JPS6263433A - Method for forming semiconductor nitride layer - Google Patents

Method for forming semiconductor nitride layer

Info

Publication number
JPS6263433A
JPS6263433A JP19190786A JP19190786A JPS6263433A JP S6263433 A JPS6263433 A JP S6263433A JP 19190786 A JP19190786 A JP 19190786A JP 19190786 A JP19190786 A JP 19190786A JP S6263433 A JPS6263433 A JP S6263433A
Authority
JP
Japan
Prior art keywords
implanted
film
heat treatment
nitride film
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19190786A
Other languages
Japanese (ja)
Other versions
JPS6258144B2 (en
Inventor
Kazuo Kajiwara
梶原 和夫
Tetsunosuke Yanada
簗田 鉄之助
Takanori Hayafuji
早藤 貴範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP19190786A priority Critical patent/JPS6263433A/en
Publication of JPS6263433A publication Critical patent/JPS6263433A/en
Publication of JPS6258144B2 publication Critical patent/JPS6258144B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form a silicon nitride film at a relatively low temperature in a short time, by introducing iron ions or halogen ions in one main surface of a semiconductor substrate, contacting the main surface with a gas including nitrogen, and performing heat treatment. CONSTITUTION:Fe<+> 2 is implanted in the surface of an Si wafer 1 at 100keV and at a dose amount of 1X10<16>cm<-2>. The device is annealed in an nitrogen atmosphere at 1,200 deg.C for a specified time. Then Si surface is directly converted into a silicon nitride film 3. The nitride film having a sufficient film thickness can be formed by the reaction accelerating activity owing to the implanted Fe<+>. After the ion implantation of the Fe<+>2, a heat treatment is performed at a relatively low temperature for a short time in the nitrogen atmosphere. At this time, the nitriding reaction does not occur, and a composite body of Si-Fe is formed during this time. Thereafter, the nitriding reaction is accelerated by the heat treatment at a high temperature. As the implanted ions, Fe<+> is used, but other ion seeds can be used. Halogen (e.g., Cl) can be used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体窒化物層の形成方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a semiconductor nitride layer.

〔発明の概要〕[Summary of the invention]

本発明は、半導体窒化物層の形成方法において、半導体
基体に鉄イオン或いはハロゲンイオンを導入して窒素含
有基体に接触させながら熱処理することによって、半導
体基体の所定領域に保護安定性などが優れた窒化物層を
容易に形成することができるようにしたものである。
The present invention provides a method for forming a semiconductor nitride layer, in which iron ions or halogen ions are introduced into a semiconductor substrate and heat treated while contacting with a nitrogen-containing substrate, thereby providing excellent protection stability in a predetermined region of the semiconductor substrate. This makes it possible to easily form a nitride layer.

〔従来の技術及び発明が解決しようとする問題点〕VL
SI  (超大規模集積回路)の開発は、夫々の素子の
寸法サイズを縮小することにより著しい速さで進められ
ている。このVLS Iにおける縦方向のサイズは横方
向のサイズと同様に考慮されなければならないが、近い
将来は、MO5型トランジスタのゲート絶縁膜の厚みと
して、ショートチャンネル効果を除去して、Vthを安
定化させる等のために100人程度の値が要求される。
[Problems to be solved by conventional technology and invention] VL
The development of SI (very large scale integrated circuits) is proceeding at a significant pace by reducing the dimensional size of each component. The vertical size of this VLSI must be considered in the same way as the horizontal size, but in the near future, the thickness of the gate insulating film of MO5 type transistors will be used to eliminate the short channel effect and stabilize Vth. Approximately 100 people are required in order to

しかしながら、このようにゲート酸化膜としての5i(
h膜を薄くすると、次の点で不都合な問題を生じてしま
う。
However, in this way, 5i (
If the h-film is made thinner, the following disadvantages arise.

