JPS6258775B2 - - Google Patents

Info

Publication number
JPS6258775B2
JPS6258775B2 JP8936182A JP8936182A JPS6258775B2 JP S6258775 B2 JPS6258775 B2 JP S6258775B2 JP 8936182 A JP8936182 A JP 8936182A JP 8936182 A JP8936182 A JP 8936182A JP S6258775 B2 JPS6258775 B2 JP S6258775B2
Authority
JP
Japan
Prior art keywords
group
neutral hydrophilic
hydrophilic group
amidoxime
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8936182A
Other languages
Japanese (ja)
Other versions
JPS58205545A (en
Inventor
Isao Ishigaki
Takanobu Sugo
Jiro Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP8936182A priority Critical patent/JPS58205545A/en
Publication of JPS58205545A publication Critical patent/JPS58205545A/en
Publication of JPS6258775B2 publication Critical patent/JPS6258775B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、各種水溶液中に溶存するウランを選
択的に且つ効率よく吸着するウラン吸着材および
その製造方法に関する。本発明の特徴は、放射線
グラフト法により、有機系、無機系またはこれら
の複合材から成る基材に、中性親水基または中性
親水基に変換し得る官能基を含有する単量体及び
シアン基(−CN)を含有する単量体を、同時ま
たは逐次にグラフトし、グラフト重合体に親水性
を付与することによつてシアン基のアミドキシム
化を容量且つ効率よく進めるとともに、中性親水
基とアミドキシム基を共存させることによつて選
択吸着性および吸着効率の優れたウラン吸着材を
任意の形状で製造できる点にある。 資源の乏しいわが国では、環境保全のみならず
資源の有効利用の観点から、海水、河川水、鉱・
工業廃水などに溶存する有用物質の分離・回収に
種々な分離技術が開発されている。各種水溶液中
に溶存する重金属類の選択的な分離および回収に
は、目的とするイオン種と錯体を形成する化合物
が有用である。海水中には約3μg/のウラン
が溶存しているが、このウランの吸着材として、
チタン酸、活性炭−チタン酸などの無機化合物と
ともに、有機系の大環状ヘキサケトン、ヘキサカ
ルボン酸、アミドキシム樹脂などが知られてい
る。有機化合物は、種々な形状に加工しやすいと
いう利点があるが、上述の有機化合物を吸着材と
して利用するためには、水に不溶性の高分子への
担持或いは橋かけ構造の導入による水不溶化が不
可欠であり、実用化するためには種々な問題点が
ある。例えば、大環状ヘキサケトンやヘキサカル
ボン酸などは、ポリスチレンなどの高分子に担持
する必要があり、またアミドキシム樹脂は、シア
ン基を含有した高分子をアミドキシム化して得ら
れるが、樹脂としての機械的強度、耐膨潤性など
を付与するために、ジビニルベンゼンのような多
官能性単量体との共重合による橋かけ構造の導入
が必要である。これら高分子への担持或いは共重
合体では、ポリマーの組成、分子量、橋かけ密度
などによつては、任意の形状に成型するのが困難
な場合がある。また、吸着性能を高くするために
は、官能基濃度をできるだけ高くする必要がある
が、アクリロニトリルなどのシアン基含有単量体
の重合或いはこれらとジビニルベンゼンとの共重
合によつて得られた重合体は疎水性であり、ヒド
ロキシルアミンによるアミドキシム化に際して、
アルコールなどの有機溶媒を必要とするのみなら
ず、反応を高温、長時間で行わねばならず、副反
応が起り易いという欠点もある。 本発明者らは、放射線グラフト重合による各種
の材料の改質に関する研根過程で、放射線グラフ
ト法の利用により、上述の欠点を解消するととも
に、吸着性能および機械的性質のより優れたウラ
ン吸着材を製造し得ることを見出し本発明を完成
した。すなわち、本発明者らはシアン基含有単量
体と中性親水基または中性親水基に変換し得る官
能基を含有した単量体とを、種々な基材に、同時
または逐次にグラフトし、グラフト重合体に親水
性を付与することによつてアミドキシム化が極め
て容易であり、且つ中性親水基とアミドキシム基
が共存することによつて、ウラン吸着性能が極め
て優れ、さらに基材の選択により任意の形状で、
しかも機械的強度および耐久性に優れたウラン吸
着材が製造され得ることを見出した。 従つて本発明の主目的は任意の形状の有機系、
無機系又はこれらの複合材からなる基材にアミド
キシム基および中性親水基が同時に共存している
ウラン吸着材を提供することである。又、本発明
の更なる目的は任意の形状の有機系、無機系又は
これら複合材から成る基材に予め電離性放射線を
照射した後シアン基を含有する重合体で且つその
重合体をヒドロキシルアミンと反応させることに
よつて該シアン基をアミドキシムに変換し得る重
合性単量体の1種又は2種以上および中性親水基
又は中性親水基に変換し得る官能基を含有する重
合性単量体の1種又は2種以上を接触させまたは
該基材と該両方の重合性単量体を接触させつつ電
離性放射線を照射することによつて該基材に該両
方の重合性単量体をグラフトさせたグラフト重合
体を製造し、ついで一方の重合性単量体として中
性親水基に変換し得る官能基を含有する重合性単
量体を使用した場合には該中性親水基を通常の方
法で親水基に変換して該グラフト重合体に親水性
を付与した後シアン基とヒドロキシルアミンと反
応させて該シアン基をアミドキシム基に変換させ
ることから成るアミドキシム基および中性親水基
を共存させたウラン吸着材を製造する方法を提供
することである。 本発明を実施するにあたつて、吸着材の基材と
しては、放射線の照射により、単量体をグラフト
重合し得るものであれば、無機化合物、有機化合
物あるいはこれらの複合材を用いることができ
る。例えば、無機系基材として、シリカゲル、ア
ルミナ、活性炭などが、有機系基材としては、各
種の合成または天然高分子材料、すなわち、ポリ
オレフイン類、含ハロゲンポリオレフイン類、ポ
リエステル類、ポリエーテル類、ポリカーボネー
ト、セルロース類などが挙げられる。また、その
形状としては、粒状、繊維状、膜状、管状など、
さらにこれらを加工した布状、網状、撚糸状、マ
ツト状など、あらゆる形状のものが用いられる。
したがつて、本発明の目的を考慮して、基材の種
類と形状については、機械的強度、耐海水性、耐
薬品性などに優れ且つ比表面積が大きく、吸・脱
着方式に最適の形状の基材を選ぶことが好まし
い。 本発明で使用されるアミドキシム基に変換する
シアン基を含有する重合性単量体としては、例え
ば、アクリロニトリル、シアン化ビニリデン、ク
ロトンニトリル、メタクリロニトリル、クロルア
クリロニトリル、2−シアノエチルアクリレー
ト、2−シアノエチルメタクリレートなどを単独
でまたは2種以上混合して用いることができる。
本発明で使用される中性親水基を含有する重合性
単量体としては、例えば、2−ヒドロキシエチル
メタクリレート、2−ヒドロキシエチルアクリレ
ート、アリルアルコール、ポリエチレングリコー
ルアクリレート、ポリエチレングリコールメタク
リレート、ポリエチレングリコールジアクリレー
ト、ポリエチレングリコールジメタクリレート、
N−ビニルピロリドン、アクリルアミドなどが、
また中性親水基に変換し得る官能基を含有する重
合性単量体としては、ビニルアセテート、アリル
アセテート、ギ酸アリルなどが例示され、これら
は単独でまたは2種以上混合して用いることがで
きる。 本発明のグラフト重合に際して用いる電離性放
射線としては、α線、β線、γ線、X線、加速電
子線などであるが、実用的には、加速電子線また
はγ線がより好ましい。 本発明に従つて基材と重合性単量体をグラフト
する方法としては、基材と重合性単量体との共存
下に電離性放射線を照射して行う同時照射法、ま
たは、基材のみに予め電離性放射線を照射したの
ち、これを重合性単量体と接触させて行う前照射
法のいずれでも可能である。その際の電離性放射
線の照射線量(又は線量率と照射時間)、照射温
度(又はグラフト温度)などは、グラフト方法、
基材のラジカル生成のG値、ラジカルの安定性、
単量体のグラフト反応性などに応じて、後述のグ
ラフト組成およびグラフト率を満足するように適
宜決定される。また、グラフト重合に際して基材
および単量体の性質に応じて溶媒を用いることも
できる。 本発明に従つてシアン基を含有する重合性単量
体および中性親水基または中性親水基に変換し得
る官能基を含有する重合性単量体を基材にグラフ
トさせる順序としては、両者を同時に(共グラフ
ト重合)、またはいずれか一方を先に(多段グラ
フト重合)行うことができる。また、中性親水基
に変換し得る官能基を含有する重合性単量体を使
用した場合の中性親水基への変換は、グラフト後
のいずれの段階で行つてもよいが、シアン基をア
ミドキシムに変換する前のいずれかの段階で行う
ことが必要であり、その方法としては例えば、グ
ラフト重合体を、NaOHまたはKOHの2.5〜20%
水溶液、或いは、水−アルコール、水−ジメチル
スルホキシド混合溶媒を用いた上記濃度のアルカ
リ液中に浸漬し、室温〜100℃で5〜180分間処理
する酸またはアルカリを用いる公知の方法で行わ
れる。 本発明において、グラフト重合体のシアン基の
アミドキシム基への変換は、アルカリによりヒド
ロキシルアミン塩を中和した溶液中にグラフト重
合体を浸漬して反応させるというヒドロキシルア
ミンを用いる公知の方法で行われる。この際、ヒ
ドロキシルアミン塩としては、塩酸塩、硫酸塩、
酢酸塩などが、またアルカリとしては水酸化ナト
リウム、水酸化カリウムなどが用いられる。溶媒
としては、水、ジメチルホルムアミド、ジメチル
スルホキシド、テトラヒドロフラン、アルコール
類などが単独または2種以上の混合物で用いられ
るが、本発明のグラフト重合体では、水を単独で
用いても、実用上十分なアミドキシム化速度と転
化率が達成される。ヒドロキシルアミン塩の濃
度、反応温度、および反応時間は、それぞれ、1
〜6wt%、室温〜80℃、0.5〜10時間の範囲が好ま
しい。 所で、本発明の目的とするアミドキシム化効
率、ウラン吸着特性、機械的性質、耐久性などに
極めて優れたウラン吸着材を得るためには、グラ
フト重合体中のグラフトポリマー鎖と基材の組成
比およびグラフトポリマー鎖中での中性親水基と
アミドキシム基の組成比を特定する必要がある
が、それらは以下に述べる範囲内に制御すること
が好ましい。 Γ中性親水基を含有するグラフトポリマー鎖の重
量/基材重量=1/50〜3/10 Γシアン基を含有するグラフトポリマー鎖の重
量/基材重量=1/10〜1/1 Γ中性親水基のモル数/アミドキシム基のモル数
