JPS5942069B2 - Method for manufacturing amorphous alloy with high effective magnetic permeability - Google Patents

Method for manufacturing amorphous alloy with high effective magnetic permeability

Info

Publication number
JPS5942069B2
JPS5942069B2 JP51116579A JP11657976A JPS5942069B2 JP S5942069 B2 JPS5942069 B2 JP S5942069B2 JP 51116579 A JP51116579 A JP 51116579A JP 11657976 A JP11657976 A JP 11657976A JP S5942069 B2 JPS5942069 B2 JP S5942069B2
Authority
JP
Japan
Prior art keywords
temperature
magnetic permeability
alloy
amorphous alloy
effective magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51116579A
Other languages
Japanese (ja)
Other versions
JPS5343028A (en
Inventor
健 増本
啓安 藤森
公志 戸板
俊 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO
Original Assignee
TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO filed Critical TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO
Priority to JP51116579A priority Critical patent/JPS5942069B2/en
Publication of JPS5343028A publication Critical patent/JPS5343028A/en
Publication of JPS5942069B2 publication Critical patent/JPS5942069B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は磁気損失が小さく実効透磁率が大きく、かつ広
い温度範囲にわたつて実効透磁率の温度変化の小さい非
晶質合金を得る磁気特性改質方法に関するものである。
[Detailed Description of the Invention] The present invention relates to a method for modifying magnetic properties to obtain an amorphous alloy with low magnetic loss, high effective magnetic permeability, and small temperature change in effective magnetic permeability over a wide temperature range. .

従来(結晶構造を有する実効透磁率の大きい金属磁性材
料として、センタスト(Fe−Si−Al系合金)やパ
ーマロイ系の合金(Fe−Ni系合金)などがあり、そ
れぞれの特性に応じて多くの分野で使用されているが、
これらの合金にはなおそれぞれ特性上及び使用上の欠点
がある。
Conventional metal magnetic materials with a crystalline structure and high effective permeability include Centast (Fe-Si-Al alloy) and Permalloy alloy (Fe-Ni alloy), and there are many types depending on their characteristics. Although it is used in the field,
Each of these alloys still has its own drawbacks in properties and use.

Fe−Si−Al系合金であるセンタストはSi約10
%を含有する実効透磁率の大きい合金であるが、塑性加
工ができないという欠点を持つているので、特に高い硬
度と高い固有抵抗を有しているという特性が生かされる
特殊な用途、例、えば、VTR用磁気ヘッド素子等に限
つて特殊加工の上、使用されているにすぎない。
Centast, a Fe-Si-Al alloy, has Si of about 10
%, but it has the disadvantage of not being able to be plastically worked, so it is suitable for special applications where the characteristics of high hardness and high specific resistance are utilized, e.g. , it is only used after special processing in magnetic head elements for VTRs, etc.

パーマロイ系統の合金は弱電関係の鉄心として使用され
ており、なかでもNl78%を含有するパーマロイは透
磁率が非常に大きくローディングコイル、電気火災警報
器の変流器用鉄心、磁気ヘッド用素子として使用されて
いる。
Permalloy alloys are used as iron cores for weak electric currents, and permalloy, which contains 78% Nl, has extremely high magnetic permeability and is used as loading coils, current transformer cores for electric fire alarms, and magnetic head elements. ing.

しかし、その製造法は真空溶解、造塊、鍛造、圧延およ
び水素中、1100℃焼鈍等の幾多の工程を経てつくら
れるもので、これに要する燃料ならびに電力も多大であ
る。そのため終局的には原材料費のわりには高価な製品
となつている。最近、機器の進歩によりかこくな環境条
件のもとで使用される場合が多くなつてきており、これ
に満足する磁性材料が必要とされている。それ故、磁気
損失が小さく実効透磁率が大きく、かつ、広い温度範囲
にわたつて実効透磁率の変化の小さい優れた材料の開発
が望まれている。
However, the manufacturing method involves a number of steps such as vacuum melting, ingot making, forging, rolling, and annealing at 1100° C. in hydrogen, which requires a large amount of fuel and electricity. As a result, the product is ultimately expensive compared to the cost of raw materials. Recently, with advances in equipment, devices are increasingly being used under harsh environmental conditions, and there is a need for magnetic materials that satisfy these conditions. Therefore, it is desired to develop an excellent material that has low magnetic loss, high effective magnetic permeability, and small change in effective magnetic permeability over a wide temperature range.

