JPS6257408B2 - - Google Patents

Info

Publication number
JPS6257408B2
JPS6257408B2 JP3108480A JP3108480A JPS6257408B2 JP S6257408 B2 JPS6257408 B2 JP S6257408B2 JP 3108480 A JP3108480 A JP 3108480A JP 3108480 A JP3108480 A JP 3108480A JP S6257408 B2 JPS6257408 B2 JP S6257408B2
Authority
JP
Japan
Prior art keywords
rolling
machining allowance
rolled
predicted
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3108480A
Other languages
Japanese (ja)
Other versions
JPS56128634A (en
Inventor
Yoshinori Okakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3108480A priority Critical patent/JPS56128634A/en
Publication of JPS56128634A publication Critical patent/JPS56128634A/en
Publication of JPS6257408B2 publication Critical patent/JPS6257408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明はリング圧延機を用いて環状製品を圧延
する方法に関し、特に旋削加工により最終製品を
得るべく、所要の取代を残存せしめた環状製品の
圧延方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of rolling an annular product using a ring rolling mill, and more particularly to a method of rolling an annular product in which a required machining allowance is left in order to obtain a final product by turning.

環状製品は環状荒地をリング圧延機にて圧延成
形し、その後旋削加工により所定寸法に仕上げら
れるのが一般的であるが、環状品の圧延メーカー
としては、黒皮素材の状態で注文主に納入するこ
とも多い。この場合、黒皮素材には、何らかの寸
法公差が注文仕様として規定されることが多く、
この公差を外れた素材が発生した場合は、素材メ
ーカーの責任に於いて、本来、全く不要な旋削加
工等を施工する必要が生じ、コスト上大きな損失
となる。而して従来の圧延は軸方向寸法(以下幅
寸法という)を一定とし、外径基準で、すなわ
ち、圧延による仕上り外径を所定値として外周側
に一定の取代を確保する方法で行われていた。と
ころが被圧延物の体積又は重量には個々にバラツ
キがあるため、第1図に示すように体積の大小に
対応して圧延済製品の内径又は内径取代が大小に
ばらつくこととなつていた。第1図中実線は被圧
延材の体積が大である場合、破線は体積が小であ
る場合夫々の圧延済製品の断面を、また2点鎖線
は製造すべき製品の断面を示している。この図か
ら明らかな如く、被圧延材の体積が小さい場合に
おいて圧延済製品の内径が2点鎖線で示す最終環
状製品の許容公差内に納まつているときは支障は
ないが、該許容公差を逸脱する程に大径であつた
とき(即ち薄肉になつたとき)は旋削工程での対
応が不可能であり廃材とせざるを得ない等の問題
があつた。
Generally, annular products are rolled from annular rough material using a ring rolling mill, and then turned to the specified dimensions.As a rolling manufacturer of annular products, we deliver the products to customers in the form of black leather. I often do it. In this case, some kind of dimensional tolerance is often specified as an order specification for the black leather material.
If a material that exceeds this tolerance is generated, the material manufacturer is responsible for performing unnecessary turning processing, etc., resulting in a large loss in terms of cost. Conventional rolling is performed by keeping the axial dimension (hereinafter referred to as the width dimension) constant and using the outer diameter as a reference, that is, by setting the finished outer diameter by rolling to a predetermined value and ensuring a constant machining allowance on the outer circumferential side. Ta. However, since there are individual variations in the volume or weight of the rolled products, the inner diameter or inner diameter machining allowance of the rolled product varies depending on the volume, as shown in FIG. In FIG. 1, the solid line shows the cross section of the rolled product when the volume of the material to be rolled is large, the broken line shows the cross section of the rolled product when the volume is small, and the two-dot chain line shows the cross section of the product to be manufactured. As is clear from this figure, when the volume of the rolled material is small, there is no problem when the inner diameter of the rolled product is within the tolerance of the final annular product shown by the two-dot chain line. When the diameter is so large that it deviates (that is, when the wall becomes thin), there is a problem that it is impossible to handle it in the turning process and the material has to be scrapped.

