の溶液に室温下で水素ガスを通すことによりロ
ジウムイオンか還元さハてロジウム金属の微粒子が生成
し、溶液は均一の才ま黒色に変化する。
(2) By passing hydrogen gas through the solution of ρ→ at room temperature, rhodium ions are reduced and fine particles of rhodium metal are generated, and the solution becomes uniform and turns black.

(ホ))に)の溶液番ご酢酸を加え中和すると、黒色の
ロジウムコロイド溶液が得らハる。
Add acetic acid to (e)) and neutralize it to obtain a black rhodium colloid solution.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、金属コロイドは以上のように熱反応【ご基づ(方
法で生成さ台ており、反応溶液の温度が高温で一定のた
め、金属コロイrの粒径げ反応温度で決まる値のものし
か$1((’(、任意の値のものを得難いという問題点
が参った。また、金属コロイドの生成量は反応時間に依
存するが、熱反応であるため、その生成量を制御するこ
とが困Pであるという問題点があつ几。
Traditionally, metal colloids have been produced using the thermal reaction method described above, and since the temperature of the reaction solution is constant at a high temperature, the particle size of the metal colloid is only determined by the reaction temperature. $1(('(,The problem is that it is difficult to obtain an arbitrary value.Also, the amount of metal colloid produced depends on the reaction time, but since it is a thermal reaction, the amount of produced metal colloid cannot be controlled. The problem is that it is difficult to use.

この発明は上記のような間順点全解消するTこめになさ
hたもので、金属コロイドの粒径の制御および金属コロ
イドの生成量の制御が容易にできるとともCご、安定な
金属コロイドが得らhる金属コロイドの生成方法を得る
こと全目的とする。
This invention has been made to completely eliminate the above-mentioned problems, and it is possible to easily control the particle size of the metal colloid and the amount of metal colloid produced. The overall objective is to obtain a method for producing metal colloids that yield.

〔問題点を解決するπめの手段〕[Pith measure to solve the problem]

この発明の光化学反応による金属コロイドの生成方法は
、金属イオン化合物を溶解した水溶液と還元性有機物及
び保護コロイドを含有する溶液に光を照射1−で、上記
金属イオン化合物から還元反応1こより金属粒子を生成
するとともGこ、上記有機物により生成1−た金属粉子
がコロイド状仲を保持さ台るようにするものである。
The method of producing a metal colloid by a photochemical reaction of the present invention is to irradiate an aqueous solution in which a metal ion compound is dissolved, a solution containing a reducing organic substance, and a protective colloid with light, and perform a reduction reaction 1 to form metal particles from the metal ion compound. When the metal powder is produced, the metal powder produced by the above-mentioned organic substance is held in a colloidal state.

〔作用〕[Effect]

この発明における金属コロイドの生成、(つ、水溶液中
の金属イオンが光励起さね、光励起された金属イオンが
世元性有機物との反応で′J′f#元さhて金属微粒子
となるとともに、生成した金屑微粒子は保護コロイドで
補覆さhて安定な金属コロイド金形成する。さらに光化
学反応によるものであるので、金属イオン濃度、還元性
有機物及び保護コロイドの種類と量、照射光の強度お時
間等を任意に設定することにより、生成する金属コロイ
ドの粒径及びit?任意Sこ選択できる。
In the production of metal colloids in this invention, metal ions in an aqueous solution are photo-excited, and the photo-excited metal ions react with organic matter to form fine metal particles. The generated fine gold particles are covered with a protective colloid to form stable metal colloid gold.Furthermore, since it is a photochemical reaction, the concentration of metal ions, the type and amount of reducing organic matter and protective colloid, the intensity of the irradiated light, etc. By arbitrarily setting the time and the like, the particle size and size of the metal colloid to be produced can be arbitrarily selected.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。図面
はこの発明にかかわる金属コロイドの生成装置の一実施
例を示す断面構成図で、(Xiは金属イオン化合物を溶
解した水溶液と還元性有機物及び保護コロイド金含有す
る溶液、(2)は溶液(1)を入ハる容器、(3)は溶
液(1)に光を照射するための光源、(4)は熱線吸収
フィルタである。
An embodiment of the present invention will be described below with reference to the drawings. The drawing is a cross-sectional configuration diagram showing one embodiment of the metal colloid generation apparatus according to the present invention, (Xi is a solution containing an aqueous solution in which a metal ion compound is dissolved, a reducing organic substance, and a protective colloid gold, and (2) is a solution ( 1), (3) a light source for irradiating the solution (1) with light, and (4) a heat absorption filter.

