JPS6263406A - Production of iron system metal magnetic powder - Google Patents

Production of iron system metal magnetic powder

Info

Publication number
JPS6263406A
JPS6263406A JP60203110A JP20311085A JPS6263406A JP S6263406 A JPS6263406 A JP S6263406A JP 60203110 A JP60203110 A JP 60203110A JP 20311085 A JP20311085 A JP 20311085A JP S6263406 A JPS6263406 A JP S6263406A
Authority
JP
Japan
Prior art keywords
iron oxide
iron
treatment
magnetic powder
metal magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60203110A
Other languages
Japanese (ja)
Other versions
JPH0518441B2 (en
Inventor
Masatake Maruo
丸尾 正剛
Arata Koyama
新 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP60203110A priority Critical patent/JPS6263406A/en
Publication of JPS6263406A publication Critical patent/JPS6263406A/en
Publication of JPH0518441B2 publication Critical patent/JPH0518441B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain easily iron system metal magnetic powder of excellent magnetic characteristics, by forming uniformly and tightly a protection film composed of a coating film of silylisocyanate compound, on a grain surface of hydrous iron oxide or iron oxide. CONSTITUTION:Metal compound powder containing hydrous iron oxide or iron oxide as a main component is subjected to covering treatment appling silylating agent having isocyanate group, and a very uniform coating layer of siloxane is formed on a grain surface. Sintering between mutual grains is restricted in the heating reduction treatment which is performed successively or after the thermal treatment at temperature of 150-850 deg.C, and iron system metal magnetic powder of excellent magnetic characteristic free from grain profile break can be formed effectively. Representative hydrous iron oxide is oxihydroxide, and alpha-FeO(OH), for example, is Cited. As iron oxide, alpha-Fe2O3 and the like are given as an example.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、磁気記録媒体の記録素子として好適な鉄系金
属磁性粉末の製造方法に関する、〔発明の技術的−Rj
!tとその問題点〕オーディオ用、ビデオ用、コノビュ
ーター用等の磁気テープ、磁気ディスク、磁気シートな
どの磁気記録媒体は、近年記録咎歇の扁密度化による小
型化、高性距化の指向が一段と強まってきて1Pl)、
これとあ^まって近時磁気記録媒体用磁性材料として、
従来の酸化鉄系磁性粉末に比し、高保磁力、高飽和磁化
が一層期待し得る鉄又は鉄系合金類の鉄系金属磁性粉末
が特に注目されつつある。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for producing iron-based metal magnetic powder suitable as a recording element of a magnetic recording medium.
! t and its problems] Magnetic recording media such as magnetic tapes, magnetic disks, and magnetic sheets for audio, video, and video recording media have recently become smaller and have a higher distance due to the compaction of recording particles. became even stronger and became 1Pl),
Along with this, recently as a magnetic material for magnetic recording media,
Iron-based metal magnetic powders such as iron or iron-based alloys, which are expected to have higher coercive force and higher saturation magnetization than conventional iron oxide-based magnetic powders, are attracting particular attention.

ところで、前記鉄系金属磁性粉末ば、西宮、ゲーサイト
針状晶粒子のような含水?便イヒ鉄粒子または、これ分
別、@脱水して得られる酸化鉄粒子を水素などの還元性
ガス雰囲党中で加熱して金属鉄にまで還元することによ
って得られるものである。しかして前記還元反応は、加
熱温度に大きく律速されるため高温加熱処理では、還元
は速やかに完了する反面、得られる金属鉄粒子の形状が
崩れたり、粒子間の焼結が起ったりして磁電特性がいら
じるしく偵なわれ易lAつまた、低温加熱処理では1前
記問題は回避し得る反面、還元速度が大巾に低丁し、1
喚的にきわめて不利とならざるを得ない。
By the way, is the iron-based metal magnetic powder water-containing like Nishinomiya and goethite acicular crystal particles? It is obtained by heating iron oxide particles or iron oxide particles obtained by fractionating and dehydrating them in an atmosphere of a reducing gas such as hydrogen to reduce them to metallic iron. However, since the rate of the reduction reaction is largely determined by the heating temperature, in high-temperature heat treatment, the reduction is completed quickly, but on the other hand, the shape of the resulting metal iron particles may collapse or sintering between particles may occur. In addition, while low-temperature heat treatment can avoid the above problem, the reduction rate is greatly reduced,
This would inevitably be extremely disadvantageous.