=1/10〜1/2 Γアミドキシム基濃度(meq/g−吸着材)=0.5
〜10 が好ましい。 以下、実施例により本発明の構成および効果を
具体的に説明する。 実施例 1 四フツ化エチレン−エチレンの共重合体(商品
名:アフロン)の線径40μm繊維に、電子加速器
(加速電圧1.5MeV、電子線電流1mA)を用い
て、窒素雰囲気下で10Mrad照射した。この照射
繊維を反応器に入れ、10-3mmHgに減圧したの
ち、あらかじめ窒素バブリングにより溶存酸素濃
度0.1ppm以下にした2−ヒドロキシエチルメタ
クリレート(HEMA)のメタノール溶液
(HEMA濃度30wt%)を注入し、繊維を浸漬下、
25℃で1時間30分反応させて、グラフト率15%の
グラフト繊維を得た。 このグラフト繊維を、上記と同じ方法で、電子
線を10Mrad照射し、アクリロニトリル(AN)の
メタノール溶液(AN濃度50wt%)に浸漬して、
25℃で6時間反応させた。このときのANのグラ
フト率は47%であつた。 このようにして得たHEMA−ANグラフト繊維
を、水酸化カリウムで中和した3wt%塩酸ヒドロ
キシルアミンの水−メタノール溶液(水:メタノ
ール=1:1重量比)に浸漬し、40℃で2時間反
応させて吸着材を得た。この吸着材の陰イオン交
換容量(アミドキシム基濃度に相当)は
5.0meq/gであつた。 一方、比較のため、HEMAをグラフトさせな
いで、上記の方法で、ANのみをグラフトさせた
のちアミドキシム化した場合、グラフト率54%陰
イオン交換容量2.7meq/gの吸着材を得た。 このようにして得た2種類の吸着材を各0.1g
を採り、硝酸ウラニルを添加してウラン濃度1
mg/に調整した海水50ml中にそれぞれ浸漬し、
30℃で1時間振とう下でウランを吸着させ、それ
ぞれ以下の結果を得た。
The present invention relates to a uranium adsorbent that selectively and efficiently adsorbs uranium dissolved in various aqueous solutions, and a method for producing the same. A feature of the present invention is that a monomer containing a neutral hydrophilic group or a functional group that can be converted into a neutral hydrophilic group and cyanide are added to a base material made of an organic type, an inorganic type, or a composite material thereof by a radiation grafting method. By simultaneously or sequentially grafting monomers containing groups (-CN) to impart hydrophilicity to the grafted polymer, amidoximation of cyanogen groups can be carried out in a capacity and efficient manner, and neutral hydrophilic groups can be By coexisting uranium and amidoxime groups, a uranium adsorbent with excellent selective adsorption properties and adsorption efficiency can be produced in any shape. In Japan, where resources are scarce, seawater, river water, minerals,
Various separation technologies have been developed to separate and recover useful substances dissolved in industrial wastewater. Compounds that form complexes with target ionic species are useful for selective separation and recovery of heavy metals dissolved in various aqueous solutions. Approximately 3 μg of uranium is dissolved in seawater, and as an adsorbent for this uranium,
In addition to inorganic compounds such as titanic acid and activated carbon-titanic acid, organic macrocyclic hexaketones, hexacarboxylic acids, and amidoxime resins are known. Organic compounds have the advantage of being easy to process into various shapes, but in order to use the above-mentioned organic compounds as adsorbents, they must be supported on water-insoluble polymers or made water-insolubilized by introducing a cross-linking structure. It is essential, and there are various problems in putting it into practical use. For example, macrocyclic hexaketones and hexacarboxylic acids need to be supported on polymers such as polystyrene, and amidoxime resins are obtained by converting cyan group-containing polymers into amidoximes. In order to impart swelling resistance and the like, it is necessary to introduce a crosslinked structure through copolymerization with a polyfunctional monomer such as divinylbenzene. When supported on these polymers or copolymers, it may be difficult to mold them into any desired shape depending on the composition, molecular weight, crosslinking density, etc. of the polymer. In addition, in order to improve adsorption performance, it is necessary to increase the functional group concentration as much as possible, but polymers obtained by polymerizing cyan group-containing monomers such as acrylonitrile or copolymerizing these with divinylbenzene The combination is hydrophobic, and upon amidoximation with hydroxylamine,
Not only does it require an organic solvent such as alcohol, but it also has the disadvantage that the reaction must be carried out at high temperatures and for a long time, and side reactions are likely to occur. The present inventors have solved the above-mentioned drawbacks by using the radiation grafting method in the research process of modifying various materials by radiation graft polymerization, and have developed a uranium adsorbent with better adsorption performance and mechanical properties. The present invention was completed based on the discovery that it is possible to produce the following. That is, the present inventors simultaneously or sequentially grafted a cyan group-containing monomer and a monomer containing a neutral hydrophilic group or a functional group that can be converted into a neutral hydrophilic group onto various base materials. By imparting hydrophilicity to the graft polymer, it is extremely easy to convert into amidoxime, and due to the coexistence of neutral hydrophilic groups and amidoxime groups, it has extremely excellent uranium adsorption performance, and it is also easy to select the base material. In any shape,
Moreover, it has been found that a uranium adsorbent with excellent mechanical strength and durability can be produced. Therefore, the main object of the present invention is to prepare organic systems of arbitrary shape,