本発明)ま、従来用いられている実効透磁率の大きい金
属材料が有する前記諸欠点のない、新規な、磁気損失が
小さく実効透磁率が大きく、広い温度範囲にわたつて実
効透磁率の温度変化の小さいJFe−Co−Ni(Si
、B)系非晶質合金を得る磁気特性改質方法を提供する
ことを目的とするものである。上記の目的を達成するた
めの発明の要旨とするところは、原子比率でFe3〜1
2%、Ni50%、以下、Si20%以下、B5〜25
%、Si+B20〜35%、を含み残部実質的にCoよ
りなる非晶質合金で、こ、の合金のキュリー温度が結晶
化温度以下であることを必要条件とするものであり、こ
の合金を、前熱処理のいかんにかかわらず、最終的に結
晶化温度以下、キユリ一温度以上から1分間に5℃以上
の割合で冷却することを特徴とする非晶質合金の磁気特
性改質方法である。
The present invention) is a novel material that does not have the above-mentioned drawbacks of conventionally used metal materials with high effective magnetic permeability, has low magnetic loss, high effective magnetic permeability, and changes in effective magnetic permeability over a wide temperature range. small JFe-Co-Ni (Si
, B) It is an object of the present invention to provide a method for modifying magnetic properties to obtain an amorphous alloy. The gist of the invention to achieve the above object is that Fe3-1 in atomic ratio
2%, Ni 50%, below, Si 20% or below, B5-25
%, Si + B 20 to 35%, and the balance is essentially Co. The Curie temperature of this alloy is below the crystallization temperature. A method for modifying the magnetic properties of an amorphous alloy, which is characterized by cooling at a rate of 5° C. or more per minute from a temperature below the crystallization temperature and above the Kyuri temperature, regardless of the preheat treatment.

かくして得られる非晶質合金は磁気損失が小さく、実効
透磁率が大きくかつ広い温度範囲にわたつて実効透磁率
の温度変化の小さい磁気特性をもつ合金である。
The amorphous alloy thus obtained has magnetic properties such as low magnetic loss, high effective magnetic permeability, and small temperature change in effective magnetic permeability over a wide temperature range.

通常、金属は固体状態では結晶状態であるが、ある特殊
な条件(合金組成、急冷凝固)下では固体状態でも液体
に類似した、結晶構造をもたない原子構造が得られる。
Normally, metals are in a crystalline state in the solid state, but under certain special conditions (alloy composition, rapid solidification), an atomic structure similar to that of a liquid can be obtained even in the solid state, without a crystalline structure.

この様な金属又は合金を非晶質合金又はアモルフアス金
属と呼ばれているO本発明者等は先に発明して特許出願
した高透磁率アモルフアス合金(特願昭50−1510
3)および高透磁率アモルフアス合金の磁気特性改質方
法(特願昭50−1509)につき高周波帯における、
磁気特性をさらに向上させるべく、熱処理条件等につい
て研究した結米磁気損失が小さく実効透磁率が大きく、
広い温度範囲にわたつて実効透磁率の温度変化の・J\
さい非晶質合金を得る磁気特性改質方法を新規に知つた
Such metals or alloys are called amorphous alloys or amorphous metals.
3) and a method for modifying the magnetic properties of a high magnetic permeability amorphous alloy (Japanese Patent Application No. 1509/1989) in a high frequency band.
In order to further improve the magnetic properties, we have researched heat treatment conditions, etc., and have low magnetic loss and high effective permeability.
・J\ of temperature change in effective magnetic permeability over a wide temperature range
We discovered a new method for modifying magnetic properties to obtain amorphous alloys.

第1表は本発明による磁気特性の改質方法で処理したと
きの非晶質合金の磁気損失実効透磁率、およびその温度
特性を、急冷状態のまま(熱処理前)の合金のものと、
従来から結晶金属軟磁性材料の代表として知られている
5−79M0パーマロイ(スーパーマロイ)の特性値と
で比較して示した。
Table 1 shows the magnetic loss effective permeability and temperature characteristics of the amorphous alloy when treated by the method for modifying magnetic properties according to the present invention, and the temperature characteristics of the alloy in the rapidly cooled state (before heat treatment).
A comparison is shown with the characteristic values of 5-79M0 permalloy (supermalloy), which is conventionally known as a representative crystalline metal soft magnetic material.

次に本発明で用いた,成分組成を有する非晶質合金を製
造する方法について説明する。
Next, a method for manufacturing the amorphous alloy having the chemical composition used in the present invention will be explained.

第1図は前記非晶質合金を製造する装置の一例を示す概
略図である。
FIG. 1 is a schematic diagram showing an example of an apparatus for producing the amorphous alloy.

この図において、1は下方先端に噴出するノズル2を有
する石英管で、その中には所定の成分組成を持つ様に配
合した原料金属3が装入され、溶解される。4は原料金
属を溶解するための加熱炉である。
In this figure, reference numeral 1 denotes a quartz tube having a nozzle 2 ejecting water at its lower end, into which raw metal 3 mixed to have a predetermined composition is charged and melted. 4 is a heating furnace for melting raw metal.

5はモーター等の回転機により高速度、例えば1500
〜5500r.p.mで回転される回転冷却部材(直径
20φ(ロ)である。
5 is a high speed using a rotating machine such as a motor, for example 1500
~5500r. p. A rotary cooling member (diameter 20φ (b)) rotated by m.

この冷却部材の材質は溶融材料を外周表面部6で薄帯状
の形で凝固させる様、な冷却速度で、溶融材料から熱を
除去し得るものであれば良く、銅、鉄、アルミニウム、
合金等の良好な熱伝導率を有している材料が好適である
。8は石英管1を支持して上下に移動するためのエアピ
ストンである。
The material of this cooling member may be any material as long as it can remove heat from the molten material at a cooling rate that solidifies the molten material in the form of a thin ribbon on the outer peripheral surface 6, such as copper, iron, aluminum, etc.
Materials with good thermal conductivity, such as alloys, are preferred. 8 is an air piston for supporting the quartz tube 1 and moving it up and down.

