JPH01303727A - Impurity gettering process - Google Patents

Impurity gettering process

Info

Publication number
JPH01303727A
JPH01303727A JP13494188A JP13494188A JPH01303727A JP H01303727 A JPH01303727 A JP H01303727A JP 13494188 A JP13494188 A JP 13494188A JP 13494188 A JP13494188 A JP 13494188A JP H01303727 A JPH01303727 A JP H01303727A
Authority
JP
Japan
Prior art keywords
gettering
regions
ion
source
insulating films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13494188A
Other languages
Japanese (ja)
Inventor
Akiyoshi Yamamori
山守 秋喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13494188A priority Critical patent/JPH01303727A/en
Publication of JPH01303727A publication Critical patent/JPH01303727A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To reduce the fluctuation in electrical properties by a method wherein a strain layer is formed by ion-implantation into the surface and inside of a semiconductor substrate excluding any semiconductor element parts. CONSTITUTION:After forming field oxide films 2 in specified regions, gate insulating films 3 are formed. Next, after forming gate electrodes 4 and then source.drain regions 5 by ion-implantation, masks 7 are formed in transistor regions while a region 6 excluding the element formation regions is implanted with silicon ion to form a strain layer 8 and then the masks are removed. Simultaneously with the annealing process to form the source.drain regions 8, gettering process is performed to form insulating films 9 and after removing a part of insulating films 9, aluminum wirings 10 are formed to complete a MOS transistor. Through these procedures, the gettering process can be easily performed on the way of manufacturing the semiconductor device as necessary so that the fluctuation in electrical properties may be reduced enabling the semiconductor device in high reliability to be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体基板の不純物ゲッタリングに関し、特
に、イオン注入を用いたゲッタリング法に関している。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to impurity gettering of a semiconductor substrate, and particularly to a gettering method using ion implantation.

〔従来の技術〕[Conventional technology]

従来、半導体基板のゲッタリング方法としては、サンド
ブラスト、レーザ光照射、イオン注入等による半導体基
板裏面への歪層の形成や、CZシリコン単結晶中に含ま
れた過飽和の酸素が熱処理により内部欠陥としてシリコ
ン基板中に発生することを利用したイントリンシック・
ゲッタリング法がある。
Conventional gettering methods for semiconductor substrates include forming a strained layer on the back surface of the semiconductor substrate by sandblasting, laser beam irradiation, ion implantation, etc., and removing supersaturated oxygen contained in the CZ silicon single crystal as internal defects through heat treatment. Intrinsic technology that utilizes the phenomenon that occurs in silicon substrates
There is a gettering method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のゲッタリング法は、素子形成前に、ゲッ
タリング処理を施すのが一般的である。
In the conventional gettering method described above, gettering processing is generally performed before element formation.

その理由は、■裏面歪層ゲッタリング法においては、裏
面処理中に、素子部が形成される表面に損傷を与えなく
行うことが困難であることおよび■イントリンシックゲ
ッタリングにおいては、内部欠陥発生のために長時間(
10〜20時間)の熱処理が必要であり、素子形成プロ
セス中にこの処理を行うことは不可能であるという2点
である。
The reason for this is: ■ In the backside strain layer gettering method, it is difficult to perform backside processing without damaging the surface on which the element part is formed, and ■ In the intrinsic gettering method, internal defects occur. for a long time (
Two points are that a heat treatment (10 to 20 hours) is required, and that it is impossible to perform this treatment during the element formation process.

このことは、不純物ゲッタリングにおいて太きな問題と
なりゲッタリング歪層形成後に素子形成するため素子形
成の熱処理により歪層が回復し、ゲッター効果が消失す
るという欠点がある。
This becomes a major problem in impurity gettering, and since the device is formed after the formation of the gettering strained layer, the strained layer is recovered by the heat treatment for device formation and the getter effect disappears.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のゲッタリング法は、半導体素子部以外の半導体
基板面および内部にAr、Si、P。
The gettering method of the present invention uses Ar, Si, and P on the surface and inside of the semiconductor substrate other than the semiconductor element portion.

B、As等の不純物イオンをI X 10 ”aA以上
のドーズ量でかつ50KeV〜10MeVのエネルギー
でイオン注入を行う工程を有している。
The method includes a step of implanting impurity ions such as B and As at a dose of I x 10''aA or more and an energy of 50 KeV to 10 MeV.

〔実施例〕〔Example〕

次に、本発明を図面を用いてより詳細に説明する。実施
例としてMOS)ランジスタ作製プロセスの途中でシリ
コン基板表面の素子形成以外の表面領域にシリコンをイ
オン注入し、ゲッタリング処理を行なう場合について説
明する。
Next, the present invention will be explained in more detail using the drawings. As an example, a case will be described in which silicon ions are implanted into a surface region of a silicon substrate other than where elements are formed during the process of manufacturing a MOS transistor and a gettering process is performed.