The object of the present invention is to provide a uranium adsorbent in which an amidoxime group and a neutral hydrophilic group coexist at the same time on a base material made of an inorganic material or a composite material thereof. A further object of the present invention is to prepare a polymer containing a cyan group by irradiating a substrate made of an organic type, an inorganic type, or a composite material thereof in any shape with ionizing radiation in advance, and then converting the polymer into hydroxylamine. one or more polymerizable monomers capable of converting the cyanogen group into amidoxime and a polymerizable monomer containing a neutral hydrophilic group or a functional group capable of converting into a neutral hydrophilic group by reacting with Both of the polymerizable monomers are added to the base material by contacting one or more of the polymerizable monomers or by irradiating the base material with ionizing radiation while contacting the base material with both of the polymerizable monomers. When a polymerizable monomer containing a functional group that can be converted into a neutral hydrophilic group is used as one of the polymerizable monomers, the neutral hydrophilic group An amidoxime group and a neutral hydrophilic group, which are obtained by converting into a hydrophilic group by a conventional method to impart hydrophilicity to the graft polymer, and then reacting the cyan group with hydroxylamine to convert the cyan group into an amidoxime group. It is an object of the present invention to provide a method for producing a uranium adsorbent in which uranium adsorbents coexist. In carrying out the present invention, as the base material of the adsorbent, inorganic compounds, organic compounds, or composite materials thereof may be used as long as monomers can be graft-polymerized by radiation irradiation. can. For example, inorganic base materials include silica gel, alumina, activated carbon, etc., and organic base materials include various synthetic or natural polymer materials, such as polyolefins, halogen-containing polyolefins, polyesters, polyethers, and polycarbonates. , cellulose, etc. In addition, its shape includes granular, fibrous, membrane, and tubular shapes.
Furthermore, various shapes such as cloth-like, net-like, twisted thread-like, and mat-like shapes obtained by processing these materials can be used.
Therefore, in consideration of the purpose of the present invention, the type and shape of the base material should be one that has excellent mechanical strength, seawater resistance, chemical resistance, etc., has a large specific surface area, and has a shape that is optimal for the adsorption/desorption method. It is preferable to select a base material of Examples of the polymerizable monomer containing a cyan group to be converted into an amidoxime group used in the present invention include acrylonitrile, vinylidene cyanide, crotonitrile, methacrylonitrile, chloroacrylonitrile, 2-cyanoethyl acrylate, 2-cyanoethyl Methacrylate and the like can be used alone or in combination of two or more.
Examples of the polymerizable monomer containing a neutral hydrophilic group used in the present invention include 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, allyl alcohol, polyethylene glycol acrylate, polyethylene glycol methacrylate, and polyethylene glycol diacrylate. , polyethylene glycol dimethacrylate,
N-vinylpyrrolidone, acrylamide, etc.
Examples of polymerizable monomers containing functional groups that can be converted into neutral hydrophilic groups include vinyl acetate, allyl acetate, and allyl formate, which can be used alone or in a mixture of two or more. . The ionizing radiation used in the graft polymerization of the present invention includes α rays, β rays, γ rays, X rays, accelerated electron beams, etc., but accelerated electron beams or γ rays are more preferred for practical use. The method of grafting the base material and the polymerizable monomer according to the present invention includes a simultaneous irradiation method in which ionizing radiation is irradiated in the presence of the base material and the polymerizable monomer, or a method in which only the base material is irradiated with ionizing radiation. Any pre-irradiation method may be used, in which ionizing radiation is irradiated in advance and the ionizing radiation is brought into contact with the polymerizable monomer. The ionizing radiation irradiation dose (or dose rate and irradiation time), irradiation temperature (or grafting temperature), etc. at that time are determined by the grafting method,
G value of radical generation of base material, stability of radical,