原料金属は、先ず石英管1の送入口1aより流体搬送等
により装入され加熱炉4の位置で加熱溶解され、次いで
エアピストン8により、ノズル2が冷却部材の外周表面
部6に対向する如く、石英管1が図に示す位置に下降さ
れたとほぼ同時に溶融金属3にガス圧力功nえられて、
溶融金属が冷却音附の外周表面部6に向つて噴流する。
石英管内部へは金属3の酸化を防ぐため絶えず不活性ガ
ス、例えばアルゴンガス9を送入し不活性雰囲気として
おくものとする。噴流された溶融金属は高速回転してい
る冷却部材の外周表面部に接触すると同時に超高速冷却
(104℃/Sec以上)が与えられて瞬時に凝固し、
薄帯状の非晶質合金10となる。本発明で使用された非
晶質合金は一般の非晶質合金と同じく、その成分組成に
応じて、ある温度で結晶性金属または合金に変化する結
晶化温度をもつている。
The raw metal is first charged through the inlet 1a of the quartz tube 1 by fluid conveyance, heated and melted in the heating furnace 4, and then heated by the air piston 8 so that the nozzle 2 faces the outer peripheral surface 6 of the cooling member. Almost at the same time as the quartz tube 1 was lowered to the position shown in the figure, gas pressure was applied to the molten metal 3.
The molten metal jets toward the outer peripheral surface portion 6 with a cooling sound.
In order to prevent oxidation of the metal 3, an inert gas such as argon gas 9 is constantly fed into the quartz tube to create an inert atmosphere. The jetted molten metal contacts the outer circumferential surface of the cooling member that is rotating at high speed, and at the same time is given ultra-high speed cooling (104°C/Sec or more) and instantly solidifies.
A ribbon-shaped amorphous alloy 10 is obtained. The amorphous alloy used in the present invention, like general amorphous alloys, has a crystallization temperature at which it changes to a crystalline metal or alloy at a certain temperature, depending on its component composition.

非晶質合金が結晶化すると非晶質合金としての特性が失
われることになるので本発明において熱処理温度は結晶
化温度以下でなければならない。第2表に本発明で用い
た非晶質合金の成分組成と結晶化温度を示す。結晶化温
度は示差比熱曲線における発熱の開始温度とする。なお
、元素記号の右下に表示さイ一tている数値は原子比率
(へ)を示す。第2表から明らかな如く、非晶質合金は
その組成により結晶化温度が異なるので本発明の方法に
おいても、成分組成に応じた熱処理温度を選択する必要
がある。
When an amorphous alloy crystallizes, it loses its properties as an amorphous alloy, so in the present invention, the heat treatment temperature must be below the crystallization temperature. Table 2 shows the composition and crystallization temperature of the amorphous alloy used in the present invention. The crystallization temperature is the temperature at which heat generation starts in the differential specific heat curve. Note that the numerical value displayed at the bottom right of the element symbol indicates the atomic ratio. As is clear from Table 2, since the crystallization temperature of an amorphous alloy differs depending on its composition, also in the method of the present invention, it is necessary to select a heat treatment temperature according to the component composition.

第2表で示した成分組成を持゛つ合金を前記の製造装置
で非晶質合金をつくつた。
An amorphous alloy having the composition shown in Table 2 was produced using the above manufacturing apparatus.

得られた非晶質合金の形状はそれぞれ厚さ約20〜24
μM..幅約0.8mm1長さ約10mの薄帯である。
この薄帯を適当な長さに切つて合金の磁気特性を測定し
た。直流磁(ヒ特性としての磁束密度(B)及び保磁力
(Hc)は上記の薄帯を長さ20礪に切つてCOiff
i型のB−Hループ積分器で測定した。実効透磁率(瑚
)は薄帯状試料に層間絶縁材MgO粉末を塗布しながら
直径15mm(7)環状磁器に巻つけてトロイダルコア
(巻コア)としてマツクスウエルブリツヂを用いて、周
波数1kHz,3kHz,10kHz,100kHz1
各々の測定磁界16(MOe)で測定した。磁気損失(
WattlOss,W/K9)はマツクスウエルブリツ
ヂで周波数10kHzで測定した。第3表に本発明の熱
処理条件を研究するために使用した非晶質合金のキユリ
一温度と急冷状態のまま(熱処理前)の薄帯を上記の如
くトロイダルにして測定したときの実効透磁率の周波数
特囲と磁気損失を示す。第2図は第3表の成分組成を持
つ非晶質合金A〜Eを400℃で20分間カロ熱した後
で1分間5℃の割合で冷却し横軸の空冷開始温度に達し
たときに空冷した合金の実効透磁率を夫々の空冷開始温
度についてプロツトして示したものである。
The shapes of the resulting amorphous alloys each have a thickness of approximately 20 to 24 mm.
μM. .. It is a thin strip with a width of about 0.8 mm and a length of about 10 m.
This ribbon was cut into appropriate lengths and the magnetic properties of the alloy were measured. Direct current magnetism (Magnetic flux density (B) and coercive force (Hc) as characteristics are determined by cutting the above ribbon into 20 cm long
It was measured with an i-type B-H loop integrator. The effective magnetic permeability (Ko) was measured by applying MgO powder as an interlayer insulating material to a thin strip sample, wrapping it around a ring-shaped porcelain with a diameter of 15 mm (7), and using a Maxwell bridge as a toroidal core (wound core), at a frequency of 1 kHz, 3kHz, 10kHz, 100kHz1
Measurements were made at each measurement magnetic field of 16 (MOe). Magnetic loss (
WattlOss, W/K9) was measured with a Maxwell bridge at a frequency of 10 kHz. Table 3 shows the Curie temperature and effective magnetic permeability of the amorphous alloy used to study the heat treatment conditions of the present invention and the effective magnetic permeability when the rapidly cooled ribbon (before heat treatment) was made toroidal as described above. shows the frequency range and magnetic loss of Figure 2 shows amorphous alloys A to E having the compositions shown in Table 3 heated at 400℃ for 20 minutes and then cooled at a rate of 5℃ for 1 minute until the air cooling start temperature on the horizontal axis is reached. The effective magnetic permeability of the air-cooled alloy is plotted for each air-cooling start temperature.