このために前記の粒子形状の崩れや粒子間焼結を起すこ
となく還元反応?比較的短時間に完了させるべく桟々の
提案がなされている。ガえば、含水酸化鉄iたは酸化鉄
の粒子表面を、ケイ酸ナトリウムなどのクイ醒塩糸の処
理剤や、アルコギシド糸シラ/化合物よりなる有機系処
理剤で被覆処理したものを加熱還元処理する方法がよく
知られてiる。しかしながら、#記被覆処理方法は、前
記被覆処理剤として例えば、クイr俊塩を使用すると、
被覆処理剤が被覆層の沈殿形成時に水酸化鉄や酸化鉄の
粒子表面や粒子表面以外で生成したケイ震ゾルが急速に
ゲル化され易く、このために均一な連続被覆層の形成が
むづかしく焼結粒子の形成や粒子形状の崩れがさけられ
なかったりする。
Is this the reason why the reduction reaction occurs without causing the aforementioned particle shape collapse or interparticle sintering? Various proposals have been made to complete the project in a relatively short period of time. For example, the surface of hydrated iron oxide or iron oxide particles is coated with a treatment agent for salt yarn such as sodium silicate, or an organic treatment agent consisting of an alkogide yarn silica/compound, and then heated and reduced. There are well known methods to do this. However, in the coating method described in #, for example, when Kuiroshio is used as the coating agent,
When the coating treatment agent forms the precipitation of the coating layer, the silica sol generated on the particle surface of iron hydroxide or iron oxide or other than the particle surface tends to rapidly gel, making it difficult to form a uniform continuous coating layer. Otherwise, formation of sintered particles and deformation of the particle shape cannot be avoided.

また、前記ケイcl! * vC−よる処理においては
、沈殿形成のために使用する戚などの中和剤や、その中
和生成物が金lI41!jc磁性粉末中に残留し易く、
また有機系被覆処理剤として例えば、アルコキシクミル
シランのようなものを使用する場合においても均一で強
固な被覆層の形成がむづかしく、さらに加熱韓元時VC
塩化水累ガスを発生し、粒子形状の崩ノ1?もたらすと
ともVこ、金槁鉄磁性扮末中に塩部分の残留がさけらず
、塗料化時のゲル化やド0ッグアクトさらにはヘッドの
腐食などの原因となったりする)L/’1づれにしても
前記の種々の方法によっても遣元時の粒子形状の崩れや
粒子間焼結の抑制効果が十分もたらされず、そのM米寿
られる鉄水金属磁性粉末の磁気特性が損なわれるなど未
だ解決を要する問題点が少なくないっ 〔発明の目的〕 本発明の目的は、前記問題点を!4決し、含水酸化鉄ま
たは+1化鉄の籾子形状性ff:偵なうことなく、かつ
粒子間焼結を惹起することなしに高記録密度用磁気記録
媒体に好適な憂ルた特性の鉄系金属磁性粉末を効率よ〈
製造する方法を提供することにある。
Also, the above Kei cl! * In the treatment with vC-, the neutralizing agent used for precipitate formation and its neutralization product are gold lI41! It easily remains in the jc magnetic powder,
Furthermore, even when using an organic coating treatment agent such as alkoxycumylsilane, it is difficult to form a uniform and strong coating layer, and furthermore, when heated, VC
Generates chloride water gas and collapses particle shape 1? However, it is inevitable that salt remains in the magnetic powder, which may cause gelation during paint formation, dog action, and head corrosion.) L/'1 In any case, the above-mentioned various methods do not sufficiently suppress the collapse of particle shape and interparticle sintering at the time of dispersion, and the magnetic properties of the iron-water metal magnetic powder are impaired. [Object of the Invention] The purpose of the present invention is to solve the above-mentioned problems! 4. Rice grain shape of hydrated iron oxide or +1 iron oxide ff: Iron with excellent properties suitable for magnetic recording media for high recording density without warping or causing interparticle sintering. Efficiency of metal magnetic powder
The purpose is to provide a manufacturing method.