第1図(a)〜(d)は、本発明の一実施例の断面図で
ある。第1図に於いて1はシリコン基板、2はフィール
ド酸化膜、3はゲート絶縁膜、4はゲート電極、5はソ
ース・ドレイン領域、6は素子形成以外の領域、7はイ
オン注入のマスク、8は歪層、9は絶縁膜、10はアル
ミニウム配線である。MOS)ランジスタを形成する手
順としては、まず選択酸化法により所望の領域にフィー
ルド酸化膜2を形成した後にゲート絶縁膜3を形成する
。次にゲート電極4を形成しイオン注入でソース・ドレ
イン領域5を形成した後にトランジスタ領域にマスク7
を形成し、素子形成以外の領域6にシリコンの50Ke
Vイオン注入を行ない、歪層8を形成しマスク7を取り
除く。次に、ソース・ドレイン領域5形成のアニールを
行うと同時に、ゲッタリング処理を行う。次に、絶縁膜
9を形成し、ソース・ドレイン領域の表面の一部の絶縁
膜を除去した後にアルミニウム配線1oを形成しMOS
)ランジスタが完成する。
FIGS. 1(a) to 1(d) are cross-sectional views of one embodiment of the present invention. In FIG. 1, 1 is a silicon substrate, 2 is a field oxide film, 3 is a gate insulating film, 4 is a gate electrode, 5 is a source/drain region, 6 is a region other than element formation, 7 is an ion implantation mask, 8 is a strained layer, 9 is an insulating film, and 10 is an aluminum wiring. The procedure for forming a MOS transistor is to first form a field oxide film 2 in a desired region by selective oxidation, and then form a gate insulating film 3. Next, a gate electrode 4 is formed, a source/drain region 5 is formed by ion implantation, and then a mask 7 is formed in the transistor region.
50Ke of silicon is formed in the region 6 other than the element formation.
V ion implantation is performed to form strained layer 8 and mask 7 is removed. Next, at the same time as annealing is performed to form the source/drain regions 5, a gettering process is performed. Next, an insulating film 9 is formed, and after removing a part of the insulating film on the surface of the source/drain region, an aluminum wiring 1o is formed and the MOS
) The transistor is completed.

実際の半導体装置に本実施例を適用する場合、チップの
周辺部、スクライブ線上にシリコン、リン2砒素等をイ
オン注入するのが有効である。
When this embodiment is applied to an actual semiconductor device, it is effective to ion-implant silicon, phosphorus 2 arsenic, or the like into the periphery of the chip and onto the scribe lines.

次に本発明をMOS)ランジスタ作製プロセスの途中で
シリコン基板内部の素子形成以外の領域にシリコンをイ
オン注入し、ゲッタリング処理を行なう場合について説
明する。
Next, a case will be described in which the present invention is carried out by implanting silicon ions into a region of a silicon substrate other than where elements are to be formed during the process of manufacturing a MOS transistor and performing a gettering process.

第2図(a)〜(c)は、この場合の実施例の断面図で
ある。第2図に於いて、第1図と同じ参照数字は、同一
物質を示す。MOS)ランジスタを形成する手順として
選択酸化法によりフィールド酸化膜2を形成した後に3
 M e Vの高エネルギーでシリコンイオン注入を行
い、トランジスタ形成領域の基板内部に歪層8を形成す
る。次にゲート絶縁膜3、ゲート電極4を形成した後に
ソース・ドレイン領域を形成し、絶縁膜9を形成し、ソ
ース・ドレイン領域の表面の一部の絶縁膜を除去した後
にアルミ配線7を形成し、Mosトランジスタが完成す
る。
FIGS. 2(a) to 2(c) are cross-sectional views of the embodiment in this case. In FIG. 2, the same reference numerals as in FIG. 1 indicate the same materials. As a procedure for forming transistors (MOS), after forming field oxide film 2 by selective oxidation method, 3
Silicon ions are implanted at high energy of M e V to form a strained layer 8 inside the substrate in the transistor formation region. Next, after forming a gate insulating film 3 and a gate electrode 4, a source/drain region is formed, an insulating film 9 is formed, and after removing a part of the insulating film on the surface of the source/drain region, an aluminum wiring 7 is formed. Then, a Mos transistor is completed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は半導体基板のゲッタリン
グ方法として素子形成領域以外の半導体基板表面および
内部にイオン注入で歪層を形成することにより不純物ゲ
ッタリングを行うため、半導体装置の製造の途中で必要
に応じゲッタリング処理を容易に行うことができ、半導
体装置の電気特性の変動を低減し、信頼性の高い半導体
装置を実現することができる効果がある。
As explained above, the present invention performs impurity gettering by forming a strained layer by ion implantation on the surface and inside of the semiconductor substrate other than the element formation region as a gettering method for a semiconductor substrate, so that impurity gettering is performed during the manufacturing of a semiconductor device. The gettering process can be easily performed as needed, and there is an effect that fluctuations in the electrical characteristics of the semiconductor device can be reduced and a highly reliable semiconductor device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の一実施例を工程順に説
明する断面図、第2図(a)〜($)は他の実施例を工
程順に説明する断面図である。 1・・・・・・シリコン基板、2・・・・・・フィール
ド酸化膜、3・・・・・・ゲート絶縁膜、4・・・・・
・ゲート電極、5・・・・・・ソース・ドレイン領域、
6・・・・・・素子形成以外の領域、7・・・・・・イ
オン注入のマスク、8・・・・・・歪層、9・・・・・
・絶縁膜、10・・・・・・アルミニウム配線代理人 
弁理士  内 原   晋 rの rd> 第10
FIGS. 1(a)-(d) are sectional views explaining one embodiment of the present invention in the order of steps, and FIGS. 2(a)-($) are sectional views explaining another embodiment in the order of steps. 1...Silicon substrate, 2...Field oxide film, 3...Gate insulating film, 4...
・Gate electrode, 5...source/drain region,
6...Region other than element formation, 7...Ion implantation mask, 8...Strained layer, 9...
・Insulating film, 10... Aluminum wiring agent
Patent Attorney Susumu Uchihara's rd> No. 10

