JPS6257568B2 - - Google Patents

Info

Publication number
JPS6257568B2
JPS6257568B2 JP58008258A JP825883A JPS6257568B2 JP S6257568 B2 JPS6257568 B2 JP S6257568B2 JP 58008258 A JP58008258 A JP 58008258A JP 825883 A JP825883 A JP 825883A JP S6257568 B2 JPS6257568 B2 JP S6257568B2
Authority
JP
Japan
Prior art keywords
powder
plasma
diamond
polycrystalline diamond
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58008258A
Other languages
Japanese (ja)
Other versions
JPS59137311A (en
Inventor
Seiichiro Matsumoto
Yoichiro Sato
Mutsukazu Kamo
Nobuo Sedaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP58008258A priority Critical patent/JPS59137311A/en
Publication of JPS59137311A publication Critical patent/JPS59137311A/en
Publication of JPS6257568B2 publication Critical patent/JPS6257568B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/442Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は多結晶質ダイヤモンドの合成法に関す
る。更に詳しくはプラズマ空間で粉体を流動さ
せ、その粉体の表面にプラズマ化学反応によつて
多結晶質ダイヤモンドを析出させる方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing polycrystalline diamond. More specifically, the present invention relates to a method of flowing powder in a plasma space and depositing polycrystalline diamond on the surface of the powder by a plasma chemical reaction.

本発明者はさきにプラズマ発生室内に基体を設
置し、該プラズマ発生室内を排気した後、これに
揮発性炭化水素と水素ガスの混合ガスを導入した
後、マイクロ波または高周波を入射してプラズマ
を誘発し、基体上に多結晶質ダイヤモンドを析出
させる方法を開発した。
The present inventor first installed a substrate in a plasma generation chamber, evacuated the plasma generation chamber, introduced a mixed gas of volatile hydrocarbon and hydrogen gas, and then applied microwave or high frequency waves to generate a plasma. We have developed a method to induce the precipitation of polycrystalline diamond on a substrate.

該方法によると、ダイヤモンドの析出速度が満
足すべき程度でない問題点があつた。
According to this method, there was a problem that the diamond precipitation rate was not satisfactory.

本発明はこの問題点を解決すべくなされたもの
で、ダイヤモンドの析出速度を高め、且つ微細な
結晶粒子よりなる緻密な多結晶質ダイヤモンドの
合成法を提供するにある。
The present invention was made to solve this problem, and the object is to provide a method for increasing the precipitation rate of diamond and synthesizing dense polycrystalline diamond made of fine crystal grains.

本発明者らはダイヤモンドの析出速度のおそい
原因について検討した結果、その析出の過程は加
熱した基体表面への反応物体の気体の輸送、加熱
した基体表面での化学反応による析出、化学反応
によつて副生した副成生成物の脱離、及び逆拡散
などの過程を経ている。従つて、加熱した基体と
反応ガスの境界に拡散層が形成され、この拡散層
の存在が反応ガスの基体表面への拡散速度を阻害
することに起因すること、そして析出速度を上昇
させるためには、この拡散層を破り、副生気体の
逆拡散を促進することが必要であり、そのために
は基体として粉体を用い、これをプラズマ中で流
動させると粉体間の衝突が生じ、その衝突の際に
拡散層が破られ、ダイヤモンドの析出速度が促進
されることが分つた。この究明事実に基いて本発
明を完成した。
The present inventors investigated the causes of the slow precipitation rate of diamond, and found that the precipitation process involves transport of a reactant gas to the heated substrate surface, precipitation due to a chemical reaction on the heated substrate surface, and precipitation due to a chemical reaction. This process involves desorption of by-products and back-diffusion. Therefore, a diffusion layer is formed at the boundary between the heated substrate and the reaction gas, and the existence of this diffusion layer inhibits the diffusion rate of the reaction gas to the substrate surface, and in order to increase the precipitation rate. It is necessary to break this diffusion layer and promote back-diffusion of by-product gases. To do this, powder is used as the substrate, and when it is flowed in the plasma, collisions between the powders occur, and the It was found that the diffusion layer was broken during the collision, accelerating the diamond precipitation rate. The present invention was completed based on this finding.