〔発明の構成〕[Structure of the invention]

不発明者等は、かねてより前記問題点を解決すべく檀々
検肘をすすめる中で、ゴ水酸化妖または酸化鉄の粒子表
面における活性水素化合物とイソシアネート基との強い
反応性に漕目し、さらに検討をすすめた結果、インシア
ネート基を有するシリル化剤を用いて含水酸化、扶また
は酸化鉄を主体として含む金媚化合物扮末を被覆処理す
ると、該粒子表面にきわめて均一なシロキサンの被覆層
が形成され、ひきつづ〈或iは150〜850℃の温度
で加熱処理した侵の加熱還元処理において粒子相互の焼
結を抑制するとともに、粒子杉状崩れのない磁気特性の
優れた鉄系金部磁性粉末を甚だ効率よ<a逍し得ること
の知見を得、本発明を完成したものであって、本発明は
、含水ば化鉄または酸化鉄を主体として含む金属化合物
の粒子表面に、シリルインシアネート化合物を被覆し、
しかる後、或は150〜850℃の温度で力日熱迅埋し
た後、刃口熱還元処理することを特徴とする鉄系金枳磁
性粉末の製造方法である。
The inventors have been conducting various investigations to solve the above-mentioned problems for some time, and have noticed the strong reactivity between active hydrogen compounds and isocyanate groups on the surface of particles of iron oxide or iron oxide. As a result of further investigation, it was found that when a silylating agent having an incyanate group is used to coat a powder of a gold aphrodisiac compound mainly containing hydrous oxide, iron oxide, or iron oxide, an extremely uniform coating of siloxane can be achieved on the particle surface. An iron-based material with excellent magnetic properties that suppresses mutual sintering of particles in the heat-reduction treatment in which a layer is formed and the particles are heat-treated at a temperature of 150 to 850°C, and the particles do not collapse into a cedar-like shape. Kanabe has completed the present invention based on the knowledge that magnetic powder can be applied with extremely high efficiency. , coated with a silyl incyanate compound,
The method for producing iron-based gold magnetic powder is characterized in that the powder is then thermally buried at a temperature of 150 to 850° C. and then subjected to a cutting edge thermal reduction treatment.

本発明の方法において、使用する出発吻買としては、含
水酸化鉄またはは化扶としては、撞々のものを使用し得
るが、含水酸化鉄の代表的なものとしてはオキシ水酸化
鉄であり、例えばα−F’eO(OH)、β−F e 
O(OH) 、’−FeO(OH)などと争げることが
できる。
In the method of the present invention, as the starting material, hydrated iron oxide or iron hydroxide can be used in bulk, but a representative example of hydrated iron oxide is iron oxyhydroxide. , e.g. α-F'eO(OH), β-F e
It can compete with O(OH), '-FeO(OH), etc.

また、酸化鉄としては、例えばα−Fezes、Fes
 Oa 、T−Fet o、、r−Fez Osを部分
還元して得られるようなベルトライド化合物などを挙げ
ることができ、さらに前記の含水酸化鉄または酸化鉄に
磁性特性等の性能を改善するために例えば、Coo N
iw Tie Cr*Mnなど鉄以外の金属成分を付加
したものを使用することもできる。
In addition, examples of iron oxide include α-Fezes, Fes
Examples include bertolide compounds such as those obtained by partial reduction of Oa, T-Feto, and r-FezOs, and furthermore, to improve performance such as magnetic properties to the above-mentioned hydrous iron oxide or iron oxide. For example, Coo N
It is also possible to use a material to which a metal component other than iron is added, such as iw Tie Cr*Mn.