Depending on the graft reactivity of the monomer, etc., it is appropriately determined so as to satisfy the graft composition and graft ratio described below. Further, a solvent can also be used during graft polymerization depending on the properties of the base material and monomer. According to the present invention, the order in which the polymerizable monomer containing a cyan group and the polymerizable monomer containing a neutral hydrophilic group or a functional group that can be converted into a neutral hydrophilic group are grafted onto the base material is as follows. can be carried out simultaneously (cograft polymerization), or either one of them can be carried out first (multistage graft polymerization). In addition, when a polymerizable monomer containing a functional group that can be converted into a neutral hydrophilic group is used, the conversion to a neutral hydrophilic group may be performed at any stage after grafting. This must be carried out at some stage prior to conversion to amidoxime, for example, by adding the graft polymer to 2.5-20% of NaOH or KOH.
This is carried out by a known method using an acid or alkali, which involves immersion in an aqueous solution or an alkali solution of the above concentration using a mixed solvent of water-alcohol or water-dimethyl sulfoxide and treatment at room temperature to 100° C. for 5 to 180 minutes. In the present invention, the conversion of the cyan groups of the graft polymer into amidoxime groups is carried out by a known method using hydroxylamine, in which the graft polymer is immersed in a solution in which hydroxylamine salt is neutralized with an alkali and reacted. . At this time, the hydroxylamine salts include hydrochloride, sulfate,
Acetate, etc. are used, and sodium hydroxide, potassium hydroxide, etc. are used as the alkali. As a solvent, water, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, alcohols, etc. can be used alone or in a mixture of two or more, but in the graft polymer of the present invention, even if water is used alone, it has a practically sufficient effect. Amidoximation rates and conversions are achieved. The concentration of hydroxylamine salt, reaction temperature, and reaction time were each 1
The preferred range is ~6wt%, room temperature ~80°C, and 0.5~10 hours. By the way, in order to obtain a uranium adsorbent that is extremely excellent in amidoximation efficiency, uranium adsorption properties, mechanical properties, durability, etc., which is the objective of the present invention, it is necessary to change the composition of the graft polymer chains in the graft polymer and the base material. Although it is necessary to specify the ratio and the composition ratio of the neutral hydrophilic group and the amidoxime group in the graft polymer chain, it is preferable to control them within the ranges described below. Weight of graft polymer chain containing Γ neutral hydrophilic group/weight of base material = 1/50 to 3/10 Weight of graft polymer chain containing Γ cyan group/weight of base material = 1/10 to 1/1 In Γ Number of moles of hydrophilic group/number of moles of amidoxime group = 1/10 to 1/2 Γ amidoxime group concentration (meq/g-adsorbent) = 0.5
~10 is preferred. Hereinafter, the structure and effects of the present invention will be specifically explained with reference to Examples. Example 1 A fiber of 40 μm wire diameter of tetrafluoroethylene-ethylene copolymer (trade name: Aflon) was irradiated with 10 Mrad in a nitrogen atmosphere using an electron accelerator (acceleration voltage 1.5 MeV, electron beam current 1 mA). . The irradiated fibers were placed in a reactor, the pressure was reduced to 10 -3 mmHg, and then a methanol solution of 2-hydroxyethyl methacrylate (HEMA) (HEMA concentration 30 wt%), which had been made to have a dissolved oxygen concentration of 0.1 ppm or less by nitrogen bubbling, was injected. , under soaking the fiber,
The reaction was carried out at 25°C for 1 hour and 30 minutes to obtain grafted fibers with a graft ratio of 15%. This graft fiber was irradiated with an electron beam of 10 Mrad in the same manner as above, immersed in a methanol solution of acrylonitrile (AN) (AN concentration 50 wt%),
The reaction was carried out at 25°C for 6 hours. The grafting rate of AN at this time was 47%. The HEMA-AN grafted fibers thus obtained were immersed in a water-methanol solution of 3wt% hydroxylamine hydrochloride (water:methanol = 1:1 weight ratio) neutralized with potassium hydroxide at 40°C for 2 hours. An adsorbent was obtained by the reaction. The anion exchange capacity (corresponding to the concentration of amidoxime groups) of this adsorbent is
It was 5.0meq/g. On the other hand, for comparison, when only AN was grafted using the above method without grafting HEMA and then converted into amidoxime, an adsorbent with a grafting rate of 54% and an anion exchange capacity of 2.7 meq/g was obtained. 0.1g each of the two types of adsorbents obtained in this way.
was taken and uranyl nitrate was added to reduce the uranium concentration to 1.
Each was immersed in 50ml of seawater adjusted to
Uranium was adsorbed under shaking at 30°C for 1 hour, and the following results were obtained.