本発明の要旨は、揮発性炭化水素と水素との混
合ガスに高周波またはマイクロ波を入射してプラ
ズマを誘発させ、このプラズマ空間でダイヤモン
ド粉末または金属、非金属無機質粉末を振動板を
振動させることによつて分散浮遊させながら流動
させて、これら粉末の表面に多結晶質ダイヤモン
ドを被覆または粉末を核として粒状多結晶質ダイ
ヤモンドを合成することを特徴とする多結晶質ダ
イヤモンドの合成法にある。
The gist of the present invention is to induce plasma by injecting high frequency waves or microwaves into a mixed gas of volatile hydrocarbon and hydrogen, and to vibrate diamond powder or metal or nonmetal inorganic powder with a diaphragm in this plasma space. This method of synthesizing polycrystalline diamond is characterized by coating the surface of the powder with polycrystalline diamond or synthesizing granular polycrystalline diamond using the powder as a nucleus by making the powder flow while being dispersed and suspended.

本発明の方法を図面に基いて説明すると、第1
図は高周波プラズマを用い、粉末の流動を音波に
よつて振動板を振動させて行う方法、第2図はマ
イクロ波プラズマを用い、粉末の流動を機械的な
方法によつて振動板を振動させて行う方法の概要
図を示す。図中、1は低周波発振機、2は増幅
機、3は拡声器、4は振動板、5は高周波発振
機、6は同軸ケーブル、7は高周波コイル、8は
プラズマ発生室、9は粉体、10はガス供給装
置、11は混合ガス供給管、12は排気装置、1
3,14,15,16は調整弁、17はマイクロ
波発振機、18は導波管、19は電磁石を示す。
The method of the present invention will be explained based on the drawings.
The figure shows a method using high-frequency plasma and vibrating a diaphragm using sound waves to cause the powder to flow. Figure 2 shows a method using microwave plasma and vibrating a diaphragm using a mechanical method to cause the powder to flow. A schematic diagram of the method is shown below. In the figure, 1 is a low frequency oscillator, 2 is an amplifier, 3 is a loudspeaker, 4 is a diaphragm, 5 is a high frequency oscillator, 6 is a coaxial cable, 7 is a high frequency coil, 8 is a plasma generation chamber, 9 is a powder 10 is a gas supply device, 11 is a mixed gas supply pipe, 12 is an exhaust device, 1
3, 14, 15, and 16 are regulating valves, 17 is a microwave oscillator, 18 is a waveguide, and 19 is an electromagnet.

先ず、プラズマ発生室8に粉体9を入れ、排気
装置12を作動して装置内を減圧した後、調整弁
13,14,15を調整してガス供給装置10よ
り水素ガス、揮発性炭化水素との混合ガスを混合
ガス供給管11を通じてプラズマ発生室8内に供
給して所定の圧力に保持する。次に低周波発振機
1、増幅機2を作動し、拡声器3または電磁石1
9により振動板4を振動させ、低周波発振機1の
周波数、増幅機2の出力を調整して粉体9を適切
な状態で流動させる。
First, the powder 9 is put into the plasma generation chamber 8, the exhaust device 12 is operated to reduce the pressure inside the device, and the regulating valves 13, 14, 15 are adjusted to supply hydrogen gas and volatile hydrocarbons from the gas supply device 10. A mixed gas of the above is supplied into the plasma generation chamber 8 through the mixed gas supply pipe 11 and maintained at a predetermined pressure. Next, activate the low frequency oscillator 1 and amplifier 2, and activate the loudspeaker 3 or electromagnet 1.
9 vibrates the diaphragm 4 and adjusts the frequency of the low frequency oscillator 1 and the output of the amplifier 2 to flow the powder 9 in an appropriate state.