但し、140゜C以下の冷却は1分間に2.5℃の割合
であつた。図中のA,B,C,D,Eは第3表の成分組
成をもつ合金と対応する記号であり、矢印はそれぞれの
合金のキユリ一温度を示す。
However, cooling below 140°C was at a rate of 2.5°C per minute. A, B, C, D, and E in the figure are symbols corresponding to the alloys having the compositions shown in Table 3, and the arrows indicate the temperature of each alloy.

この図から明らかな如く、実効透磁率の最大となる空冷
開始温度は合金のキユリ一温度に依存していることがわ
かる。
As is clear from this figure, the air cooling start temperature at which the effective magnetic permeability becomes maximum depends on the temperature of the alloy.

即ち、非晶質合金のキユリ一温度よりも低い温度まで冷
却された合金の実効透磁率は著しく低下する。この低下
は、キユリ一温度以下での徐冷によつて生ずることから
、゛誘導磁気異方性による磁壁の固着効果にもとづくも
のと思われる。第2図Aは第3表の組成を有する非晶質
合金A〜Iを450℃で20分間カロ熱した後に、水冷
、空冷および約150℃/Hrの降温によつて冷却した
際の実効透磁率(μe)とキユリ一温度(Tc)との関
係について示す。
That is, the effective magnetic permeability of an alloy cooled to a temperature lower than the Kiri temperature of an amorphous alloy decreases significantly. Since this decrease occurs due to slow cooling below the Curie temperature, it is thought to be based on the fixation effect of the domain wall due to induced magnetic anisotropy. Figure 2A shows the effective permeability of amorphous alloys A to I having the compositions shown in Table 3, which were heated at 450°C for 20 minutes and then cooled by water cooling, air cooling, and cooling at a rate of approximately 150°C/Hr. The relationship between magnetic constant (μe) and Curly temperature (Tc) will be shown.

この結果、μeは冷却速度が大きい場合には合金のTc
の高低に無関係に常に大きな値を示すが、冷却速度が遅
くなるに従つてTcの高い合金ほどμeは著しく低下す
ることが分る。
As a result, μe becomes Tc of the alloy when the cooling rate is large.
Although μe always shows a large value regardless of the level of Tc, it can be seen that as the cooling rate becomes slower, the higher the Tc of the alloy, the more the μe decreases.

なお、この図で示す様に、ガラス化元素の総量(Si+
B)が29〜32at%を含む合金のμeは上記の冷却
方法によつても著しい変化を示さないことから、μeの
熱的安定性においてもすぐれていることが分る。
Furthermore, as shown in this figure, the total amount of vitrification elements (Si+
The μe of the alloy containing 29 to 32 at % of B) does not change significantly even with the above cooling method, which indicates that the alloy has excellent thermal stability of μe.

これらの結果から、非晶質合金を結晶化温度以下で熱処
理し、その温度から急冷もしくは合金のキユリ一温度以
上から急冷することによつて、第3表の熱処理前のもの
に比較して、実効透磁率及び以下の実施例にて示す如く
、磁気損失及び透磁率の温度特性について著しく改善さ
れる事が分つた。
From these results, it can be seen that by heat treating the amorphous alloy below the crystallization temperature and rapidly cooling it from that temperature, or by rapidly cooling it from above the crystallization temperature of the alloy, compared to the one before heat treatment shown in Table 3, As shown in the effective magnetic permeability and the following examples, it was found that the temperature characteristics of magnetic loss and magnetic permeability were significantly improved.

なお、急冷の際の最低速度は合金組成によつて異なる。Note that the minimum speed during rapid cooling varies depending on the alloy composition.

一般のキユリ一温度の低い合金では、最低速度は小さく
とりうるが、キユリ一温度の高い合金では大きくしなけ
ればならない。本発明における1分間に5℃以上の冷却
速度はその最低速度である。本発明方法に適する非晶質
合金について、各成分の含有量を限定する理由は次の如
くである。
For alloys with a general low temperature, the minimum speed can be set small, but for alloys with a high temperature, it must be increased. In the present invention, a cooling rate of 5° C. or more per minute is the lowest cooling rate. The reason for limiting the content of each component in the amorphous alloy suitable for the method of the present invention is as follows.