この実施例fこおいては、金属イオン化合物として塩化
第2白金酸カリウム、還元性有機物としてエタノール、
保護コロイドとして水溶性ポリマーのポリビニルアルコ
ールを、光源としてfd 500wキセノンランプを用
いた。
In this Example f, potassium chloroplatinate is used as the metal ion compound, ethanol is used as the reducing organic substance,
A water-soluble polymer, polyvinyl alcohol, was used as a protective colloid, and an FD 500W xenon lamp was used as a light source.

まず、10−2モル/lの塩化白金酸カリウム水溶液と
等容量のエタノールとポリビニルアルコール?モ/マー
ユニット濃度換算でICm1モル/lとなるように水溶
液fil を調製する(以下、白金イオン水溶液と記す
)。次に500Wキセノンランプ(3)の光音熱線吸収
フィルタ(41ヲ通して白金イオン水溶液(1)に室温
で2時間照射した。光照射前の白金イオン水溶ifl+
は黄色であったが、黒かつ色に文色し白金コロイドの生
成が認めらhr=。この白金コロイドが政ケ月以上安定
であった。また、この白金コロイド粒子を電子顕微鏡で
観察したところ、粒径は50A前後であった。
First, a 10-2 mol/l potassium chloroplatinate aqueous solution, equal volumes of ethanol, and polyvinyl alcohol? An aqueous solution fil is prepared so as to have an ICm concentration of 1 mol/l in terms of mo/mer unit concentration (hereinafter referred to as platinum ion aqueous solution). Next, the platinum ion aqueous solution (1) was irradiated for 2 hours at room temperature through the photoacoustic heat absorption filter (41) of the 500W xenon lamp (3).
The color was yellow, but it was black with discoloration and formation of platinum colloid was observed. This platinum colloid was stable for more than a month. Further, when the platinum colloid particles were observed using an electron microscope, the particle size was approximately 50A.

この実施例においては、まず光照射により光励起さhz
水溶液(1)中の白金イオンが反応活性な状襲になり、
水溶液ill中のエタノールと反応して還元され白金の
金属微粒子となる。次にこの金属微粒子が速かに水溶液
(11中のポリビニルアルコール番こより被覆さね安定
な白金コロ、イドとなる。
In this example, first, the hz
Platinum ions in the aqueous solution (1) become reactively active,
It reacts with ethanol in the aqueous solution ill and is reduced to become fine metal particles of platinum. Next, the metal fine particles quickly turn into a stable platinum colloid coated with an aqueous solution (polyvinyl alcohol in No. 11).