なお、前記の金属成分は、倒えげ含水酸化鉄の生成時に
共沈させたり、または含水酸化鉄の粒子表面に吸着させ
たり、あるいはそれらの水酸化物等金被覆したり、さら
には前δピ金属成分を含んだ含水酸化物を脱水、!元、
酸化等の処埋をおこなうことによってドーピングするこ
とができる。なお、これらの含水酸化鉄また#:crI
lt化鉄の粒子形状は1代表的には針状のものであるが
、それ以外種々の形状のものを使用することができ、例
えば紡趨状1.米粒状、lI状、f−板状サイコロ状な
どを挙げることができる。
The above-mentioned metal components may be co-precipitated during the production of hydrated iron oxide, or adsorbed onto the surface of hydrated iron oxide particles, or coated with gold such as their hydroxides, or even pre-delta. Dehydrates hydrous oxides containing metal components! ex,
Doping can be achieved by performing a treatment such as oxidation. In addition, these hydrated iron oxides or #: crI
The particle shape of iron chloride is typically acicular, but various shapes can be used, such as spindle-like. Examples include rice grain shape, II shape, f-plate dice shape, etc.

本発明の方法にお匹て、被覆処理に使用するシリルイソ
シアネート化合物としては、一般式%式% アルキル基、アルコキシ基、アルケニル基またはアt−
ル基、または水素、n二〇又は3以下の整数であって、
nが2または3のときはアルキル基、アルコキシ基、ア
ルケニル基またはアリール基は同一のものであっても異
なったものであってもよい)で示される檀々のものを使
用し得るが、それらの具体ガとしては、例えば、St 
(NCO) a 、 CHs Si (NGO) s 
、  (CHs )z Si (NGO) z 、  
(CHs ) s S 1NcO,C4Hs  O8i
   (NCO)s  t   C1l  Hxy  
O8k   (NCO)*C18HI3 S i (N
CO) s 、 CH=CH8k (NGO)s。
In the method of the present invention, the silyl isocyanate compound used in the coating treatment may be an alkyl group, an alkoxy group, an alkenyl group or an at-
a group, or hydrogen, n20 or an integer of 3 or less,
When n is 2 or 3, the alkyl group, alkoxy group, alkenyl group or aryl group may be the same or different. As a specific moth, for example, St.
(NCO) a, CHs Si (NGO) s
, (CHs)z Si (NGO)z,
(CHs) s S 1NcO, C4Hs O8i
(NCO)s t C1l Hxy
O8k (NCO)*C18HI3 S i (N
CO)s, CH=CH8k (NGO)s.

CH意℃H8i (NCO) ! Cf(s 、σ5i
(NCO)sfkどを挙げることができる。
CHI℃H8i (NCO)! Cf(s, σ5i
(NCO) sfk, etc.