(1)、100人のSiO2膜ではリン処理等の安定化
処理ができないので、汚染防止のためのマスフ作用がな
く、保護膜又は安定化膜として役立たない。
(1) 100's SiO2 film cannot be subjected to stabilization treatment such as phosphorus treatment, so it does not have a masking effect to prevent contamination and is not useful as a protective film or a stabilizing film.

(2)、膜厚が薄いので、ピンホールや膜厚の不均一さ
が顕著となり、製造技術上の問題が残る。
(2) Since the film thickness is thin, pinholes and non-uniformity of the film thickness become noticeable, and problems in terms of manufacturing technology remain.

(3)、5iOt膜とゲート電極との反応によってゲー
ト酸化膜の厚さが更に減少し、トンネル効果のためにゲ
ート電極と半導体基板との間が導通してしまう。
(3) The thickness of the gate oxide film is further reduced due to the reaction between the 5iOt film and the gate electrode, and conduction occurs between the gate electrode and the semiconductor substrate due to the tunnel effect.

こうした状況下で、半導体業界ではSin、膜に代わる
ゲート絶縁膜を模索しているが、現在のところ適切な材
料が見出されていない。他方5iJa II!は、CV
D法による場合にはメモリ作用が生じるのでメモリトラ
ンジスタとして使用されているが、これはその膜質が良
(ないからである、また、Siをそのまま窒化すること
により5iJ4膜を形成する方法があるが、実用的温度
と時間では、得られるSi+Naの膜厚はせいぜい50
人程度にしかならず、上述した欠点を回避し得ない。
Under these circumstances, the semiconductor industry is searching for a gate insulating film to replace the Si film, but no suitable material has been found so far. On the other hand 5iJa II! is, CV
When using the D method, a memory effect occurs and it is used as a memory transistor, but this is because the film quality is not good.Also, there is a method of forming a 5iJ4 film by nitriding Si as it is. , at a practical temperature and time, the thickness of the Si+Na film obtained is at most 50
However, the above-mentioned disadvantages cannot be avoided.

Si3N、等の窒化シリコン(St、 N、 )はSt
鵠膜に代わるゲート絶縁膜としての有力候補であるが、
上記のように、特にその製造方法に難があり、実用化さ
れるには至っていない。
Silicon nitride (St, N, ) such as Si3N is St
Although it is a promising candidate as a gate insulating film to replace the mucus film,
As mentioned above, there are difficulties in the manufacturing method, and it has not yet been put into practical use.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、比較的低温、短時間で容易に窒化シリコン膜
を形成する方法を提供するものである。
The present invention provides a method for easily forming a silicon nitride film at a relatively low temperature and in a short time.

即ち、本発明は、半導体基体の一主面側に鉄イオン或い
はハロゲンイオンを導入する工程と、前記主面側を窒素
含有気体(ここで「含有」とは、窒素100%の場合の
他、窒素を一成分とする混合ガス、更には窒素化合物の
ガスをも意味している、)に接触させながら熱処理を行
い、これによって前記半導体基体の前記主面側の所定領
域を窒化物に変換させる工程とを有することを特徴とす
る半導体窒化物層の形成方法に係るものである。
That is, the present invention includes a step of introducing iron ions or halogen ions to one main surface side of a semiconductor substrate, and a step of introducing a nitrogen-containing gas (here, "containing" means 100% nitrogen) to the main surface side. A heat treatment is performed while in contact with a mixed gas containing nitrogen as one component (which also means a nitrogen compound gas), thereby converting a predetermined region on the main surface side of the semiconductor substrate into nitride. The present invention relates to a method for forming a semiconductor nitride layer, the method comprising the steps of:

〔実施例〕〔Example〕

以下、本発明の実施例を図面に付き述べる。 Embodiments of the present invention will be described below with reference to the drawings.

