JPS6261662B2 - - Google Patents

Info

Publication number
JPS6261662B2
JPS6261662B2 JP57154998A JP15499882A JPS6261662B2 JP S6261662 B2 JPS6261662 B2 JP S6261662B2 JP 57154998 A JP57154998 A JP 57154998A JP 15499882 A JP15499882 A JP 15499882A JP S6261662 B2 JPS6261662 B2 JP S6261662B2
Authority
JP
Japan
Prior art keywords
alloy
alloys
amorphous
metal
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57154998A
Other languages
Japanese (ja)
Other versions
JPS5848652A (en
Inventor
Takeshi Masumoto
Hiroyasu Fujimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO
Original Assignee
TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO filed Critical TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO
Priority to JP57154998A priority Critical patent/JPS5848652A/en
Publication of JPS5848652A publication Critical patent/JPS5848652A/en
Publication of JPS6261662B2 publication Critical patent/JPS6261662B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、軟磁気特性に優れるだけでなく、高
い硬度および比抵抗を有する高透磁率アモルフア
ス合金に関するものである。 (従来の技術) 従来結晶構造を有する高透磁率金属材料とし
て、Fe―Si合金、Fe―Ni合金、Fe―Al合金、Fe
―Si―Al合金などがあり、それぞれの特性に応じ
て多くの分野で使用されているが、これらの合金
にはなおそれぞれ特性上及び使用上の欠点があ
る。 (発明が解決しようとする問題点) Fe―Si合金は、変圧器、モータ等の鉄心とし
て高透磁率合金中最も多量に使用されているが、
製造工程が複雑であり、これを製造するのに要す
る燃料ならびに電力も多大であるから、終局的に
は原材料費の割合には高価な合金となつている。 Fe―Ni合金は、弱電関係の鉄心として使用さ
れており、なかでもNi78%を含有するパーマロ
イは透磁率が非常に高く、変成器、磁気ヘツド用
として、またデルタマツクス(Ni50%と鉄を含
有する磁性合金の商品名)は履歴曲線が急峻な角
形性を有するので、磁気増幅器等の鉄心として使
用されている。しかし製造方法はFe―Si合金と
同様に複雑である上に高価なNiを多量に使用す
るので非常に高価な材料である点で実用上難点が
ある。 Fe―Al合金であるアルパームはAl約16%を含
有する高透磁率合金であるが、塑性加工が非常に
困難であり、またFe―Si―Al合金であるセンダ
スト(Fe―10%Si―5%Al)は全く塑性加工が
できないという欠点があるので、特に高い硬度と
高い固有抵抗を有しているという特性が活かされ
る特殊な用途に限つて特殊加工の上使用されてい
る。すなわち前者は録画用磁気ヘツドとして温間
加工により製作され、後者はカードリーダー用の
磁気ヘツドとして放電加工或は研削加工によつて
製作されているが前記欠点のためその用途は自か
ら制限されている。 (問題点を解決するための手段) 本発明は、従来用いられている高透磁率金属材
料が有する前記諸欠点のない新規な高透磁率合金
を提供することを目的とし、B7〜35原子%を含
み、残部は常温で強磁性を有するFeおよびCoの
何れか1種又は2種よりなり、保磁力0.100e以
下、最大透磁率60000以上、硬度Hv700以上、比
抵抗:150μΩ―cm以上である高透磁率アモルフ
アス合金によつて、その目的を達成することがで
きる。 通常金属は固体状態では結晶状態であるが、あ
る特殊な条件(合金の組成、急冷凝固)下では固
体状態でも融体に類似した結晶構造をもたない原
子構造が得られ、このような金属又は合金はアモ
ルフアス合金(又は非晶質合金)と呼ばれてい
る。 本発明者等は、先にアモルフアス合金ならび
に、それを製造する新規な方法を開発し、アモル
フアス合金の中にはその成分組成によつて特に機
械的特性および耐食性が驚異的に優れたものがあ
ることを新規に知見した。 本発明は、前記の組成を有するアモルフアス合
金が極めて優れた透磁性を有することをさらに新
規に知見したことに基づくものである。 本発明の成分組成を有する溶融金属を急冷凝固
させることによつてアモルフアス合金とすること
ができる。 次に本発明のアモルフアス合金を製造する方法
の1例について図面により説明する。 図は本発明のアモルフアス合金を製造する装置
の一例を示す概略図である。図において、1は下
方先端に水平方向に噴出するノズル2を有する石
英管で、その中には原料金属3が装入され、溶解
される。4は原料金属3を加熱するための加熱炉
であり、5はモーター6により高速度、例えば
5000r.p.mで回転される回転ドラムで、これは、
ドラムの回転による遠心力負荷をできるだけ小さ
くするため、軽量で熱伝導性の良い金属、例えば
アルミニウム合金よりなり、内面には更に熱伝導
性の良い金属、例えば銅板7で内張りされてい
る。8は石英管1を支持して上下に移動するため
のエアピストンである。原料金属は、先ず石英管
1の送入口1aより流体搬送等により装入され加
熱炉4の位置で加熱溶解され、次いでエアピスト
ン8により、ノズル2が回転ドラム5の内面に対
向する如く、石英管1が図に示す位置に下降さ
れ、次いで上昇を開始するとほぼ同時に溶融金属
3にガス圧が加えられて、金属が回転ドラムの内
面に向かつて噴流される。石英管内部へは金属3
の酸化を防ぐため絶えず不活性ガス、例えばアル
ゴンガス9を送入し不活性雰囲気としておくもの
とする。回転ドラム内面に噴流された金属は高速
回転による遠心力のため、回転ドラム内面に強く
接触せしめられることにより、超高速冷却が与え
られてアモルフアス合金となる。 本発明の研究において、アモルフアス合金が特
に優れた機械的特性と共に優れた磁気特性を有す