本発明の方法において、前記シリルインシアネート化合
物を、含水は化鉄または酸化鉄の粒子表面1c#覆処理
するには、種々の方法によっておこなうことができるか
、例えば(υよ水酸化鉄または酸化鉄を水または有機系
の水性媒液中に懸濁させて水性懸濁液を形成し、これに
シリルイノシアネート化合物の解液を添加したり、(2
)含水酸化鉄または酸化鉄をシリルイノ7アネート化合
物t−溶解した有機溶液中に懸濁させたり、あるいは(
3)含水酸化鉄またrii化鉄の粉末にシリルイノシア
ネート化合物の溶液を噴霧したりすることによって、シ
リルイノシアネート化合物が含水酸化鉄または酸化鉄の
粒子表面における水酸基等の活性水素の存在によ抄きわ
めて与易に反応し、該粒子表面にシリル基が付加した均
一で強固なシロキサン被覆層が形成される。なお、前記
[種処理は、常−丁でおこなってもよいが、必要に応じ
加熱丁でおこなってもよい。また#記(3)のように含
水酸化鉄または酸化鉄の粉末にシリルイノシアネート化
合物を直接接触させる場合には、被覆処理に先だって水
または水蒸気により含水酸化鉄または酸化鉄の粒子表面
に水酸基の童を増大させるように予備処理をおこなって
もよい。
In the method of the present invention, the silylinocyanate compound may be coated with water-containing iron hydroxide or iron oxide particles by various methods. Iron is suspended in water or an organic aqueous medium to form an aqueous suspension, to which a solution of a silylinocyanate compound is added;
) by suspending hydrated iron oxide or iron oxide in an organic solution in which a silylino-7anate compound is dissolved;
3) By spraying a solution of a silylinocyanate compound onto the powder of hydrated iron oxide or iron oxide, the silylinocyanate compound is activated by the presence of active hydrogen such as hydroxyl groups on the surface of the hydrated iron oxide or iron oxide particles. It reacts very easily during paper cutting, and a uniform and strong siloxane coating layer with silyl groups added to the surface of the particles is formed. Note that the above-mentioned seed treatment may be carried out with a regular knife, but may also be carried out with a heated knife if necessary. In addition, when the silylinocyanate compound is brought into direct contact with hydrated iron oxide or iron oxide powder as in ## (3), hydroxyl groups are formed on the surface of hydrated iron oxide or iron oxide particles using water or steam prior to coating treatment. Preliminary processing may be performed to increase the number of children.

本発明の方法において、シリルイノシアネート化合物の
処理量は、含水酸化鉄またrii化鉄の粒子径などによ
って異なり、−概に言えないが、含水酸化鉄または酸化
鉄のF e l 31基準に対して、シリルイソシアネ
ート化合物をSi重重層基準0.1〜20%望ましくは
0.5〜10%である。前記範囲より処理菫分が少なき
にすぎると、所望の効果が得られず、−万、多さにすぎ
てもコスト的に有利でなく、また得られる鉄系金属磁性
粉末の特性、例えば飽和低化が低Fするなど好ましぐな
い杉参を及ぼしたりする。
In the method of the present invention, the amount of the silylinocyanate compound to be treated varies depending on the particle size of the hydrated iron oxide or iron oxide, and although it cannot be generalized, The content of the silyl isocyanate compound is 0.1 to 20%, preferably 0.5 to 10%, based on the Si overlayer. If the treated violet content is too small from the above range, the desired effect will not be obtained, and if it is too large, it will not be advantageous in terms of cost, and the characteristics of the resulting iron-based metal magnetic powder, such as saturation, will not be obtained. Lowering the temperature can cause undesirable effects such as low F.

前記のようにして被覆処理された含水酸化鉄または酸化
鉄の粒子Vよ、必要HcL5じ濾過、水洗を経て処理系
から回収し、次いで加熱還元処理に付される。
The hydrated iron oxide or iron oxide particles V coated as described above are recovered from the treatment system through 5 times of filtration with the required HcL and washed with water, and then subjected to a heat reduction treatment.

前記におりて出発物質として含水酸化鉄を使用し、これ
に当該被覆処理する場合には、f!1覆処理後150〜
850℃で加熱脱水してα−Fe203等を形成してか
ら加熱還元処理するのが望ましi0出発物質として酸化
鉄を使用する場合でも、a種処理後150〜850Gで
加熱処理した後、加熱還元処理してもよい。
In the case where hydrated iron oxide is used as the starting material and subjected to the coating treatment, f! 150~ after 1 coat treatment
It is desirable to dehydrate by heating at 850°C to form α-Fe203, etc., and then heat reduction treatment. Even when iron oxide is used as the i0 starting material, after heat treatment at 150 to 850 G after type A treatment, heating It may be subjected to reduction treatment.