本願発明者はこのような旧来の外径基準圧延の
問題を解決するために、被圧延材の体積を検知し
てこれに基き、内外径の取代、軸方向の取代を予
め定めた基準に従つて配分することを要旨とする
環状製品の圧延方法を既に提案している(特願昭
53−65043号)。本願発明はこの既に提案された発
明を更に改良したものである。
In order to solve the problem of conventional outer diameter reference rolling, the inventor of the present application detects the volume of the material to be rolled and, based on this, determines the machining allowance for the inner and outer diameters and the machining allowance in the axial direction according to predetermined standards. We have already proposed a rolling method for circular products that is distributed by
53-65043). The present invention is a further improvement of this already proposed invention.

即ち、本発明に係る環状製品の圧延方法は、取
代を有する環状製品を圧延する方法において、被
圧延材の外径、肉厚、軸方向寸法を、圧延中の所
定タイミングで検出して被圧延材の体積を算出
し、この算出値に基いて仕上がり寸法を予測し、
この予測寸法と環状製品の許容公差との比較を行
い、予測寸法が取代過多の状態で許容公差を逸脱
する部分及び許容公差を満足する部分が併存する
場合は前者の部分の取代を減じ、後者の部分の取
代を増加するように、また予測寸法がいずれも取
代過多の状態で許容公差を逸脱する場合は予め定
められた部分の取代を増加することにより、他の
部分の取代を減ずるように、爾後の圧延制御を行
うことを特徴とする。
That is, the method for rolling an annular product according to the present invention is a method for rolling an annular product having a machining allowance, by detecting the outer diameter, wall thickness, and axial dimension of the material to be rolled at a predetermined timing during rolling. Calculate the volume of the material, predict the finished dimensions based on this calculated value,
This predicted dimension is compared with the allowable tolerance of the annular product, and if there is a part where the predicted dimension exceeds the allowable tolerance due to excessive machining allowance and a part which satisfies the allowable tolerance, the machining allowance of the former part is reduced, and the machining allowance of the latter part is reduced. If the predicted dimensions exceed the allowable tolerances with too much machining allowance, the machining allowance for other parts will be reduced by increasing the machining allowance for the predetermined part. , the subsequent rolling control is performed.

以下本発明を断面矩形の環状製品を圧延する場
合を例にとり具体的に説明する。圧延素材となる
鋼片は炉中で加熱された後、デスケーリング、据
込み等の工程を経、中心部に穿孔が行われて環状
荒地となる。リング圧延機にはこの環状荒地が装
荷されて圧延が開始されるのであるが、この圧延
制御はプロセス制御コンピユータ(以下プロコン
という)によつて行われる。プロコンには製品仕
様、圧延後の加工条件等に応じて定められた取代
の配分に関する基準データが予め与えられてお
り、この基準に基いて圧延終了時の目標寸法が設
定され、これを実現する如くに圧延制御が行われ
ていく。
The present invention will be specifically explained below, taking as an example the case of rolling an annular product having a rectangular cross section. After being heated in a furnace, the steel billet that is to be rolled is subjected to processes such as descaling and upsetting, and a hole is punched in the center to form an annular wasteland. The ring rolling mill is loaded with this annular rough material and rolling is started, and this rolling control is performed by a process control computer (hereinafter referred to as a process control computer). Standard data regarding the allocation of machining allowance determined according to product specifications, post-rolling processing conditions, etc. is provided in advance to the processor, and target dimensions at the end of rolling are set based on this standard, and this is achieved. Rolling control is performed as follows.

なお、後述するように本発明においては圧延中
に被圧延材の外径等を実測して、その実測値から
被圧延材の体積を算出するのであるが、上述の目
標寸法設定に必要とする体積値は圧延前の秤量値
その他にて求めた概算値等を用いればよい。また
前記目標寸法の設定にあたつては、例えば第2図
に示すように内外径取代及び軸方向の取代ともに
均等にするとの基準に従うこととする。そうする
と、第2図に2点鎖線で示す如き内径Di、外径
Do、幅寸法Hの最終製品の圧延終了時の目標寸
法は実線で示すように内径Di−2t、外径Do+2t、
幅寸法H+2tとなる。但しtは取代であつて、前
述の如くして定めた仮の体積値V0との間には下
記(1)式の関係が成立する。
As will be described later, in the present invention, the outer diameter etc. of the rolled material are actually measured during rolling, and the volume of the rolled material is calculated from the measured values. As the volume value, an approximate value obtained from a weighed value before rolling or the like may be used. Further, in setting the target dimensions, for example, as shown in FIG. 2, the criterion is to make both the inner and outer diameter machining allowances and the axial machining allowances equal. Then, the inner diameter Di and outer diameter are as shown by the two-dot chain line in Fig. 2.
The target dimensions at the end of rolling for the final product with width dimension H are inner diameter Di−2t, outer diameter Do+2t,
The width dimension will be H + 2t. However, t is the machining allowance, and the relationship of the following equation (1) is established between it and the provisional volume value V 0 determined as described above.