この例ではまず第1A図のように、Stウェハ1の表面
に100keVのFe” 2をI X 10 ”as−
”(7)ドーズ量で注入し、窒素雰囲気中で1200℃
で所定時間アニールし、第1B図のようにSt裏表面直
接窒化シリコン膜3に変換された。この例では、注入さ
れたFe”による反応促進作用で十分な膜厚の窒化膜が
形成可能であった。
In this example, first, as shown in FIG.
(7) Implant at a dose of 1200℃ in a nitrogen atmosphere.
After annealing for a predetermined time, the St back surface was directly converted into a silicon nitride film 3 as shown in FIG. 1B. In this example, a sufficiently thick nitride film could be formed due to the reaction promotion effect of the implanted Fe''.

なお、Fe” 2のイオン注入後に、比較的低温でかつ
短い時間(例えば900℃、30分間)窒素雰囲気中で
熱処理を行なうと、このときには窒化反応は起らず、そ
の間に5t−Feの複合体が形成される。そして、その
後の高温での熱処理(例えば1200℃)によって窒化
反応が促進される。
Note that if heat treatment is performed in a nitrogen atmosphere at a relatively low temperature and for a short period of time (for example, 900°C for 30 minutes) after ion implantation of Fe"2, the nitriding reaction will not occur, and the 5t-Fe composite will be formed during that time. A subsequent heat treatment at high temperature (for example, 1200° C.) accelerates the nitriding reaction.

この場合、Pe” ’lをマスク利用下に注入すること
により、或いはイオンビーム・リソグラフィーで注入す
ることにより、選択的に注入領域を形成できる。従って
、任意の場所を選択的に窒化することができる。
In this case, the implanted region can be selectively formed by implanting Pe"'l using a mask or by ion beam lithography. Therefore, it is possible to selectively nitride any location. can.

上述のように、Stを効果的に窒化シリコンに変換でき
るために、Singに代用し得る窒化シリコン膜を確実
に形成することができる。この窒化シリコン膜として1
00人程程度薄いものから1500人程度程度いものま
で任意に形成でき、また保護安定化作用がよ<1.ピン
ホールや膜厚均一性の面でも優れたものが得られてVL
S Iのゲート絶縁膜に好適となる他、絶縁膜としての
一般の特性も良好である。また膜質的にも良質であり、
形成容易な窒化シリコン膜を提供できる。
As described above, since St can be effectively converted into silicon nitride, a silicon nitride film that can be substituted for Sing can be reliably formed. As this silicon nitride film, 1
It can be formed arbitrarily from a thickness of about 0.000 mm to a thickness of about 1500 mm, and has a protective and stabilizing effect of <1.00 mm. Excellent results were obtained in terms of pinholes and film thickness uniformity, resulting in VL
In addition to being suitable as a gate insulating film for SI, it also has good general characteristics as an insulating film. It also has good film quality,
A silicon nitride film that is easy to form can be provided.

但、Fe”又はFe原子は通常、半導体素子では有害な
作用を有することがあるが、この場合にはこれ迄種々考
慮されてきたゲッタリング処理(ウェハ裏面のリンドー
プによるゲッタリング、ウェハ表面に塩素含有ガスを流
して塩化鉄として除去する方法)によって、プロセス最
終段階でFeを除去すればよい。
However, Fe'' or Fe atoms usually have a harmful effect on semiconductor devices, but in this case, various gettering treatments have been considered (gettering by phosphorus doping on the back side of the wafer, chlorine doping on the front side of the wafer, etc.). Fe may be removed at the final stage of the process by a method in which Fe is removed as iron chloride by flowing the contained gas.