この方法は光反応であるため、反応溶媒の温度を広範囲
lこわにって任意に設定することが可能であるため、任
意の粒径の白金コロイドか得らハるとともlr、′If
:、照射とともlこ反応が始まり、光照射の停止ととも
に反応が終わるので、光照射時間と光強度により白金コ
ロイドの生成量が容易に制御できる。なお、上記実施例
で灯熱線を遮断する熱線吸収フィルタ(4)ヲ設けであ
るので・熱反応を起さない。しかし、熱線吸収フィルタ
(4)がないと、温度の制御がしlこ(く、コロイドの
生成粒径が不均一になったり、また反応時間の制御もし
に(〈生成量の調節もしにくくなるので、上記の効果を
より高めるには熱線吸収フィルタ等により熱反応を除く
のが望ましい。
Since this method is a photoreaction, it is possible to arbitrarily set the temperature of the reaction solvent over a wide range.
: The reaction starts upon irradiation and ends when the light irradiation stops, so the amount of platinum colloid produced can be easily controlled by adjusting the light irradiation time and light intensity. In addition, since the above embodiment is provided with a heat ray absorption filter (4) that blocks the lamp heat rays, no thermal reaction occurs. However, without the heat ray absorption filter (4), it would be difficult to control the temperature (and the particle size of the colloid produced would be non-uniform, and it would be difficult to control the reaction time (it would be difficult to adjust the amount produced). Therefore, in order to further enhance the above effect, it is desirable to remove the thermal reaction using a heat ray absorption filter or the like.

さらに、生成する金属コロイドの粒径及び物理化学的特
性は金属イオン濃度、還元性有機物及び保護コロイドの
種類と量、並びに照射光の強変と照射時間等に任意に設
定することにより広範に設定できる。
Furthermore, the particle size and physicochemical properties of the metal colloid produced can be set in a wide range by arbitrarily adjusting the metal ion concentration, the type and amount of reducing organic matter and protective colloid, as well as the intensity of the irradiation light and the irradiation time. can.

上記実施例−ごおいては、金属として白金(Pt) ?
例に説明したが、白金に限るものでなく、パラジウム(
Pd)、金(Au)+=ニッケルNi)*イリジウム(
工r)、ロジウム(Rh)、ルテニウム(Ru ) 、
コバルト(CO)+銀(AgLオスミウム(Os)等、
他の金属にも適用できる。また、同時に2種類以上の金
属イオンを、七わらの合金又は混合物としてコロイド化
ができる。なお、触媒としては主に貴金属が使わかるの
で、貴金属1c適用した場合価値が高く、貴金属に適用
するのが望ましい。
In the above embodiments, is platinum (Pt) used as the metal?
As explained in the example, it is not limited to platinum, but palladium (
Pd), gold (Au) + = nickel Ni) * iridium (
rhodium (Rh), ruthenium (Ru),
Cobalt (CO) + silver (AgL osmium (Os), etc.)
Can also be applied to other metals. Moreover, two or more types of metal ions can be simultaneously colloidized as an alloy or mixture. In addition, since noble metals can be mainly used as catalysts, the value is high when noble metals 1c are applied, and it is desirable to apply noble metals.

還元性有機物としてけ遣元力に富むものであわばエタノ
ールに限らず、アルコール、アルデヒド。
Reducing organic substances are highly reactive and include not only ethanol but also alcohols and aldehydes.

アミン等の有機物が適用される。Organic substances such as amines are applied.

保護コロイドとして汀、ポリビニルアルコールに限らず
ポリビニルピロリドン、ポリメチルビニルエーテル等の
水溶性ポリマー又は界面活性剤か適用できる。
As the protective colloid, water-soluble polymers such as silane, polyvinyl alcohol, polyvinyl pyrrolidone, polymethyl vinyl ether, etc., or surfactants can be used.