【表】 実施例 2 平均粒径30μmの低密度ポリエチレン粉末を、
実施例1と同様にして、10Mrad照射したのちAN
とビニルアセテート(VAc)混合液(AN:VAc
=91重量比)に浸漬し、25℃で6時間反応させ
て、グラフト率60%のグラフト物を得た。これを
10wt%のKOH水溶液に浸漬し、90℃で5時間加
熱し親水化処理した(グラフトポリマー鎖中の
VAc基をビニルアルコールに変換した)。 実施例1と同じ方法で、アミドキシム化および
ウラン吸着試験を行い、陰イオン交換容量
5.8meq/g;ウラン吸着量49.3μg/0.1g吸着
材;吸着効率98.5%の結果を得た。 実施例 3 平均粒径10μmのクロマトグラム充填用シリカ
ゲルを反応器に入れ、10-3mmHgで2時間脱気し
たのち、あらかじめ酸素濃度0.1ppm以下にした
メタクリロニトリルとアリルアルコールの混合液
(9:1重量比)を注入し、窒素雰囲気にして封
じた。ついで、この反応器にCo−60のγ線を線
量率1×104rad/hrで室温下3時間照射して、シ
リカゲルにグラフトさせた。得られたグラフト体
のグラフト率は20%であつた。このグラフト体を
水酸化カリウムで中和した塩酸ヒドロキシルアミ
ンの4%水溶液に浸漬し40℃で3時間反応させ
て、陰イオン交換容量2.0meq/gの吸着材を得
た。 一方、比較のため、上記においてメタクリロニ
トリルのみをグラフトさせたとき、グラフト率は
25%、アミドキシム化後の陰イオン交換容量は
1.5meq/gであつた。 実施例1と同じ方法でウランの吸着試験を行
い、以下の結果を得た。
[Table] Example 2 Low-density polyethylene powder with an average particle size of 30 μm,
After 10 Mrad irradiation in the same manner as in Example 1, AN
and vinyl acetate (VAc) mixture (AN: VAc
= 91 weight ratio) and reacted at 25°C for 6 hours to obtain a grafted product with a graft ratio of 60%. this
It was immersed in a 10wt% KOH aqueous solution and heated at 90℃ for 5 hours to make it hydrophilic (the
VAc group was converted to vinyl alcohol). Amidoximation and uranium adsorption tests were conducted in the same manner as in Example 1, and the anion exchange capacity was
5.8 meq/g; uranium adsorption amount 49.3 μg/0.1 g of adsorbent; adsorption efficiency of 98.5% was obtained. Example 3 Silica gel for chromatogram filling with an average particle size of 10 μm was placed in a reactor, degassed at 10 −3 mmHg for 2 hours, and then a mixed solution of methacrylonitrile and allyl alcohol (9 :1 weight ratio) and sealed in a nitrogen atmosphere. Next, this reactor was irradiated with Co-60 gamma rays at a dose rate of 1×10 4 rad/hr at room temperature for 3 hours to graft onto the silica gel. The graft ratio of the obtained graft body was 20%. This graft body was immersed in a 4% aqueous solution of hydroxylamine hydrochloride neutralized with potassium hydroxide and reacted at 40°C for 3 hours to obtain an adsorbent with an anion exchange capacity of 2.0 meq/g. On the other hand, for comparison, when only methacrylonitrile was grafted in the above, the grafting rate was
25%, the anion exchange capacity after amidoximation is
It was 1.5meq/g. A uranium adsorption test was conducted in the same manner as in Example 1, and the following results were obtained.