第1図においては高周波発振機5を作動してそ
の出力を高周波コイル7に与え、流動層中にプラ
ズマを誘発する。第2図においてはマイクロ波発
振機17を作動して、その出力を導波管18を通
じてプラズマ発生室8内に入射し、流動層中にプ
ラズマを誘発する。
In FIG. 1, a high frequency oscillator 5 is activated and its output is applied to a high frequency coil 7 to induce plasma in the fluidized bed. In FIG. 2, the microwave oscillator 17 is activated and its output is input into the plasma generation chamber 8 through the waveguide 18 to induce plasma in the fluidized bed.

本発明に用いる揮発性炭化水素としては、例え
ば、メタン,エタン,アセチレン,ブタン等が挙
げられる。メタンは安価で入手し易い点で好まし
い。揮発性炭化水素と水素との割合は、20:
100,望ましくは5:100以下あること、また粉体
としては、ダイヤモンド,α−Al2O3,タンタ
ル,モリブデン等が基げられる。その粒度は300
μm以下であることが好ましい。
Examples of volatile hydrocarbons used in the present invention include methane, ethane, acetylene, and butane. Methane is preferred because it is cheap and easily available. The ratio of volatile hydrocarbons to hydrogen is 20:
100, preferably 5:100 or less, and the powder is based on diamond, α-Al 2 O 3 , tantalum, molybdenum, etc. Its particle size is 300
It is preferable that it is less than μm.

実施例 1 第1図の装置において、粉体としてダイヤモン
ド粉末(30μm)、反応ガスとして、メタンと水
素との混合ガスを使用した。排気装置12を作動
してプラズマ発生室8内を充分排気した後、ガス
供給装置10より調整弁13,14,15,16
を調整してメタンガス濃度3%の水素との混合ガ
スをプラズマ発生室8内に導入し、該プラズマ発
生室8内の圧力を0.06気圧になるように混合ガス
の流速50cm/minで供給した。次に低周波発振機
1,増幅機2を調整して拡声器3に80ヘルツ、
5Wの出力を与えて振動板4を振動させてダイヤ
モンド粉末9を流動させた。ついで、高周波発振
機5(13.56MHz)、800Wの出力を同軸ケーブル
6を通じて高周波コイル7に与え、流動層中にプ
ラズマを誘発させた。3時間析出を行つたとこ
ろ、粒径42μmの粒状多結晶体ダイヤモンドが得
られた。
Example 1 In the apparatus shown in FIG. 1, diamond powder (30 μm) was used as the powder, and a mixed gas of methane and hydrogen was used as the reaction gas. After operating the exhaust device 12 to sufficiently exhaust the inside of the plasma generation chamber 8, the gas supply device 10 operates the regulating valves 13, 14, 15, 16.
A mixed gas of methane and hydrogen having a concentration of 3% was introduced into the plasma generation chamber 8, and the mixed gas was supplied at a flow rate of 50 cm/min so that the pressure inside the plasma generation chamber 8 became 0.06 atmospheres. Next, adjust the low frequency oscillator 1 and amplifier 2 to output 80 Hz to the loudspeaker 3.
The diaphragm 4 was vibrated by applying an output of 5 W to cause the diamond powder 9 to flow. Next, an output of 800 W from the high frequency oscillator 5 (13.56 MHz) was applied to the high frequency coil 7 through the coaxial cable 6 to induce plasma in the fluidized bed. After 3 hours of precipitation, granular polycrystalline diamond with a grain size of 42 μm was obtained.

実施例 2 実施例1と同様な条件でマイクロ波(2450M
Hz)、600Wの出力をプラズマ発生室8内に入射
し、流動層中にプラズマを誘発した。振動板4の
振動は低周波発振機1、及び増幅機2を作動し、
電磁石19を作用させて行つた。3時間析出を行
つたところ、粒径50μmの粒状多結晶体ダイヤモ
ンドが得られた。
Example 2 Microwave (2450M
Hz) and a power of 600 W was input into the plasma generation chamber 8 to induce plasma in the fluidized bed. The vibration of the diaphragm 4 operates a low frequency oscillator 1 and an amplifier 2,
This was done by activating the electromagnet 19. After 3 hours of precipitation, granular polycrystalline diamond with a grain size of 50 μm was obtained.