ることを新規に知見したことにより、種々成分組
成を変化させて磁気特性を調べた結果を第1表に
示す。なお従来知られたFe―Si合金、Fe―Al合
金およびFe―Si―Al合金等の磁気特性を測定し
て比較した。
(Field of Industrial Application) The present invention relates to a high magnetic permeability amorphous alloy having not only excellent soft magnetic properties but also high hardness and specific resistance. (Conventional technology) Conventional high permeability metal materials with crystalline structures include Fe-Si alloy, Fe-Ni alloy, Fe-Al alloy, Fe
-Al alloys such as Si-Al alloys are used in many fields depending on their properties, but each of these alloys still has its own drawbacks in terms of properties and use. (Problem to be solved by the invention) Fe-Si alloys are used in the largest amount among high permeability alloys as iron cores for transformers, motors, etc.
The manufacturing process is complicated, and the amount of fuel and electricity required to manufacture it is large, so the end result is an expensive alloy in terms of raw material costs. Fe-Ni alloys are used as iron cores for weak electrical equipment, and permalloy, which contains 78% Ni, has extremely high magnetic permeability and is used for transformers and magnetic heads, as well as deltamax (containing 50% Ni and iron). The magnetic alloy (trade name) has a steep angular hysteresis curve, so it is used as an iron core for magnetic amplifiers, etc. However, as with Fe-Si alloys, the manufacturing method is complicated, and since a large amount of expensive Ni is used, it is a very expensive material, which poses practical difficulties. Alperm, an Fe-Al alloy, is a high permeability alloy containing about 16% Al, but it is extremely difficult to plastically work, and Sendust, an Fe-Si-Al alloy (Fe-10%Si-5 %Al) has the disadvantage that it cannot be plastically worked at all, so it is only used after special processing in special applications where its characteristics of particularly high hardness and high specific resistance are utilized. That is, the former is manufactured by warm processing as a magnetic head for recording, and the latter is manufactured by electric discharge machining or grinding as a magnetic head for card readers, but their use is limited due to the above-mentioned drawbacks. There is. (Means for Solving the Problems) The purpose of the present invention is to provide a new high magnetic permeability alloy that does not have the above-mentioned drawbacks of conventionally used high magnetic permeability metal materials. , and the remainder consists of one or two of Fe and Co, which are ferromagnetic at room temperature, with a coercive force of 0.100e or less, maximum permeability of 60,000 or more, hardness of Hv700 or more, and resistivity of 150μΩ-cm or more. High permeability amorphous alloys can achieve this objective. Normally, metals are in a crystalline state in the solid state, but under certain special conditions (alloy composition, rapid solidification), even in the solid state, an atomic structure that does not have a crystalline structure