【表】 実施例 4 膜厚50μm、巾2mm、長さ1.5cmの短冊状のア
フロンシートに、窒素雰囲気下で電子線を
10Mrad照射し、これを50wt%ANのメタノール溶
液に室温下3時間浸漬して、グラフト率40%のグ
ラフト重合体を得た。ついでグラフト重合体の1
部を採り再び電子線を5Mrad照射したのち、
30wt%のN−ビニルピロリドン(NVP)水溶液
中に30℃で2時間浸漬した。このときのグラフト
率は13%であつた。上記で得たAN単独グラフト
物とAN−NVPグラフト物をそれぞれ、実施例1
と同じ方法でアミドキシム化およびウラン吸着試
験を行い以下の結果を得た。
[Table] Example 4 An electron beam was applied to a rectangular afron sheet with a film thickness of 50 μm, a width of 2 mm, and a length of 1.5 cm in a nitrogen atmosphere.
This was irradiated with 10 Mrad and immersed in a methanol solution of 50 wt% AN at room temperature for 3 hours to obtain a graft polymer with a graft ratio of 40%. Next, graft polymer 1
After removing the part and irradiating it with an electron beam of 5 Mrad again,
It was immersed in a 30wt% N-vinylpyrrolidone (NVP) aqueous solution at 30°C for 2 hours. The grafting rate at this time was 13%. Example 1
Amidoximization and uranium adsorption tests were performed using the same method as above, and the following results were obtained.