上述の例では注入するイオンとしてPe”を使用したが
、他のイオン種も注入可能であり、上述と同様の効果が
得られることが分っている。この他のイオン種としては
、ハロゲン(例えばCI)が使用可能である。また、上
述の例でアニール時に使用した窒素に代えて、NH3や
NtHa等の窒素を−成分とするガスを使用してもよい
。また、イオン注入すべき領域が薄くて例えば100人
程程度場合には、この領域中にイオン注入することは低
加速条件下でも難しいので、上述のイオン注入に代えて
Fe・を含むガス(例えばPeC1zを含む窒素)を流
すことにより、SiO□膜中にFe”を注入又はドープ
するようにしてもよい。
In the above example, Pe'' was used as the ion to be implanted, but it is known that other ion species can also be implanted and the same effect as described above can be obtained. Other ion species include halogen ( For example, CI) can be used.Furthermore, instead of the nitrogen used during annealing in the above example, a gas containing nitrogen as a negative component, such as NH3 or NtHa, may be used. If the area is thin and there are about 100 people, for example, it is difficult to implant ions into this area even under low acceleration conditions, so instead of the above-mentioned ion implantation, a gas containing Fe (for example, nitrogen containing PeC1z) is flowed. Accordingly, Fe'' may be implanted or doped into the SiO□ film.

また、使用可能な半導体基体はSiウェハでなくGeウ
ェハなどの他の半導体基体であってもよい。
Moreover, the semiconductor substrate that can be used is not a Si wafer but may be another semiconductor substrate such as a Ge wafer.

第1図の工程において、イオン種を様々なドーズ量でS
t裏表面直接イオン注入した後、アニールを施した場合
に、下記第1表に示す結果が得られた。
In the process shown in Figure 1, ion species are added to S at various doses.
When annealing was performed after direct ion implantation on the back surface, the results shown in Table 1 below were obtained.

(以下余白、次頁につづく。) 第1表 *窒素の特性X線スペクトルNKα(波長31.6人)
この結果から、Fe”についてはドーズ量の増加に伴っ
て窒化膜生成量が増えていることが分る。
(The following margins are continued on the next page.) Table 1 * Characteristic X-ray spectrum of nitrogen NKα (wavelength 31.6)
From this result, it can be seen that the amount of nitride film produced increases with the increase in the dose of Fe''.

また、イオン注入によるダメージ量は質量数に比例する
にも拘らず、CI”とAr” とではダメージ量(f置
数)と窒化量とが逆になっている。このことは、注入に
よるダメージ量と窒化量とは対応せず、イオン種による
窒化反応効果の相違が反応に寄与しているのではないか
と推定される。
Further, although the amount of damage caused by ion implantation is proportional to the mass number, the amount of damage (number of f) and the amount of nitridation are opposite between CI'' and Ar''. This suggests that the amount of damage caused by implantation does not correspond to the amount of nitriding, and that differences in nitriding reaction effects depending on the ion species contribute to the reaction.

また注入イオンの濃度については、アニール後にSt裏
表面残存している注入原子の割合が多い程、窒化膜生成
量が多くなることが分っている。つまり、Siウェハに
直接イオン注入する場合、注入原子の残存率はFe”8
2%>CI”56%>Ar”20%となっており、これ
に応じて窒化膜厚はFe”では750人、CI”では4
90人、Ar’″では355人となることが確認された
Regarding the concentration of implanted ions, it has been found that the greater the proportion of implanted atoms remaining on the St back surface after annealing, the greater the amount of nitride film produced. In other words, when directly implanting ions into a Si wafer, the remaining rate of implanted atoms is Fe”8
2%>CI"56%>Ar"20%, and accordingly, the nitride film thickness is 750 for Fe" and 4 for CI".
It was confirmed that there were 90 people, and 355 people in Ar'''.