前記加熱還元処理は、よく知られている種々の方法によ
っておこなうことができるが、通常還元性ガスとして例
えば水素ガス中で300〜550℃の加熱温度条件下で
1〜20時間処理することによって、酸化物金属の実質
的全部を金属に還元することができる。
The thermal reduction treatment can be carried out by various well-known methods, but is usually carried out in a reducing gas such as hydrogen gas for 1 to 20 hours at a heating temperature of 300 to 550°C. Substantially all of the oxide metal can be reduced to metal.

以下に実施例を挙げて本発明をさらに説明する。The present invention will be further explained below with reference to Examples.

実施例1゜ α−Fe203の針状粒子(長軸0.3岸、軸比10)
25gを、11の水に分散させてなるスラリーを攪拌し
ながら40℃に保持した3前記スラリーに5i(NGO
)4の酢酸エチル溶液(10g/A)の262mA!を
1時間かけて途々にl買丁し、滴下後さらに同温度で1
時間攪拌して熟成した。ついで、戸鳩。水洗した説乾譲
した。
Example 1 α-Fe203 acicular particles (long axis 0.3 shore, axial ratio 10)
5i (NGO
) 262 mA of ethyl acetate solution (10 g/A) of 4! 1 hour at a time, and after dropping, add another 1 liter at the same temperature.
Aged by stirring for hours. Next, Tobato. I washed it with water and gave it to dry.

ついで、前記の被覆処理を施した含水酸化鉄粒子を、マ
ツ7を炉中で大気圧丁で750℃で2時間加熱してα−
Foxes とした。
Next, the coated hydrated iron oxide particles were heated at 750°C for 2 hours under atmospheric pressure in a furnace to give α-
Foxes.

しかる使、前記のようにして得られたα−Fe20s7
gを、ステ/レス襄ボードに入れ、管状炉中で毎分21
の水素慨流下、450℃で4時間加熱還元した。得られ
た還元物は、窒素気流中で冷却後トルエン中に浸漬し、
つめで乾燥して本発明方法による試料囚とした。
The messenger, α-Fe20s7 obtained as above
g was placed in a stainless steel board and heated at 21 m/min in a tube furnace.
The mixture was heated and reduced at 450° C. for 4 hours under a hydrogen stream. The obtained reduced product was cooled in a nitrogen stream and then immersed in toluene.
It was dried with nails and used as a sample prisoner according to the method of the present invention.

実施例2゜ 実施?11.にお(ハ)て、S i  (NCO) 4
の酢酸エチル溶液に代えて、CHs S i  (NC
O)sの酢酸エチル溶a(log/l、226dを使用
したこと以外は、実施力1.の場合と同様に処理して本
発明方法による試料出)を傅た。
Example 2゜ Implementation? 11. ni(c)te, S i (NCO) 4
CHs Si (NC
O)s was dissolved in ethyl acetate a (log/l, except that 226 d was used, and the same procedure as in Example 1 was used to prepare a sample according to the method of the present invention).

実施?113L 実施例1oで便用したα−FeOOH扮末25g−を、
少量の水で湿潤して湿り−キをp4製[7た。
implementation? 113L 25 g of α-FeOOH powder used in Example 1o,
Wet it with a small amount of water to make it wet.

ついで5N(NCOJaの面1!I2工f7t/醍猷(
,52,4g4)、50tJを践湿り−ギに添加し工〈
混練恢乾燥したこと以外は、災厖ガ1.の場合と同様に
処理して本発明方法による試料(C)を得た。
Next, 5N (NCOJa's side 1! I2 engineering f7t/Daiyu (
, 52,4g4) and 50tJ were added to the wet water.
Except for the fact that it was kneaded and dried. A sample (C) according to the method of the present invention was obtained by processing in the same manner as in the case of .

実施ガ4゜ 実施例3(でおいて、5t(iすCOO40ILL賃エ
チェチル溶液えて、C)is S i CNC0) 3
の詐iエチル済液(45,2g4) 、50 atを部
用したこと以外d実施例1.の場合と同様に処理して本
発明方法による試料(V)?得た。
Example 4゜Example 3 (Add 5t (i COO 40 ILL and add ethethyl solution, C) is S i CNC 0) 3
Example 1 except that 50 parts of the ethyl solution (45.2 g4) of the same amount was used. Sample (V) processed in the same manner as in the case of ? Obtained.