【表】【table】

Claims (1)

【特許請求の範囲】 1 任意の形状の有機系、無機系又はこれらの複
合材からなる基材にアミドキシム基および中性親
水基が同時に共存しているウラン吸着材。 2 任意の形状の有機系、無機系又はこれら複合
材から成る基材に予め電離性放射線を照射した後
シアン基を含有する重合体で且つその重合体をヒ
ドロキシルアミンと反応させることによつて該シ
アン基をアミドキシムに変換し得る重合性単量体
の1種又は2種以上および中性親水基又は中性親
水基に変換し得る官能基を含有する重合性単量体
の1種又は2種以上を接触させまたは該基材と該
両方の重合性単量体を接触させつつ電離性放射線
を照射することによつて該基材に該両方の重合性
単量体グラフトさせたグラフト重合体を製造し、
ついで一方の重合性単量体として中性親水基に変
換し得る官能基を含有する重合性単量体を使用し
た場合には該中性親水基を通常の方法で親水基に
変換して該グラフト重合体に親水性を付与した後
シアン基とヒドロキシルアミンと反応させて該シ
アン基をアミドキシム基に変換させることから成
るアミドキシム基および中性親水基を共存させた
ウラン吸着材を製造する方法。 3 シアン基を含有する重合性単量体がアクリロ
ニトリル、シアン化ビニリデン、クロトンニトリ
ル、メタクリロニトリル、クロルアクリロニトリ
ル、2−シアノエチルアクリレート及び2−シア
ノエチルメタクリレートから成る群から選択され
る特許請求の範囲第2項記載の方法。 4 中性親水基を含有する重合性単量体が2−ヒ
ドロキシエチルメタクリレート、2−ヒドロキシ
エチルアクリレート、アリルアルコール、ポリエ
チレングリコールアクリレート、ポリエチレング
リコールメタクリレート、ポリエチレングリコー
ルジアクリレート、ポリエチレングリコールジメ
タクリレート、N−ビニルピロリドン及びアクリ
ルアミドから成る群から選択される特許請求の範
囲第2項記載の方法。 5 中性親水基に変換し得る官能基を含有する重
合性単量体がビニルアセテート、アリルアセテー
ト及びギ酸アリルから成る群から選択される特許
請求の範囲第2項記載の方法。
[Scope of Claims] 1. A uranium adsorbent in which an amidoxime group and a neutral hydrophilic group coexist simultaneously on a base material made of an organic type, an inorganic type, or a composite material thereof in any shape. 2. A substrate made of an organic type, an inorganic type, or a composite material thereof in any shape is irradiated with ionizing radiation in advance, and then a cyan group-containing polymer is reacted with hydroxylamine. One or more polymerizable monomers capable of converting a cyan group into amidoxime and one or two polymerizable monomers containing a neutral hydrophilic group or a functional group capable of converting into a neutral hydrophilic group. A graft polymer obtained by grafting both of the polymerizable monomers onto the base material by contacting the above or contacting the base material with both of the polymerizable monomers and irradiating them with ionizing radiation. manufacture,
Next, when a polymerizable monomer containing a functional group that can be converted into a neutral hydrophilic group is used as one of the polymerizable monomers, the neutral hydrophilic group is converted into a hydrophilic group by a conventional method. A method for producing a uranium adsorbent in which amidoxime groups and neutral hydrophilic groups coexist, which comprises imparting hydrophilicity to a graft polymer and then reacting the cyanide groups with hydroxylamine to convert the cyanogen groups into amidoxime groups. 3. Claim 2 in which the polymerizable monomer containing a cyanogen group is selected from the group consisting of acrylonitrile, vinylidene cyanide, crotonitrile, methacrylonitrile, chloroacrylonitrile, 2-cyanoethyl acrylate, and 2-cyanoethyl methacrylate. The method described in section. 4 The polymerizable monomer containing a neutral hydrophilic group is 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, allyl alcohol, polyethylene glycol acrylate, polyethylene glycol methacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, N-vinyl 3. The method of claim 2, wherein pyrrolidone and acrylamide are selected from the group consisting of pyrrolidone and acrylamide. 5. The method according to claim 2, wherein the polymerizable monomer containing a functional group that can be converted into a neutral hydrophilic group is selected from the group consisting of vinyl acetate, allyl acetate, and allyl formate.
JP8936182A 1982-05-26 1982-05-26 Uranium adsorbent containing both amidoxime group and neutral hydrophilic group and its production Granted JPS58205545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8936182A JPS58205545A (en) 1982-05-26 1982-05-26 Uranium adsorbent containing both amidoxime group and neutral hydrophilic group and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8936182A JPS58205545A (en) 1982-05-26 1982-05-26 Uranium adsorbent containing both amidoxime group and neutral hydrophilic group and its production