V0=π(Do+Di)/2×(H+2t) ×〔(Do−Di)/2+2t〕 ………(1) さてリング圧延機には公知の外径・肉厚・幅寸
法の測定手段が設けられており、被圧延材の圧延
開始後その外径寸法はプロコンにより常時監視さ
れている。そして圧延が進行していき外径寸法が
目標寸法Do+2tよりも若干、例えば5mm程度小
さい値になつた時点から被圧延材の体積算出のた
めにその外径、肉厚、幅寸法のサンプリングが行
われる。サンプリング周期、サンプリング数等は
被圧延材の仕様、圧延速度等によつて定められる
が、被圧延材が一周する間にその全周に亘つて分
布する複数の点(多い程望ましい)についてサン
プリングするのが精度を高める上で重要である。
V 0 = π (Do + Di) / 2 × (H + 2t) × [(Do - Di) / 2 + 2t] ...... (1) Now, the ring rolling mill is equipped with known measuring means for outer diameter, wall thickness, and width dimensions. The outside diameter of the material to be rolled is constantly monitored by the processor after rolling has started. As the rolling progresses, from the point at which the outer diameter dimension becomes slightly smaller than the target dimension Do+2t, for example, by about 5 mm, the outer diameter, wall thickness, and width dimensions are sampled to calculate the volume of the rolled material. be exposed. The sampling period, number of samples, etc. are determined by the specifications of the rolled material, rolling speed, etc., but sampling is performed at multiple points (the more the better) distributed over the entire circumference of the rolled material during one round of the rolled material. is important to improve accuracy.

このようにして検出された外径・肉厚・幅寸法
の平均値を、、とすると、被圧延材の体
積Vは下記(2)式に従つて算出される。
If the average value of the outer diameter, wall thickness, and width dimensions detected in this manner is , then the volume V of the material to be rolled is calculated according to the following equation (2).

V=π(−)・・ ………(2) プロコンはそれまで被圧延材の体積がV0であ
るとして制御を行つてきたのであるが、この時点
で被圧延材の体積がVであると補正認識すること
になる。プロコンはこのVの値を基に、従前通り
の圧延制御を継続していつた場合の仕上り寸法を
予測する。この予測方法としては圧延制御方式に
よつて区々に異り、また種々の方法が可能である
が、最も基本的には(1)式においてV0=Vとして
tの値を求め、このようにして求めたtの値t1
用いて、外径D0+2t1、内径Di−2t1、幅寸法H+
2t1とすればよい。
V=π(-)......(2) Until then, the processor had been controlling the volume of the material to be rolled as V0 , but at this point the volume of the material to be rolled is V. This will be recognized as a correction. Based on this value of V, the processor predicts the finished dimensions if the conventional rolling control is continued. This prediction method differs depending on the rolling control method, and various methods are possible, but the most basic method is to calculate the value of t by setting V 0 = V in equation (1), and Using the value t 1 of t found in
It should be 2t 1 .

次にはこのようにして求めた仕上り予測寸法を
最終環状製品の許容公差と比較する。今、予測外
径をDo1、予測肉厚をT1、予測幅寸法をH1とす
る。第3〜第5図において実線は許容公差の最大
値及び最小値を示している。
Next, the predicted finished dimensions obtained in this way are compared with the allowable tolerances of the final annular product. Now, assume that the predicted outer diameter is Do 1 , the predicted wall thickness is T 1 , and the predicted width dimension is H 1 . In FIGS. 3 to 5, solid lines indicate the maximum and minimum values of allowable tolerance.

まず第3図に示すように予測外径、内径(Di1
=Do1−2T1)、幅寸法H1ともに許容公差内に収ま
つている場合はそのまま従前通りの圧延制御を、
即ち内外径の取代を均等にするような圧延制御を
継続していく。
First, as shown in Figure 3, the predicted outer diameter and inner diameter (Di 1
= Do 1 −2T 1 ) and width dimension H 1 are both within the allowable tolerances, continue rolling control as before.
In other words, rolling control is continued to equalize the machining allowance on the inner and outer diameters.