Bは非晶質化を助成する元素であるが、5%未満の場合
と25%をこえた場合には非晶質合金の製造が困難にな
り、かつ合金を脆化させるので5〜25%の範囲内にす
る必要がある。Siは合金組織の非晶質化を助成し、か
つ透磁率を高め、保磁力を減少させる有効な元素である
。特にCO基非晶質合金の場合に顕著な効果がある。し
かし20?をこえてもそれほど透磁率を向上せず、合金
のキユリ一温度を著しく低下させるだけであるのでSi
2O%以下にする必要がある。又、Si+Bが20%以
下の合金では本発明の熱処理効果が有効に作用されず、
35%以上では非晶質合金の製造が困難になり、かつ合
金を脆化させるので20〜35%の範囲内にする必要が
ある。Feは3%より少ないとき、および12%より多
いときは磁歪が増し、本発明による熱処理方法を用いて
も高い実効透磁率が得られないので、3〜12%の範囲
内にする必要がある。Nlは、透磁率を向上させる元素
であるが50%をこえると飽和磁束密度を減少させると
共に合金のキユリ一温度が室温近くになり、実用材料と
して利用価値が半減するので50%以『とする必要があ
る。次に本発明の有効性を実施例に従つて説明する。
B is an element that promotes amorphization, but if it is less than 5% or exceeds 25%, it will be difficult to manufacture an amorphous alloy and the alloy will become brittle, so it should be 5 to 25%. Must be within the range. Si is an effective element that helps make the alloy structure amorphous, increases magnetic permeability, and reduces coercive force. This is particularly effective in the case of CO-based amorphous alloys. But 20? Si
It is necessary to keep it below 20%. In addition, the heat treatment effect of the present invention is not effectively applied to alloys in which Si+B is 20% or less.
If it exceeds 35%, it becomes difficult to manufacture an amorphous alloy and the alloy becomes brittle, so it is necessary to keep it within the range of 20 to 35%. When Fe is less than 3% and when it is more than 12%, magnetostriction increases and high effective magnetic permeability cannot be obtained even by using the heat treatment method of the present invention, so it is necessary to keep it within the range of 3 to 12%. . Nl is an element that improves magnetic permeability, but if it exceeds 50%, it decreases the saturation magnetic flux density and the temperature of the alloy becomes close to room temperature, which reduces its utility as a practical material by half, so it should be kept at 50% or more. There is a need. Next, the effectiveness of the present invention will be explained based on examples.

実施例 1(FeO.O8cOO.72NlO.2O)
74si10B16の成分組成を有する合金を前述の製
造方法で非晶質合金をつくつた。
Example 1 (FeO.O8cOO.72NlO.2O)
An amorphous alloy having a composition of 74si10B16 was prepared by the above-described manufacturing method.

得られた非晶質合金の形状は厚さ約24μM..幅約0
.8mm長さ約10mの薄帯である。この試料の磁気特
性の測定方法は前述の通りである。第3図は,急冷状態
の非晶質合金を各熱処理温度で20分間カロ熱した後に
空冷して測定したときの磁束密度B2O(20エルステ
ロドの磁界中で測定した値)、残留,磁束密度Br、保
磁力HCl実効透磁率μeの変化を示す。
The shape of the obtained amorphous alloy is approximately 24 μM thick. .. Width approx. 0
.. It is a thin strip with a length of 8 mm and a length of approximately 10 m. The method for measuring the magnetic properties of this sample was as described above. Figure 3 shows the magnetic flux density B2O (value measured in a magnetic field of 20 oersterod), residual magnetic flux density Br, and magnetic flux density B2O (value measured in a magnetic field of 20 oersterod) when a rapidly cooled amorphous alloy was heated at each heat treatment temperature for 20 minutes and then air cooled. , shows the change in coercive force HCl effective permeability μe.

この図で薄帯の保磁力は250′Cの熱処理温度から減
少し、475℃付近で極値〔Hc+0.0010(0e
)〕を示すと共に、実効透磁率も急激に向上する。更に
高温側で処理すると、結晶化温度に近づくに従つて保磁
力が増加すると共に、実効透磁率は急激に減少する。第
4表は450℃で20分間力n熱し、上記の冷却条件と
同様に1分間に5℃の割合で冷却しこの合金のキユリ一
温度(273℃)以上の350℃から空冷したときの実
効透磁率の周波数特性及び磁気損失を示す。
In this figure, the coercive force of the ribbon decreases from the heat treatment temperature of 250'C, and reaches its extreme value at around 475°C [Hc + 0.0010 (0e
)], and the effective magnetic permeability also increases rapidly. When treated at a higher temperature, the coercive force increases and the effective permeability rapidly decreases as the temperature approaches the crystallization temperature. Table 4 shows the effective performance of this alloy when heated at 450°C for 20 minutes, cooled at a rate of 5°C per minute in the same way as the cooling conditions above, and air-cooled from 350°C, which is higher than the temperature of this alloy (273°C). The frequency characteristics of magnetic permeability and magnetic loss are shown.