Publications (2)

Publication Number Publication Date
JPS58205545A JPS58205545A (en) 1983-11-30
JPS6258775B2 true JPS6258775B2 (en) 1987-12-08

Family

ID=13968563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8936182A Granted JPS58205545A (en) 1982-05-26 1982-05-26 Uranium adsorbent containing both amidoxime group and neutral hydrophilic group and its production

Country Status (1)

Country Link
JP (1) JPS58205545A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333078B1 (en) * 1998-12-14 2001-12-25 Japan Atomic Energy Research Institute Collector of dissolved metal from sea water having an amidoxime group and a hydrophilic group, a method for production thereof
WO2000065107A1 (en) * 1999-04-27 2000-11-02 Ebara Corporation Metal-collecting apparatus and method for elution and recovery of metal from metal-collecting material
JP4753062B2 (en) * 2001-05-08 2011-08-17 独立行政法人 日本原子力研究開発機構 Method and apparatus for radiation graft polymerization of fiber material
JP2007077508A (en) * 2006-11-02 2007-03-29 Japan Atomic Energy Agency Method and apparatus for eluting and recovering metal from metal collecting material
CN104741084B (en) * 2015-03-03 2017-10-17 清华大学 It is a kind of suitable for uranium absorption agent of alkaline environment and preparation method thereof
CN109231344B (en) * 2018-10-30 2021-08-31 中国工程物理研究院核物理与化学研究所 Polyamine uranium adsorption material and preparation method thereof

Also Published As

Publication number Publication date
JPS58205545A (en) 1983-11-30

Similar Documents

Publication Publication Date Title
JP2749094B2 (en) Method for producing multifunctional filtration membrane having iminodiacetic acid group
US3565833A (en) Core-dual shell graft copolymers with ion exchange resin shells
JPS6258774B2 (en)
JP3312634B2 (en) Chelate-type ion-adsorbing membrane and manufacturing method
US5743940A (en) Process for producing gas adsorbent
JP4064046B2 (en) Organic polymer material, method for producing the same, and heavy metal ion removing agent composed thereof
JP2772010B2 (en) Method for producing chelating resin adsorbent having iminodiacetic acid group
WO2005102512A1 (en) Adsorbents carrying extracting reagents and process for production thereof
Sugiyama et al. Attachment of sulfonic acid groups to various shapes of polyethylene, polypropylene and polytetrafluoroethylene by radiation-induced graft polymerization
JPS6258775B2 (en)
US6333078B1 (en) Collector of dissolved metal from sea water having an amidoxime group and a hydrophilic group, a method for production thereof
JP4239201B2 (en) Method for synthesizing adsorbent that absorbs and recovers gold and wastewater treatment
US6844371B1 (en) Material having separating function
JP2781581B2 (en) Method for producing affinity adsorbent having complex of iminodiacetic acid group and metal
JPH0710925A (en) Chelating resin and its production
JP3150173B2 (en) Method for producing chelating resin adsorbent having immobilized polyamine compound
JPS6361058B2 (en)
JP2002346400A (en) Anion exchanger and method for manufacturing the same
JPH04309536A (en) Radiation grafting process and grafted product
JP2954276B2 (en) Method for producing membrane containing fluorine
CN111253609A (en) Method for preparing modified polymer membrane material, material obtained by method and application of material
JP2000176279A (en) Scavenger having amidoxime group and hydrophilic group for dissolved metal from sea water, and its production
JPH0687957B2 (en) Multi-function
JPH02203925A (en) Composite function filter membrane having complex of iminodiacetate group and metal and production thereof
JPH0394883A (en) Method for simultaneously removing plural heavy metal ions