比較例1゜ 実施N 1.におiて、5iCNCO)aの師醒エチk
m/FILに代えてCH3S i  (OCfi3)s
のエタノール溶液(10g/lf)、’132;dを使
用したこと以外は実施Fl 1.の場合とIIJ1様に
処理した。 試料(g) 比#N2゜ 実施例1. VCTh イーc、S i  (N CO
) 4 ノu酸エチルt! K tc代えて、Cd!=
CH8l (QCJ(s)sの水lfi液(10g/l
、但しtaitの酢酸を添刀口してPH4に調整したも
の)、197dを使用したこと以外は実施s i、の場
合と同様に処理した。 試料(F) 比較例3゜ 実施913.にシ匹て、5i(rJcO)aの亜酸エチ
ル溶液に代えて、n −Cto H冨i S L (O
CHs)sX−−ノールM液 (6s g/l) 、s
Comparative Example 1゜Execution N 1. 5iCNCO)
CH3S i (OCfi3)s instead of m/FIL
Example of implementation Fl 1. except that an ethanol solution (10 g/lf) of '132;d was used. It was treated in the same way as in the case of IIJ1. Sample (g) Ratio #N2゜Example 1. VCTh Ec, S i (N CO
) 4 Ethyl nourate t! Instead of K tc, Cd! =
CH8l (QCJ(s)s water lfi liquid (10g/l
The process was carried out in the same manner as in Example 1, except that 197d (adjusted to pH 4 by adding tait acetic acid) was used. Sample (F) Comparative Example 3゜Execution 913. In addition, n -Cto Hfui S L (O
CHs)sX--Nol M solution (6s g/l), s
.

−を使用したこと以外は実施例1.の場合と同様に処理
した。 試料(G) 比較例4゜ 実施力1.で使用したα−F a 0011スラリーに
、NaOH*溶液を加えてPH13i7CL、た後、4
0’C攪拌下に水ガラス水III液(Stとして3゜水
洗、乾燥した。しかる後、実施例1.の場合と同様にし
てカロ熱脱水処理つづいてカロ熱瀘元処理fcおこなっ
た。) 試料(f() 比べ91J 5゜ 前記実施例】、においで、α−Fe00H針状粒子表面
にS t  (NCO) a 4I!、種処理をおこな
わないこと以外は、実施例1.0場合と同様に処理した
。 試料(I ) 前記の′#:厖例および比較列で得られた各試料粉末に
ついて常法により振動型磁力計(VSM)を使用し、保
磁力(1(喀)、飽和磁化(7”、。
Example 1 except that - was used. It was treated in the same way as in the case of Sample (G) Comparative Example 4゜Performance 1. After adding NaOH* solution to the α-F a 0011 slurry used in PH13i7CL,
Water glass water III solution (St) was washed with water at 3° and dried under stirring at 0'C.Then, Calothermal dehydration treatment followed by Calothermal filtration treatment fc was carried out in the same manner as in Example 1. Sample (f() Compare 91J 5゜Previous Example), S t (NCO) a 4I! on the α-Fe00H acicular particle surface by odor, Example 1.0 except that seed treatment was not performed. Sample (I) Sample powders obtained in the above '#: sample and comparative rows were measured using a vibrating magnetometer (VSM) in a conventional manner to determine the coercive force (1 (k), saturation Magnetization (7”,.