実施例 3 実施例1と同様な条件で粉体としてアルミナ
(20μm),タンタル(20μm)を使用した場合、
3時間析出を行つたところ各々、粒径30μm,35
μmの多結晶体ダイヤモンドが得られた。
Example 3 When alumina (20 μm) and tantalum (20 μm) were used as powder under the same conditions as Example 1,
After 3 hours of precipitation, the particle size was 30 μm and 35
A polycrystalline diamond of μm size was obtained.

本発明の方法によると、静止した板状の基体表
面に析出させる場合に比較してその成長速度を数
倍に上昇できる。また添加物を加えることなしに
粒状の多結晶体ダイヤモンドを合成することがで
きるなどの利点がある。
According to the method of the present invention, the growth rate can be increased several times compared to when depositing on the surface of a stationary plate-like substrate. Another advantage is that granular polycrystalline diamond can be synthesized without adding additives.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法の実施態様を示すもので、第
1図は高周波プラズマを用い、粉末の流動を音波
によつて振動板を振動させて行う方法、第2図は
マイクロ波プラズマを用い、粉末の流動を機械的
な方法によつて振動板を振動させる方法の概要図
である。 1:増幅機、2:低周波発振機、3:拡声器、
4:振動板、5:高周波発振機、6:同軸ケーブ
ル、7:高周波コイル、8:プラズマ発生室、
9:粉体、10:ガス供給装置、11:混合ガス
供給管、12:排気装置、13,14,15,1
6:調整弁、17:マイクロ波発振機、18:導
波管、19:電磁石。
The drawings show embodiments of the method of the present invention. Fig. 1 shows a method in which high-frequency plasma is used to flow powder by vibrating a diaphragm using sound waves, and Fig. 2 shows a method in which powder is flowed using microwave plasma by vibrating a diaphragm. FIG. 2 is a schematic diagram of a method of vibrating a diaphragm using a mechanical method to generate a flow of water. 1: Amplifier, 2: Low frequency oscillator, 3: Loudspeaker,
4: Vibration plate, 5: High frequency oscillator, 6: Coaxial cable, 7: High frequency coil, 8: Plasma generation chamber,
9: Powder, 10: Gas supply device, 11: Mixed gas supply pipe, 12: Exhaust device, 13, 14, 15, 1
6: Regulating valve, 17: Microwave oscillator, 18: Waveguide, 19: Electromagnet.

Claims (1)

【特許請求の範囲】[Claims] 1 揮発性炭化水素と水素との混合ガスに高周波
またはマイクロ波を入射してプラズマを誘導さ
せ、このプラズマ空間で、ダイヤモンド粉末また
は金属、非金属無機質粉末を、振動板を振動させ
ることによつて分散浮遊させながら流動させて、
これら粉末の表面に多結晶質ダイヤモンドを合成
することを特徴とする多結晶質ダイヤモンドの合
成法。
1. Plasma is induced by injecting high frequency waves or microwaves into a mixed gas of volatile hydrocarbon and hydrogen, and in this plasma space, diamond powder or metal or non-metallic inorganic powder is vibrated by a diaphragm. Flow while dispersing and floating.
A method for synthesizing polycrystalline diamond characterized by synthesizing polycrystalline diamond on the surface of these powders.
JP58008258A 1983-01-21 1983-01-21 Method for synthesizing polycrystalline diamond Granted JPS59137311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58008258A JPS59137311A (en) 1983-01-21 1983-01-21 Method for synthesizing polycrystalline diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58008258A JPS59137311A (en) 1983-01-21 1983-01-21 Method for synthesizing polycrystalline diamond

Publications (2)

Publication Number Publication Date
JPS59137311A JPS59137311A (en) 1984-08-07
JPS6257568B2 true JPS6257568B2 (en) 1987-12-01