次に第4図イに示す如く予測外径寸法Do1が許
容公差の最大値より大となる等、一部の予測寸法
が取代の過多の状態で許容公差を逸脱しており、
他の予測寸法が許容公差を満足している場合には
第4図ロにハツチングを付して示すように、許容
公差を外れた外周側部分の取代を減じる一方、許
容公差に比して余裕がある部分、図示の場合は内
周側部分にて、外周側部分にて減じた取代分に見
合うだけ、取代を増加するように爾後の圧延制御
を行う。第4図に示した例では要するに外径寸法
を許容公差の最大値に納めることを最優先にして
圧延することとなる。
Next, as shown in Figure 4 A, some of the predicted dimensions deviate from the allowable tolerance due to excessive machining allowance, such as the predicted outer diameter dimension Do 1 being larger than the maximum value of the allowable tolerance.
If the other predicted dimensions satisfy the allowable tolerances, as shown by the hatching in Figure 4 B, the machining allowance on the outer circumferential side that is outside the allowable tolerances is reduced, and there is an allowance compared to the allowable tolerances. Subsequent rolling control is performed so that the machining allowance is increased in a certain part, in the case of the illustration, the inner peripheral part, by an amount corresponding to the machining allowance reduced in the outer peripheral part. In the example shown in FIG. 4, rolling is performed with top priority placed on keeping the outer diameter dimension within the maximum allowable tolerance.

次に第5図イに示す如く外径、肉厚、幅寸法と
も取代過多の状態で許容公差を逸脱する場合、即
ち予測外径寸法Do1、予測幅寸法H1が共に夫々の
許容公差の最大値よりも大きく、命測内径寸法
Di1(=Do1−2T1)が許容公差の最小値(肉厚と
しては最大値)よりも小さい場合には、上述した
第4図イの場合の如く余裕のある部分が存在しな
いから第5図ロに示す如く外周側及び幅方向の取
代を許容公差最大値まで減じて、この分を内周側
に集中させる。このようにして余肉を集中させる
部分はいずれの部分でもよいが、圧延後の削除加
工が容易な内周側とするのが好都合であることは
言うまでもない。
Next, as shown in Figure 5 A, if the outer diameter, wall thickness, and width dimensions deviate from the allowable tolerances with excessive machining allowance, that is, the predicted outer diameter dimension Do 1 and the predicted width dimension H 1 are both within the respective allowable tolerances. Greater than the maximum value, estimated inner diameter dimension
If Di 1 (=Do 1 −2T 1 ) is smaller than the minimum allowable tolerance (maximum value for wall thickness), as in the case of Fig. 4 A mentioned above, there is no margin, so the As shown in Figure 5B, the machining allowance on the outer circumferential side and in the width direction is reduced to the maximum allowable tolerance value, and this amount is concentrated on the inner circumferential side. The excess thickness may be concentrated in any part, but it goes without saying that it is convenient to do so on the inner circumferential side, where removal after rolling is easy.

第6図は本発明方法を適用した場合の被圧延材
重量と、仕上り外径との関係を黒点にて示してい
る。従来方法による場合は外径基準圧延としてい
たので図中に破線で示す如く重量に拘らず一定外
径となるが、本発明方法による場合は許容公差の
範囲内に分布することになる。
FIG. 6 shows the relationship between the weight of the rolled material and the finished outer diameter when the method of the present invention is applied, using black dots. In the case of the conventional method, rolling was performed based on the outer diameter, so that the outer diameter was constant regardless of the weight, as shown by the broken line in the figure, but in the case of the method of the present invention, the outer diameter was distributed within the allowable tolerance range.