10KOeのffl場における1直)、角形比(R8)
を測定した。その結果を次衣に示すっ なお、粒子形状および粒子焼結の評価は螺子g歳誂によ
る観察のものである。
1 straightness in the ffl field of 10KOe), squareness ratio (R8)
was measured. The results are shown below; however, the evaluation of particle shape and particle sintering was based on observation using screw g-milling.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は、よ水酸化鉄または酸化鉄の粒子表面に
、シリルインシアネート化合物の被4I−よりなる保護
agが均一かつ預固に形成し得るため、従来の41覆処
理剤を使用する場合に与られる不具合をともなうことな
く、粒子相互の焼結が抑制されかつ粒子形状崩れのない
磁気特性の優れた鉄系金属磁性粉末をきわめて与易に製
造することができる。
The method of the present invention uses a conventional 41-coating treatment agent because the protective ag consisting of 4I- of the silyl incyanate compound can be uniformly and precipitated on the surface of the iron hydroxide or iron oxide particles. Iron-based metal magnetic powder with excellent magnetic properties, in which sintering of particles is suppressed and particle shapes do not collapse, can be produced very easily without causing any problems that may occur.

Claims (1)

【特許請求の範囲】[Claims] 含水酸化鉄または酸化鉄を主体として含む金属化合物の
粒子表面に、シリルイソシアネート化合物を被覆し、し
かる後、あるいは150〜850℃の温度で加熱処理し
た後、加熱還元処理することを特徴とする鉄系金属磁性
粉末の製造方法。
Iron characterized by coating the particle surface of hydrated iron oxide or a metal compound mainly containing iron oxide with a silyl isocyanate compound, then heat-treating at a temperature of 150 to 850°C, and then heat-reduction treatment. A method for producing metal magnetic powder.
JP60203110A 1985-09-13 1985-09-13 Production of iron system metal magnetic powder Granted JPS6263406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60203110A JPS6263406A (en) 1985-09-13 1985-09-13 Production of iron system metal magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60203110A JPS6263406A (en) 1985-09-13 1985-09-13 Production of iron system metal magnetic powder

Publications (2)

Publication Number Publication Date
JPS6263406A true JPS6263406A (en) 1987-03-20
JPH0518441B2 JPH0518441B2 (en) 1993-03-12

Family

ID=16468561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60203110A Granted JPS6263406A (en) 1985-09-13 1985-09-13 Production of iron system metal magnetic powder

Country Status (1)

Country Link
JP (1) JPS6263406A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376960A (en) * 1976-12-20 1978-07-07 Hitachi Maxell High magnetic metal powder manufacturing process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376960A (en) * 1976-12-20 1978-07-07 Hitachi Maxell High magnetic metal powder manufacturing process

Also Published As

Publication number Publication date
JPH0518441B2 (en) 1993-03-12

Similar Documents

Publication Publication Date Title
EP0056257B1 (en) Method for production of metal magnetic particles
JPS6263406A (en) Production of iron system metal magnetic powder
JPS6217364B2 (en)
KR890000702B1 (en) Production for cobalt containing magnetic iron oxide power
JPS5891039A (en) Manufacture of needlelike alpha-feooh for magnetic recording material
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JP2805162B2 (en) Method for producing metal magnetic powder for magnetic recording
JPH01309903A (en) Method for stabilizing ferromagnetic iron powder
US4348430A (en) Process for producing magnetic particles for magnetic recording medium
JPS6349722B2 (en)
JPS62138333A (en) Preparation of superfine particles of ferromagnetic magnetite
JPS6034244B2 (en) Manufacturing method of ferromagnetic powder
JPS6323139B2 (en)
JPS6135132B2 (en)
JPH02271503A (en) Magnetic alloy powder and its manufacture
JPH02283623A (en) Co-bearing magnetic pigment, its production method and usage
JPH0711310A (en) Magnetic metallic powder for magnetic recording and its production
JPS6015573B2 (en) Method for producing cobalt-containing magnetic iron oxide particles
JPS6081026A (en) Manufacture of magnetic iron oxide containing cobalt
JPH04278501A (en) Metal magnetic powder for magnetic recording and manufacture thereof
JPS5939728A (en) Manufacture of magnetic iron oxide powder containing cobalt
JPH0147882B2 (en)