similar to that of a molten metal can be obtained. Alternatively, the alloy is called an amorphous alloy (or amorphous alloy). The present inventors have previously developed an amorphous amorphous alloy and a new method for producing the same, and some amorphous amorphous alloys have surprisingly excellent mechanical properties and corrosion resistance depending on their composition. I discovered something new. The present invention is based on the new finding that an amorphous amorphous alloy having the above composition has extremely excellent magnetic permeability. An amorphous alloy can be obtained by rapidly cooling and solidifying a molten metal having the composition of the present invention. Next, an example of a method for manufacturing the amorphous alloy of the present invention will be explained with reference to the drawings. The figure is a schematic diagram showing an example of an apparatus for manufacturing the amorphous alloy of the present invention. In the figure, 1 is a quartz tube having a nozzle 2 at its lower end that ejects water in a horizontal direction, into which raw metal 3 is charged and melted. 4 is a heating furnace for heating the raw material metal 3, and 5 is a heating furnace for heating the raw metal 3;
A rotating drum rotated at 5000r.pm, which
In order to minimize the centrifugal force load due to rotation of the drum, it is made of a lightweight metal with good heat conductivity, such as an aluminum alloy, and the inner surface is lined with a metal with good heat conductivity, such as a copper plate 7. 8 is an air piston for supporting the quartz tube 1 and moving it up and down. The raw metal is first charged through the inlet port 1a of the quartz tube 1 by fluid conveyance, heated and melted in the heating furnace 4, and then heated and melted by the air piston 8 so that the nozzle 2 faces the inner surface of the rotating drum 5. The tube 1 is lowered to the position shown in the figure and then, at about the same time as it begins to rise, gas pressure is applied to the molten metal 3, causing the metal to be jetted towards the inner surface of the rotating drum. Metal 3 inside the quartz tube
In order to prevent oxidation of the gas, an inert gas such as argon gas 9 is constantly fed to create an inert atmosphere. The metal jetted onto the inner surface of the rotating drum is brought into strong contact with the inner surface of the rotating drum due to the centrifugal force caused by the high speed rotation, and is cooled at an ultra-high speed, turning into an amorphous alloy. In the research of the present invention, it was newly discovered that amorphous amorphous alloys have particularly excellent mechanical properties as well as excellent magnetic properties. Table 1 shows the results of investigating the magnetic properties by changing various component compositions. . The magnetic properties of conventionally known Fe-Si alloys, Fe-Al alloys, Fe-Si-Al alloys, etc. were measured and compared.