また、光源としては各金属イオン溶液の吸収波長域の光
を発するレーザー光を用いることも可能である。
Further, as the light source, it is also possible to use a laser beam that emits light in the absorption wavelength range of each metal ion solution.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によhば、金属イオン化合物を
溶解した水溶液と還元性有機物及び保膵コロイドを含有
する溶液に光音照射して、上記金属イオン化合物から遣
元反応により金属粒子を生成するととも1こ、上記有機
物により生成した金属粒子がコロイド状態を保持される
ようにすることにより、金属コロイドの粒径及び生成量
の制御が容易にできるとともに、安定な金属コロイドか
得ら台る効果がある。
As described above, according to the present invention, an aqueous solution in which a metal ion compound is dissolved, a solution containing a reducing organic substance, and a pancreatic colloid are irradiated with light and sound to separate metal particles from the metal ion compound through a radical reaction. 1. By maintaining the colloidal state of the metal particles generated by the organic substance, it is possible to easily control the particle size and the amount of metal colloid generated, and it is also possible to obtain stable metal colloids. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明に係る光化学反応による金属コロイドの
生成装置全示す断面構成図で、図において、(1)?′
i金属イオン金属イオン化合物本溶解と還元性有機物及
び保護コロイドを含有する溶液、(3)け光源である。
The drawing is a cross-sectional diagram showing the entire apparatus for producing metal colloid by photochemical reaction according to the present invention, and in the drawing, (1)? ′
(i) A solution containing a main dissolution of metal ions and metal ion compounds, a reducing organic substance, and a protective colloid; (3) a light source;

Claims (3)

【特許請求の範囲】[Claims] (1)金属イオン化合物を溶解した水溶液と還元性有機
物及び保護コロイドを含有する溶液に光を照射して、上
記金属イオン化合物から還元反応により金属粒子を生成
するとともに、上記有機物により生成した金属粒子がコ
ロイド状態を保持されるようにした光化学反応による金
属コロイドの生成方法。
(1) Light is irradiated to an aqueous solution in which a metal ion compound is dissolved and a solution containing a reducing organic substance and a protective colloid to generate metal particles from the metal ion compound through a reduction reaction, and metal particles generated from the organic substance. A method of producing metal colloids through a photochemical reaction that maintains the colloidal state of metal colloids.
(2)金属イオン化合物は貴金属イオン化合物である特
許請求の範囲第1項記載の光化学反応による金属コロイ
ドの生成方法。
(2) The method for producing a metal colloid by a photochemical reaction according to claim 1, wherein the metal ion compound is a noble metal ion compound.
(3)保護コロイドけ水溶性ポリマー及び界面活性剤の
いずれか一種以上である特許請求の範囲第1項又は第2
項に記載の光化学反応による金属コロイドの生成方法。
(3) Claims 1 or 2 include one or more of a protective colloid, a water-soluble polymer, and a surfactant.
A method for producing a metal colloid by a photochemical reaction as described in .
JP20275685A 1985-09-12 1985-09-12 Formation of metallic colloid by photochemical reaction Pending JPS6263603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20275685A JPS6263603A (en) 1985-09-12 1985-09-12 Formation of metallic colloid by photochemical reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20275685A JPS6263603A (en) 1985-09-12 1985-09-12 Formation of metallic colloid by photochemical reaction

Publications (1)

Publication Number Publication Date
JPS6263603A true JPS6263603A (en) 1987-03-20

Family

ID=16462647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20275685A Pending JPS6263603A (en) 1985-09-12 1985-09-12 Formation of metallic colloid by photochemical reaction

Country Status (1)

Country Link
JP (1) JPS6263603A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239535A (en) * 1988-03-22 1989-09-25 Nippon Telegr & Teleph Corp <Ntt> Production of fine metal particle-added matrix
JP2005097718A (en) * 2003-05-13 2005-04-14 Yasuro Niitome Method for manufacturing metal nano-rod and use thereof
US7297448B2 (en) * 2000-05-23 2007-11-20 Aprilis, Inc. Data storage medium comprising colloidal metal and preparation process thereof
JP2008031554A (en) * 2006-06-30 2008-02-14 Ne Chemcat Corp Process for producing metal nanoparticle and metal nanoparticle produced by the process
US8167972B2 (en) 2006-06-30 2012-05-01 N.E. Chemcat Corporation Process for producing metal nanoparticle and metal nanoparticle produced by the process
US8182574B2 (en) 2003-09-05 2012-05-22 Mitsubishi Materials Corporation Metal fine particles, composition containing the same, and production method for producing metal fine particles
CN102990077A (en) * 2012-12-24 2013-03-27 中国科学院新疆理化技术研究所 Method for growing bismuth nanoparticles on oxide substrate in situ
CN113523297A (en) * 2021-07-13 2021-10-22 广州萃普生物科技有限公司 Method for preparing nano-silver by using peony extract