Claims (1)

【特許請求の範囲】 1)半導体素子部以外の半導体基板表面および内部にイ
オン注入により歪層を形成することを特徴とする不純物
ゲッタリング方法 2)特許請求の範囲第1項記載のイオン注入ドーズ量が
1×10^1^5cm^−^2以上であることを特徴と
する不純物ゲッタリング方法 3)特許請求の範囲第1項記載のイオン注入エネルギー
が50KeV〜10MeVであることを特徴とする不純
物ゲッタリング方法
[Claims] 1) An impurity gettering method characterized by forming a strained layer on the surface and inside of a semiconductor substrate other than a semiconductor element portion by ion implantation. 2) An ion implantation dose according to claim 1. 3) An impurity gettering method characterized in that the amount is 1×10^1^5 cm^-^2 or more; 3) An ion implantation energy as described in claim 1 is 50 KeV to 10 MeV. Impurity gettering method
JP13494188A 1988-05-31 1988-05-31 Impurity gettering process Pending JPH01303727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13494188A JPH01303727A (en) 1988-05-31 1988-05-31 Impurity gettering process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13494188A JPH01303727A (en) 1988-05-31 1988-05-31 Impurity gettering process

Publications (1)

Publication Number Publication Date
JPH01303727A true JPH01303727A (en) 1989-12-07

Family

ID=15140136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13494188A Pending JPH01303727A (en) 1988-05-31 1988-05-31 Impurity gettering process

Country Status (1)

Country Link
JP (1) JPH01303727A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129607A (en) * 1991-10-31 1993-05-25 Sharp Corp Manufacture of semiconductor device
US6355377B1 (en) 2000-03-07 2002-03-12 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
US6395427B1 (en) 1999-11-04 2002-05-28 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
JP2013157454A (en) * 2012-01-30 2013-08-15 Hamamatsu Photonics Kk Laser processing method, semiconductor device manufacturing method and laser processing device
JP2013201275A (en) * 2012-03-23 2013-10-03 Toshiba Corp Semiconductor device, manufacturing method of the same and substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129607A (en) * 1991-10-31 1993-05-25 Sharp Corp Manufacture of semiconductor device
US6395427B1 (en) 1999-11-04 2002-05-28 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
US6355377B1 (en) 2000-03-07 2002-03-12 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
JP2013157454A (en) * 2012-01-30 2013-08-15 Hamamatsu Photonics Kk Laser processing method, semiconductor device manufacturing method and laser processing device
JP2013201275A (en) * 2012-03-23 2013-10-03 Toshiba Corp Semiconductor device, manufacturing method of the same and substrate
US9136125B2 (en) 2012-03-23 2015-09-15 Kabushiki Kaisha Toshiba Substrate of semiconductor device, for gettering metallic impurity

Similar Documents

Publication Publication Date Title
US7271041B2 (en) Method for manufacturing thin film transistor
JPH01303727A (en) Impurity gettering process
JP2720779B2 (en) Thin film transistor and method of manufacturing the same
JP2701821B2 (en) Semiconductor substrate
JP2662029B2 (en) Method for manufacturing MOS transistor
JP3810168B2 (en) Manufacturing method of semiconductor substrate
JPH0379035A (en) Mos transistor and manufacture thereof
JPH03272176A (en) Semiconductor device, substrate, and manufacture thereof
JPS6084813A (en) Manufacture of semiconductor device
JP2527545B2 (en) Method for manufacturing semiconductor device
JPS63181378A (en) Manufacture of semiconductor device
JP2744022B2 (en) Method for manufacturing semiconductor device
JP2875586B2 (en) Method for manufacturing semiconductor device
JPH06151349A (en) Manufacture of semiconductor device
JPS5974638A (en) Manufacture of semiconductor wafer
JPH01245519A (en) Manufacture of semiconductor device
JPS62293637A (en) Manufacture of semiconductor device
JPH0661234A (en) Production of semiconductor device
JPH0458524A (en) Manufacture of semiconductor device
JPH04199637A (en) Manufacture of semiconductor device
JPH03257846A (en) Manufacture of semiconductor device
JPS5812331A (en) Manufacture of semiconductor device
JPS6143470A (en) Manufacture of semiconductor device
JPH02105410A (en) Manufacture of semiconductor device
JPS5987874A (en) Semiconductor device and manufacture thereof