第4図は実効透磁率の温度特性を、熱処理前と熱処理後
のものについて比較して示した。第4表、および第4図
で示される如くこの合金に上記の熱処理をほどこすこと
によつて磁気損失、実効透磁率およびその温度特性と共
に大巾に改善されることが分る。成分組成を有する合金
を前述の製造方法によつて非晶質合金をつくつた。
FIG. 4 shows a comparison of the temperature characteristics of effective magnetic permeability before and after heat treatment. As shown in Table 4 and FIG. 4, it can be seen that by subjecting this alloy to the above heat treatment, magnetic loss, effective magnetic permeability, and its temperature characteristics are greatly improved. An amorphous alloy having the above-mentioned composition was produced by the above-described production method.

得られた非晶質合金の形状は厚さ約24μm1幅約0.
8mms長.さ約10mの薄帯である。第5表は、40
0℃で20分間加熱し、前述の冷却条件と同様に1分間
に5℃の割合で冷却し、250℃から空気中で空冷した
ときの実効透磁率の周波数特性および磁気損失を示す。
第5図は実効透磁率の温度特性を示したもので、上記条
件で熱処理したものと熱処理前のものとを比較して示し
た。第5表および第5図で示される如く、この合金に上
記の熱処理をほどこすことによつて磁気損失、実効透磁
率及びその温度特性と共に大巾に改善されることが分る
The shape of the obtained amorphous alloy is approximately 24 μm thick and approximately 0.0 μm wide.
8mms length. It is a thin ribbon about 10 meters long. Table 5 shows 40
The frequency characteristics of effective magnetic permeability and magnetic loss when heated at 0° C. for 20 minutes, cooled at a rate of 5° C. per minute in the same manner as the cooling conditions described above, and cooled in air from 250° C. are shown.
FIG. 5 shows the temperature characteristics of the effective magnetic permeability, and shows a comparison between those heat-treated under the above conditions and those before heat treatment. As shown in Table 5 and FIG. 5, it can be seen that by subjecting this alloy to the above-described heat treatment, magnetic loss, effective magnetic permeability, and its temperature characteristics are greatly improved.

を有する合金を前述の製造方法によつて非晶質合金をつ
くつた。
An amorphous alloy was prepared using the above-mentioned manufacturing method.

得られた非晶質合金の形状は厚さ約23μm1幅約0.
8mへ長さ約10mの薄帯である。この試料の磁気特性
の測定方法は前述の通りである。第6表は空気中380
℃で60分間加熱し、1分間に5℃の割合で冷却し、こ
の合金のキユリ一温度(28「C)以上の300℃から
空冷したときの実効透磁率の周波数特性を示す。第6図
は、その温度特性を、熱処理前のものとの比較で示した
。第6表および第6図で示される如く、この合金に上記
条件の熱処理をほどこすことによつて磁気損失、実効透
磁率およびその温度特性ともに大巾に改善されることが
分る。
The shape of the obtained amorphous alloy is approximately 23 μm thick and approximately 0.0 μm wide.
It is a ribbon with a length of about 10 m to 8 m. The method for measuring the magnetic properties of this sample was as described above. Table 6 shows 380 in air.
℃ for 60 minutes, cooled at a rate of 5℃ per minute, and air-cooled from 300℃ above the Kyuri temperature (28"C) of this alloy. Figure 6 shows the frequency characteristics of effective magnetic permeability. showed its temperature characteristics by comparing it with that before heat treatment.As shown in Table 6 and Figure 6, by applying heat treatment to this alloy under the above conditions, magnetic loss, effective magnetic permeability It can be seen that both the temperature characteristics and the temperature characteristics are greatly improved.

実施例 4 第7表は実施例1で用いた成分組成を持つ合金を450
℃で20分間加熱し1分間に4℃の割合で冷却し、この
合金のキユリ一温度(273℃)以下の200℃から空
冷したときの実効透磁率の周波数特性と上記熱処理した
この合金をキユリ一温度以上の300℃で20分間v口
熱し、その温度から空冷したときの磁気損失、実効透磁
率の周波数特性をあわせて示す。
Example 4 Table 7 shows 450 alloys having the composition used in Example 1.
℃ for 20 minutes, cooled at a rate of 4℃ per minute, and then air-cooled from 200℃ below the Kyuri temperature (273℃) of this alloy. It also shows the frequency characteristics of magnetic loss and effective magnetic permeability when heated at 300°C, which is one temperature or higher, for 20 minutes and air cooled from that temperature.

第7図は再熱処理をほどこしたときの実効透磁率の温度
特性を示す。
FIG. 7 shows the temperature characteristics of effective magnetic permeability when subjected to reheat treatment.

第7表および第7図で示される如く、合金のキユリ一温
度以下の徐冷によつて実効透磁率が著しく低下した試料
を、その合金のキユリ一温度以上に再加熱し、急冷する
ことによつて、実施例1で得られた熱処理後の磁気特性
とほぼ同じ特性のものになることが分つた。
As shown in Table 7 and Figure 7, samples whose effective magnetic permeability has significantly decreased due to slow cooling below the temperature of the alloy are reheated to the temperature above the temperature of the alloy and rapidly cooled. Therefore, it was found that the magnetic properties after heat treatment obtained in Example 1 were almost the same.

実施例 5 (FeO.O62cOO,938)70si19B11
の成分組成を有する合金を前述の製造方法によつて、非
晶質合金をつくつた。
Example 5 (FeO.O62cOO,938)70si19B11
An amorphous alloy was produced using the above-mentioned manufacturing method.