〔発明の効果〕〔Effect of the invention〕

上述のような構成の本発明によれば、半導体基体の一主
面側の所定領域に窒化物層を容易に形成でき、またこの
窒化物層は保護安定性がよく、ピンホールや膜厚均一性
の面でも優れ、VLSIのゲート絶縁膜に好適となる他
、絶縁膜としての一般の特性も良好であり、また膜質的
にも良質である。
According to the present invention configured as described above, a nitride layer can be easily formed in a predetermined region on one main surface side of a semiconductor substrate, and this nitride layer has good protection stability and is free from pinholes and uniform film thickness. It is excellent in terms of properties and is suitable for gate insulating films of VLSIs, and has good general properties as an insulating film, and is also of good film quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図及び第1B図は本発明の一実施例による方法を
順次示す断面図である。 なお図面に用いた符号において、 1−・−−−−−−m−・−・−5iウェハ2−−−−
−−−−−−−−−・−−−−−1” e ”3−−−
−−一・−一−−−−−−−−−−窒化シリコン膜であ
る。
1A and 1B are cross-sectional views sequentially illustrating a method according to an embodiment of the present invention. In addition, in the symbols used in the drawings, 1-・-------m-・-・-5i wafer 2----
−−−−−−−−−・−−−−−1” e ”3−−−
--1.-1-----Silicon nitride film.

Claims (1)

【特許請求の範囲】[Claims] 半導体基体の一主面側に鉄イオン或いはハロゲンイオン
を導入する工程と、前記主面側を窒素含有気体に接触さ
せながら熱処理を行い、これによって前記半導体基体の
前記主面側の所定領域を窒化物に変換させる工程とを有
することを特徴とする半導体窒化物層の形成方法。
A step of introducing iron ions or halogen ions to one main surface side of the semiconductor substrate, and performing heat treatment while bringing the main surface side into contact with a nitrogen-containing gas, thereby nitriding a predetermined region on the main surface side of the semiconductor substrate. 1. A method for forming a semiconductor nitride layer, comprising the step of converting it into a substance.
JP19190786A 1986-08-16 1986-08-16 Method for forming semiconductor nitride layer Granted JPS6263433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19190786A JPS6263433A (en) 1986-08-16 1986-08-16 Method for forming semiconductor nitride layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19190786A JPS6263433A (en) 1986-08-16 1986-08-16 Method for forming semiconductor nitride layer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9083780A Division JPS5715425A (en) 1980-07-03 1980-07-03 Method for forming semiconductor nitride layer

Publications (2)

Publication Number Publication Date
JPS6263433A true JPS6263433A (en) 1987-03-20
JPS6258144B2 JPS6258144B2 (en) 1987-12-04

Family

ID=16282431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19190786A Granted JPS6263433A (en) 1986-08-16 1986-08-16 Method for forming semiconductor nitride layer

Country Status (1)

Country Link
JP (1) JPS6263433A (en)

Also Published As

Publication number Publication date
JPS6258144B2 (en) 1987-12-04

Similar Documents

Publication Publication Date Title
US4266985A (en) Process for producing a semiconductor device including an ion implantation step in combination with direct thermal nitridation of the silicon substrate
US6858488B2 (en) CMOS performance enhancement using localized voids and extended defects
JPH0536917A (en) Manufacture of complementary semiconductor device
US5219773A (en) Method of making reoxidized nitrided oxide MOSFETs
JPS63166220A (en) Manufacture of semiconductor device
US4857480A (en) Method for diffusing P-type material using boron disks
JPS6263433A (en) Method for forming semiconductor nitride layer
JPS6235266B2 (en)
JP2527545B2 (en) Method for manufacturing semiconductor device
JPS6223452B2 (en)
JPS5759381A (en) Manufacture of semicondutor device
JPH03265172A (en) Manufacture of semiconductor device
JPS601862A (en) Manufacture of semiconductor device
JPH01303727A (en) Impurity gettering process
JPH04251939A (en) Semiconductor device and manufacture thereof
JPS60227416A (en) Annealing method of semiconductor substrate
JPS6356916A (en) Manufacture of semiconductor device
JPH0567579A (en) Manufacture of semiconductor device
JPS63307724A (en) Manufacture of semiconductor integrated circuit
JPS59171162A (en) Manufacture of insulated gate field effect transistor
JPH0131291B2 (en)
JPH03248419A (en) Semiconductor production device
JPS6148791B2 (en)
JPH03218638A (en) Manufacture of semiconductor device
JPH03248420A (en) Manufacture of semiconductor device