【表】【table】

【表】 同表から判る如く、本発明のアモルフアス合金
(No.3〜6,12,15)の中には例えばFe―Co―B
合金、Co―B合金は、Fe―Si合金やFe―Al合金
よりもすぐれ、Fe―Si―Al合金(センダスト合
金)に匹敵する磁気特性を有するものがある。し
かも、これ等のアモルフアス合金の固有抵抗は
170〜200μΩ―cmあり、Fe―Si―Al合金の140μ
Ω―cmよりも高く、また硬さ(Hv)はFe―Al合
金の290およびFe―Si―Al合金の500に対して810
以上と著しく硬い。さらに高硬度にもかかわらず
Fe―Al合金、Fe―Si―Al合金の様に脆くないか
ら、非常に成形し易いということは大きな特徴で
ある。 本発明のアモルフアス合金における各成分の含
有量を限定する理由は次の如くである。Bはアモ
ルフアス組織とすることを助成とする元素である
が、これ等のうち少なくとも1種の含有量が7原
子%未満の場合と、35原子%を越えた場合にはア
モルフアス合金の製造が困難になり、かつ合金を
脆化するのでBは7〜35原子%の範囲内にする必
要があり、Bの含有量はいずれも多いほど透磁率
が高くなるが、飽和磁束密度を低下するのでB7
〜35原子%のうちで、Bが15〜25原子%の程度と
するのが最良の結果を与える。FeとCoは常温で
強磁性を示し、互いに全量置換できる元素である
が、Fe―Co―B系の場合には、CoをFeで置換し
て行くと飽和磁束密度は増大するが、一方で保磁
力は著しく減少し約5%で極小(0.01Oe)とな
る。したがつて要求される特性に応じてFeとCo
量を決定することが必要である。 本発明を実施例について説明する。 実施例 以上述べた方法により、Fe5Co75B20組成の非晶
質合金を作製した結果、厚さ約30μm、幅約5
mm、長さ約30cmの均一な寸法のフイラメントが得
られ、X線回折により完全な非晶質金属であるこ
とが確かめられ、第2表に示す如き特性が得られ
た。
[Table] As can be seen from the table, some of the amorphous alloys (Nos. 3 to 6, 12, 15) of the present invention include Fe-Co-B
Some alloys, such as Co--B alloys, have magnetic properties that are superior to Fe--Si alloys and Fe--Al alloys, and comparable to Fe--Si--Al alloys (sendust alloys). Moreover, the specific resistance of these amorphous alloys is
170~200μΩ-cm available, 140μ of Fe-Si-Al alloy
Ω-cm, and the hardness (Hv) is 810 compared to 290 for Fe-Al alloy and 500 for Fe-Si-Al alloy.
It is noticeably harder than above. Despite the high hardness
It is not brittle like Fe-Al alloy or Fe-Si-Al alloy, so its major feature is that it is very easy to form. The reason for limiting the content of each component in the amorphous alloy of the present invention is as follows. B is an element that helps form an amorphous amorphous structure, but if the content of at least one of these elements is less than 7 atom% or exceeds 35 atom%, it is difficult to produce an amorphous amorphous alloy. The content of B must be within the range of 7 to 35 atomic percent because it becomes embrittlement and embrittles the alloy.The higher the B content, the higher the magnetic permeability, but it lowers the saturation magnetic flux density, so B7
~35 atom %, B being on the order of 15 to 25 atom % gives the best results. Fe and Co are elements that exhibit ferromagnetism at room temperature and can be completely replaced with each other. However, in the case of the Fe-Co-B system, as Co is replaced with Fe, the saturation magnetic flux density increases, but on the other hand, The coercive force decreases significantly and reaches a minimum (0.01 Oe) at about 5%. Therefore, depending on the required properties, Fe and Co
It is necessary to determine the amount. The present invention will be described with reference to examples. Example As a result of producing an amorphous alloy with a composition of Fe 5 Co 75 B 20 by the method described above, it had a thickness of about 30 μm and a width of about 5 μm.
A filament of uniform dimensions of about 30 cm and a length of about 30 cm was obtained, and it was confirmed by X-ray diffraction that it was a completely amorphous metal, and the properties shown in Table 2 were obtained.

【表】 同表によれば、高い硬さおよび比抵抗と共に、
軟磁気特性の極めて優れたアモルフアス合金であ
ることが判る。
[Table] According to the table, along with high hardness and specific resistance,
It can be seen that this is an amorphous alloy with extremely excellent soft magnetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明のアモルフアス合金を製造する装置
の一例を示す概略図である。 1……石英管、2……ノズル、3……原料金
属、4……加熱炉、5……回転ドラム、6……モ
ータ、7……銅板、8……エヤピストン、9……
アルゴンガス。
The figure is a schematic diagram showing an example of an apparatus for manufacturing the amorphous alloy of the present invention. 1... Quartz tube, 2... Nozzle, 3... Raw metal, 4... Heating furnace, 5... Rotating drum, 6... Motor, 7... Copper plate, 8... Air piston, 9...
argon gas.