得られた非晶質合金の形状は厚さ約20μm1幅約0.
8mm長さ約10mの薄帯である。この試料の磁気特性
の測定方法は前述の通りである。第8表は空気中450
℃で60分間加熱し、1分間に5℃の割合で冷却したと
きの実効透磁率の周波数特性および磁気損失を示す。第
8図はその温度特性を第9図は100℃で10000分
までの時効による実効透磁率の変化を示す。第8表およ
び第8図で示される如く、この合金に上記の条件の熱処
理をほどこずことによつて磁気損失、実効透磁率および
温度特性ともに大巾に改善される、また、第9図で示さ
れる如く、この合金の実効透磁率は100℃で1000
0分間の時効によつてもほとんど変化しないことが分る
The shape of the obtained amorphous alloy is approximately 20 μm thick and approximately 0.0 μm wide.
It is a thin strip with a length of 8 mm and a length of approximately 10 m. The method for measuring the magnetic properties of this sample was as described above. Table 8 shows 450 in air.
It shows the frequency characteristics of effective magnetic permeability and magnetic loss when heated at ℃ for 60 minutes and cooled at a rate of 5 ℃ per minute. FIG. 8 shows its temperature characteristics, and FIG. 9 shows the change in effective magnetic permeability due to aging at 100° C. for up to 10,000 minutes. As shown in Table 8 and Figure 8, by subjecting this alloy to heat treatment under the above conditions, magnetic loss, effective magnetic permeability, and temperature characteristics are all significantly improved. As shown, the effective magnetic permeability of this alloy is 1000 at 100°C.
It can be seen that there is almost no change even after aging for 0 minutes.

以上、これらの実施例から明らかな如く、前述の成分組
成を有する非晶質合金の磁気特性は本発明の磁気特性改
質方法を用いるこ吉によつて大巾に改善されることが分
つた。
As is clear from these examples, it was found that the magnetic properties of the amorphous alloy having the above-mentioned composition were greatly improved by using the magnetic property modification method of the present invention. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非晶質合金を製造する装置の一例を示す概略図
、第2図はそれぞれの成分組成を有する非晶質合金の空
冷開始温度に対する実効透磁率の変化を示す図、第2図
Aはそれぞれの成分組成を有する非晶質合金の実効透磁
率とそのキユリ一温度との関係を示す図、第3図は(F
eO.O8COO.72NlO.2O)74Si,0B
,6の成分組成を有する非晶質合金の熱処理温度による
直流磁化特性および実効透磁率の変化を示す図、第4図
は(FeO.O8COO.72NlO.2O)74Si
,0B16の成分組成を有する非晶質合金の実効透磁率
の温度特性を示す図、第5図は(FeO.O95cOO
.5O5NlO.4O)76Si10B14の成分組成
を有する非晶質合金の実効透磁率の温度特性を示す図、
第6図は(FeO.O62cOO.938)78Si1
7B10の成分組成を有する非晶質合金の実効透磁率の
温度特性を示す図、第7図は(FeO.O8OcOO.
72NlO.2O)74si10B16の成分組成を有
する非晶質合金を300℃で再処理したときの実効透磁
率の温度特性を示す図、第8図は(FeO.O62cO
O.938)70si19B11の成分組成を有する非
晶質合金の熱処理後の温度特性を示す図、第9図は)(
FeO.O62cOO.938)70si19B11の
成分組成を有する非晶質合金の時効による実効透磁率の
変化を示す図。 1・・・・・・石英管、2・・・・・・ノズス、3・・
・・・・原料金属、4・・・・・・加熱炉、5・・・・
・・回転冷却部材、6・・・・・・外周表面部。
Fig. 1 is a schematic diagram showing an example of an apparatus for manufacturing an amorphous alloy, Fig. 2 is a diagram showing changes in effective magnetic permeability with respect to air cooling start temperature of amorphous alloys having respective component compositions, Fig. 2 A is a diagram showing the relationship between the effective magnetic permeability of amorphous alloys having respective component compositions and their temperature, and Figure 3 is (F
eO. O8COO. 72NlO. 2O)74Si,0B
, 6 is a diagram showing changes in direct current magnetization characteristics and effective magnetic permeability due to heat treatment temperature of an amorphous alloy having a component composition of (FeO.O8COO.72NlO.2O)74Si
, 0B16.
.. 5O5NlO. A diagram showing the temperature characteristics of effective magnetic permeability of an amorphous alloy having a component composition of 4O)76Si10B14,
Figure 6 shows (FeO.O62cOO.938)78Si1
FIG. 7 is a diagram showing the temperature characteristics of effective magnetic permeability of an amorphous alloy having a component composition of 7B10 (FeO.O8OcOO.
72NlO. 2O)74si10B16 is a diagram showing the temperature characteristics of effective magnetic permeability when reprocessed at 300°C.
O. 938) A diagram showing the temperature characteristics after heat treatment of an amorphous alloy having a component composition of 70si19B11, Figure 9 is) (
FeO. O62cOO. 938) A diagram showing changes in effective magnetic permeability due to aging of an amorphous alloy having a component composition of 70si19B11. 1...Quartz tube, 2...Nozusu, 3...
... Raw metal, 4 ... Heating furnace, 5 ...
...Rotating cooling member, 6...Outer peripheral surface part.