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239535A (en) * 1988-03-22 1989-09-25 Nippon Telegr & Teleph Corp <Ntt> Production of fine metal particle-added matrix
JP2717171B2 (en) * 1988-03-22 1998-02-18 日本電信電話株式会社 Method for producing matrix containing metal fine particles
US7297448B2 (en) * 2000-05-23 2007-11-20 Aprilis, Inc. Data storage medium comprising colloidal metal and preparation process thereof
JP2005097718A (en) * 2003-05-13 2005-04-14 Yasuro Niitome Method for manufacturing metal nano-rod and use thereof
JP4636454B2 (en) * 2003-05-13 2011-02-23 三菱マテリアル株式会社 Manufacturing method and use of metal nanorods
US8182574B2 (en) 2003-09-05 2012-05-22 Mitsubishi Materials Corporation Metal fine particles, composition containing the same, and production method for producing metal fine particles
JP2008031554A (en) * 2006-06-30 2008-02-14 Ne Chemcat Corp Process for producing metal nanoparticle and metal nanoparticle produced by the process
US8167972B2 (en) 2006-06-30 2012-05-01 N.E. Chemcat Corporation Process for producing metal nanoparticle and metal nanoparticle produced by the process
CN102990077A (en) * 2012-12-24 2013-03-27 中国科学院新疆理化技术研究所 Method for growing bismuth nanoparticles on oxide substrate in situ
CN113523297A (en) * 2021-07-13 2021-10-22 广州萃普生物科技有限公司 Method for preparing nano-silver by using peony extract

Similar Documents

Publication Publication Date Title
Harada et al. Nucleation and aggregative growth process of platinum nanoparticles studied by in situ quick XAFS spectroscopy
JP4125820B2 (en) Method for producing a catalyst for producing vinyl acetate
JP3312342B2 (en) Composite supporting metal particles and / or metal compound particles, and method for producing the same
JPS6263603A (en) Formation of metallic colloid by photochemical reaction
EP2735390B1 (en) Suspension of nanoparticles of gold or of metal from the group of platin, apparatus and method for the manufacture thereof.
DE1795089A1 (en) Photopolymerization process
JP2005343782A5 (en)
EP1283274A2 (en) Chlorine-free platinum and platinum alloy powder with increased specific surface area and nitrate melting process for making the same
JPH06102146B2 (en) Method for producing metal colloid by photochemical reaction
JP4903932B2 (en) Method for producing binary metal particle colloidal dispersion
Harada et al. In Situ Quick X-ray Absorption Fine Structure and Small-Angle X-ray Scattering Study of Metal Nanoparticle Growth in Water-in-Oil Microemulsions during Photoreduction
JPS59120249A (en) Preparation of noble metal catalyst
JPH02301483A (en) Metastable metal colloid and its manufacture
Kvitek et al. Physicochemical aspects of metal nanoparticle preparation
JPH0724318A (en) Silver-containing fine alloy particles for catalyst and production thereof
JPS621826A (en) Precipitating method for metal
JP2002177775A (en) Visible ray reaction type photocatalyst and manufacturing method thereof
US20200353539A1 (en) Method of producing silver nanoparticles
Fauzia et al. Gold mesocauliflowers as catalyst for the hydrogenation of acetone to isopropanol
DE1533102A1 (en) Process for the production of finely divided platinum metals
US4450225A (en) Silver halide emulsion prepared by converting silver phosphate
Belloni et al. Metal clusters and nanomaterials
JP2020158799A (en) Manufacturing method of noble metal hydrosol
JP2684413B2 (en) Method for preparing ultrafine gold particles
JPS61107937A (en) Preparation of noble metal organosol