Claims (1)

【特許請求の範囲】[Claims] 1 ボロンを7〜35原子%と、残部鉄およびコバ
ルトの何れか1種または2種を含み、保磁力
0.10Oe以下、最大透磁率60000以上、硬度Hv700
以上、比抵抗150μΩ―cm以上であることを特徴
とする高透磁率アモルフアス合金。
1 Contains 7 to 35 atomic% boron and the balance is one or two of iron and cobalt, and has a coercive force.
0.10Oe or less, maximum permeability 60000 or more, hardness Hv700
The above is a high magnetic permeability amorphous alloy characterized by a specific resistance of 150 μΩ-cm or more.
JP57154998A 1982-09-06 1982-09-06 Amorphous alloy with high magnetic permeability Granted JPS5848652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57154998A JPS5848652A (en) 1982-09-06 1982-09-06 Amorphous alloy with high magnetic permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57154998A JPS5848652A (en) 1982-09-06 1982-09-06 Amorphous alloy with high magnetic permeability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50001510A Division JPS5173920A (en) 1974-12-24 1974-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP60268996A Division JPS61243152A (en) 1985-11-29 1985-11-29 High magnetic premeability amorphous alloy and its production

Publications (2)

Publication Number Publication Date
JPS5848652A JPS5848652A (en) 1983-03-22
JPS6261662B2 true JPS6261662B2 (en) 1987-12-22

Family

ID=15596461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57154998A Granted JPS5848652A (en) 1982-09-06 1982-09-06 Amorphous alloy with high magnetic permeability

Country Status (1)

Country Link
JP (1) JPS5848652A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048334A (en) * 1990-04-25 1992-01-13 Haruo Miyata Cleaning method and its device for carpet and the like
JPH0441781A (en) * 1990-06-01 1992-02-12 Haruo Miyata Stain-resistant processing of carpet and device therefor
JPH0671043A (en) * 1992-08-04 1994-03-15 Japax Inc Device for cleaning coin

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152853A (en) * 1984-12-25 1986-07-11 日産自動車株式会社 Pressurized water feeder in water jet type loom
EP0422760A1 (en) * 1989-10-12 1991-04-17 Mitsubishi Rayon Co., Ltd Amorphous alloy and process for preparation thereof
US9540205B2 (en) 2014-02-27 2017-01-10 Kyocera Document Solutions Inc. Sheet sorting apparatus
CN110358985A (en) * 2019-08-21 2019-10-22 合肥工业大学 A method of improving Fe-Co-P-C system amorphous alloy electrocatalysis characteristic
CN113088835A (en) * 2020-11-10 2021-07-09 北京航空航天大学 Co-Ta-B-Si bulk amorphous alloy material used as neutron shield and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048334A (en) * 1990-04-25 1992-01-13 Haruo Miyata Cleaning method and its device for carpet and the like
JPH0441781A (en) * 1990-06-01 1992-02-12 Haruo Miyata Stain-resistant processing of carpet and device therefor
JPH0671043A (en) * 1992-08-04 1994-03-15 Japax Inc Device for cleaning coin

Also Published As

Publication number Publication date
JPS5848652A (en) 1983-03-22

Similar Documents

Publication Publication Date Title
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
US4299622A (en) Magnetic alloy
JPS6130404B2 (en)
CN111418035A (en) High permeability soft magnetic alloy and method for manufacturing high permeability soft magnetic alloy
CN100403627C (en) Iron-alloy band material for voice-coil motor magnetic circuit
JP3342767B2 (en) Fe-based soft magnetic alloy
JPS6020882B2 (en) Manufacturing method of magnetic head using high magnetic permeability amorphous alloy
JPS6261662B2 (en)
JP2778719B2 (en) Iron-based amorphous magnetic alloy containing cobalt
JPS5842741A (en) Wear resistant alloy with high permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JPS61243152A (en) High magnetic premeability amorphous alloy and its production
JPS581183B2 (en) High magnetic permeability amorphous alloy with high magnetic flux density and large squareness ratio
KR20210083203A (en) Soft magnetic alloy, soft magnetic alloy ribbon, method of manufacturing soft magnetic alloy ribbon, magnetic core, and component
JPH0742559B2 (en) Amorphous alloy ribbon for magnetic core with excellent space factor and method for producing the same
JPS6232267B2 (en)
JP2002053939A (en) METHOD FOR MANUFACTURING Fe-BASE SOFT MAGNETIC ALLOY MAGNETIC CORE
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method
JPS5942069B2 (en) Method for manufacturing amorphous alloy with high effective magnetic permeability
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPS5867848A (en) High permeability alloy thin strip
JPS6122023B2 (en)
JPS5867845A (en) High permeability alloy thin strip
JPS6159815B2 (en)
JPH0344406B2 (en)