Claims (1)

【特許請求の範囲】[Claims] 1 原子比率Fe3〜12%、Ni50%以下、Si2
0%以下、B5〜25%、Si+B20〜35%、を含
み残部実質的にCoよりなる非晶質合金で、キュリー温
度が結晶化温度以下である非晶質合金を前熱処理のいか
んにかかわらず、最終的に結晶化温度以下で、キュリー
温度以上の温度から1分間に5℃以上の割合で冷却する
ことを特徴とする磁気損失が小さく、実効透磁率が大き
く、広い温度範囲にわたつて実効透磁率の温度変化の小
さい非晶質合金を得る磁気特性改質方法。
1 Atomic ratio Fe3~12%, Ni50% or less, Si2
0% or less, B5 to 25%, Si + B20 to 35%, and the remainder is substantially Co, and the Curie temperature is below the crystallization temperature, regardless of the preheat treatment. It is characterized by low magnetic loss, high effective magnetic permeability, and effective over a wide temperature range. A method for modifying magnetic properties to obtain an amorphous alloy with small temperature change in magnetic permeability.
JP51116579A 1976-09-30 1976-09-30 Method for manufacturing amorphous alloy with high effective magnetic permeability Expired JPS5942069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51116579A JPS5942069B2 (en) 1976-09-30 1976-09-30 Method for manufacturing amorphous alloy with high effective magnetic permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51116579A JPS5942069B2 (en) 1976-09-30 1976-09-30 Method for manufacturing amorphous alloy with high effective magnetic permeability

Publications (2)

Publication Number Publication Date
JPS5343028A JPS5343028A (en) 1978-04-18
JPS5942069B2 true JPS5942069B2 (en) 1984-10-12

Family

ID=14690604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51116579A Expired JPS5942069B2 (en) 1976-09-30 1976-09-30 Method for manufacturing amorphous alloy with high effective magnetic permeability

Country Status (1)

Country Link
JP (1) JPS5942069B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268325A (en) * 1979-01-22 1981-05-19 Allied Chemical Corporation Magnetic glassy metal alloy sheets with improved soft magnetic properties
JPS55148752A (en) * 1979-05-11 1980-11-19 Nippon Steel Corp Formation method of coating on metal surface
JPS61225803A (en) * 1985-03-30 1986-10-07 Toshiba Corp Magnet core and manufacture thereof
CN113444954B (en) * 2021-06-01 2021-12-21 中国矿业大学 Ni-Co-Fe-B series eutectic high-entropy alloy and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165395A (en) * 1974-10-21 1976-06-05 Western Electric Co
JPS5173923A (en) * 1974-12-24 1976-06-26 Tohoku Daigaku Kinzoku Zairyo
JPS52138430A (en) * 1976-05-14 1977-11-18 Western Electric Co Electroomagnetic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253819Y2 (en) * 1972-07-13 1977-12-06

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165395A (en) * 1974-10-21 1976-06-05 Western Electric Co
JPS5173923A (en) * 1974-12-24 1976-06-26 Tohoku Daigaku Kinzoku Zairyo
JPS52138430A (en) * 1976-05-14 1977-11-18 Western Electric Co Electroomagnetic apparatus

Also Published As

Publication number Publication date
JPS5343028A (en) 1978-04-18

Similar Documents

Publication Publication Date Title
JP6849023B2 (en) Manufacturing method of nanocrystal alloy magnetic core
JPS6130404B2 (en)
JP2007182594A (en) Amorphous alloy thin strip, nano-crystalline soft magnetic alloy, and magnetic core composed of nano-crystalline soft magnetic alloy
JPH0368108B2 (en)
JP2008231463A (en) Fe-BASED SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY STRIP, AND MAGNETIC COMPONENT
JP2009108415A (en) Amorphous alloy composition
JPS5934781B2 (en) Method for reducing magnetic hysteresis loss of soft magnetic amorphous alloy ribbon material
JPS6034620B2 (en) Amorphous alloy with extremely low iron loss and good thermal stability
WO1994014994A1 (en) AMORPHOUS Fe-B-Si-C ALLOYS HAVING SOFT MAGNETIC CHARACTERISTICS USEFUL IN LOW FREQUENCY APPLICATIONS
US5593513A (en) Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications
JPS6362579B2 (en)
KR100227923B1 (en) Fe-b-si alloys exhibiting enhanced ac magnetic properties and handleability
EP2320436B1 (en) Amorphous magnetic alloys, associated articles and methods
JPS5942069B2 (en) Method for manufacturing amorphous alloy with high effective magnetic permeability
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
US2783170A (en) Magnetic material and process of making it
JPS5834162A (en) Manufacture of amorphous alloy having high magnetic aging resistance and its thin strip
JPS581183B2 (en) High magnetic permeability amorphous alloy with high magnetic flux density and large squareness ratio
JPH0219442A (en) High saturated magnetic flux density ferrous alloy having superfine crystalline structure
Luborsky et al. Engineering magnetic properties of Fe-Ni-B amorphous alloys
JPH03271346A (en) Soft magnetic alloy
JPS6323242B2 (en)
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method
JPH02175813A (en) Manufacture of amorphous magnetic alloy foil
KR950009884B1 (en) Armorphous magnetic alloy and the manufacturing method therof of fe-hf-b system having high-permeability and low coercive force