Family

ID=11688118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58008258A Granted JPS59137311A (en) 1983-01-21 1983-01-21 Method for synthesizing polycrystalline diamond

Country Status (1)

Country Link
JP (1) JPS59137311A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717479B2 (en) * 1985-12-09 1995-03-01 京セラ株式会社 Diamond film manufacturing method
DE3546113A1 (en) * 1985-12-24 1987-06-25 Santrade Ltd COMPOSITE POWDER PARTICLES, COMPOSITE BODIES AND METHOD FOR THE PRODUCTION THEREOF
JPS63107898A (en) * 1986-10-23 1988-05-12 Natl Inst For Res In Inorg Mater Method for synthesizing diamond with plasma
JPS63156009A (en) * 1986-12-19 1988-06-29 Natl Inst For Res In Inorg Mater Synthesis of fine diamond powder
US5080975A (en) * 1987-03-23 1992-01-14 Showa Denko K. K. Composite diamond granules
US4859493A (en) * 1987-03-31 1989-08-22 Lemelson Jerome H Methods of forming synthetic diamond coatings on particles using microwaves
JPS63270394A (en) * 1987-04-28 1988-11-08 Showa Denko Kk Flow type method for synthesizing diamond and apparatus therefor
JP2550103B2 (en) * 1987-10-20 1996-11-06 洋一 広瀬 Diamond composite grain
JPH0288497A (en) * 1988-06-09 1990-03-28 Toshiba Corp Production of single crystal diamond grain
JP2639505B2 (en) * 1988-10-20 1997-08-13 住友電気工業株式会社 Synthesis method of granular diamond
US5028452A (en) * 1989-09-15 1991-07-02 Creative Systems Engineering, Inc. Closed loop system and process for conversion of gaseous or vaporizable organic and/or organo-metallic compounds to inert solid matrix resistant to solvent extraction
EP0459425A1 (en) * 1990-05-30 1991-12-04 Idemitsu Petrochemical Company Limited Process for the preparation of diamond
US5783335A (en) * 1992-04-07 1998-07-21 The Regents Of The University Of California, Office Of Technology Transfer Fluidized bed deposition of diamond
US6015597A (en) * 1997-11-26 2000-01-18 3M Innovative Properties Company Method for coating diamond-like networks onto particles
US6265068B1 (en) 1997-11-26 2001-07-24 3M Innovative Properties Company Diamond-like carbon coatings on inorganic phosphors

Also Published As

Publication number Publication date
JPS59137311A (en) 1984-08-07

Similar Documents

Publication Publication Date Title
JPS6257568B2 (en)
JPH0623430B2 (en) Carbon production method
JPH02222134A (en) Thin film forming apparatus
US5491002A (en) Multilayer CVD diamond films
JPS6227039B2 (en)
JPS6136200A (en) Method for vapor-phase synthesis of diamond
KR20170142312A (en) Method for the diamond film deposition on fine ceramic beads
TW502307B (en) Method for preparation of diamond film
JPH04132691A (en) Production of diamond thin film by gaseous phase method using diamond fine powder as seed crystal
JPS6054995A (en) Synthesis of diamond
JPH0366280B2 (en)
JPS63210010A (en) Production of carbon
JPS6054996A (en) Synthesis of diamond
JPH0524114B2 (en)
JPH0343239B2 (en)
JP3336665B2 (en) Particle generation method and apparatus
JPS60122794A (en) Low pressure vapor phase synthesis method of diamond
JPS593098A (en) Synthesizing method of diamond
JPH0234509A (en) Process and apparatus for preparation of polycrystalline diamond by core body floating method
JP2977619B2 (en) Diamond film formation method
JPH03174397A (en) Method and device for synthesizing rigid substance
JP2002371367A (en) Plasma treatment method and apparatus therefor
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JPH0532489A (en) Synthesis of diamond using plasma
JPS60200896A (en) Process for synthesizing fibrous diamond