第7図は同じく本発明方法を適用した場合の被
圧延材重量と仕上り内径との関係を黒点にて示し
ている。図中実線で示す直線は本発明方法による
場合の重量−内径の関係を代表しているが、この
直線は従来法による場合の実績を代表する破線で
示す直線に比して勾配が小さい。これは内径が許
容公差の最大値を超える内径大不良品、及び許容
公差の最小値を下回る内径小要加工品の発生が、
本発明方法による場合には広い重量範囲について
少いことを意味している。換言すれば本発明によ
る場合は小重量品でも内径大不良が発生し難くな
り、これにより荒地平均重量の引下げも可能とな
り歩留の向上が図れる。また大重量品については
公差内圧延が可能となる確率が高まり(即ち旋削
の必要性が低下し)全面黒皮での出荷が可能とな
り、大幅な工数低減が可能になる等、本発明は環
状製品圧延における歩留向上、工数低減等に優れ
た効果を奏する。
Similarly, FIG. 7 shows the relationship between the weight of the rolled material and the finished inner diameter when the method of the present invention is applied, using black dots. The straight line shown by the solid line in the figure represents the relationship between weight and inner diameter in the case of the method of the present invention, but this straight line has a smaller slope than the straight line shown by the broken line which represents the results in the case of the conventional method. This is due to the occurrence of defective products with large inner diameters that exceed the maximum allowable tolerance, and products that require processing with small inner diameters that are below the minimum allowable tolerance.
With the method of the invention this means less over a wide weight range. In other words, according to the present invention, large inner diameter defects are less likely to occur even in small-weight products, thereby making it possible to reduce the average weight of rough areas and improving yield. In addition, for heavy products, the probability of rolling within tolerance increases (that is, the need for turning is reduced), making it possible to ship with a black crust on the entire surface, making it possible to significantly reduce the number of man-hours. It has excellent effects in improving yield and reducing man-hours in product rolling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は外径基準圧延の問題点を示す説明図、
第2図は目標寸法を説明するための被圧延材の半
截断面図、第3図、第4図イ,ロ、第5図イ,ロ
は本発明方法の説明図、第6図、第7図は本発明
方法による実績を示すグラフである。
Figure 1 is an explanatory diagram showing the problems of outer diameter standard rolling;
Fig. 2 is a half-cut sectional view of the rolled material to explain the target dimensions, Figs. 3 and 4 A and B, and Figs. The figure is a graph showing the results achieved by the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 取代を有する環状製品を圧延する方法におい
て、被圧延材の外径、肉厚、軸方向寸法を、圧延
中の所定タイミングで検出して被圧延材の体積を
算出し、この算出値に基いて仕上がり寸法を予測
し、この予測寸法と環状製品の許容公差との比較
を行い、予測寸法が取代過多の状態で許容公差を
逸脱する部分及び許容公差を満足する部分が併存
する場合は前者の部分の取代を減じ、後者の部分
の取代を増加するように、また予測寸法がいずれ
も取代過多の状態で許容公差を逸脱する場合は予
め定められた部分の取代を増加することにより、
他の部分の取代を減ずるように、爾後の圧延制御
を行うことを特徴とする環状製品の圧延方法。
1 In a method of rolling an annular product having a machining allowance, the outer diameter, wall thickness, and axial dimension of the material to be rolled are detected at a predetermined timing during rolling, the volume of the material to be rolled is calculated, and the volume of the material to be rolled is calculated based on this calculated value. The finished dimensions are predicted based on the predicted dimensions, and compared with the allowable tolerances of the annular product. If there are parts of the predicted dimensions that deviate from the allowable tolerances due to excessive machining and parts that satisfy the allowable tolerances, the former By decreasing the machining allowance of a part and increasing the machining allowance of the latter part, and if the predicted dimensions exceed the allowable tolerance with excessive machining allowance, by increasing the machining allowance of a predetermined part,
A method for rolling an annular product, characterized in that subsequent rolling control is performed so as to reduce machining allowance in other parts.
JP3108480A 1980-03-11 1980-03-11 Rolling method for annular product Granted JPS56128634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3108480A JPS56128634A (en) 1980-03-11 1980-03-11 Rolling method for annular product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3108480A JPS56128634A (en) 1980-03-11 1980-03-11 Rolling method for annular product

Publications (2)

Publication Number Publication Date
JPS56128634A JPS56128634A (en) 1981-10-08
JPS6257408B2 true JPS6257408B2 (en) 1987-12-01

Family

ID=12321544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3108480A Granted JPS56128634A (en) 1980-03-11 1980-03-11 Rolling method for annular product

Country Status (1)

Country Link
JP (1) JPS56128634A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2911807B1 (en) * 2007-01-29 2009-08-28 Lectra Sa Sa METHOD OF CUTTING PREDEFINED PARTS IN MULTI-LAYER MATERIAL WITH AUTOMATIC CHECKING OF SHEET DIMENSIONS
KR101180121B1 (en) 2010-03-20 2012-09-06 칼텍(주) Manufacturing method for ring rolling mill

Also Published As

Publication number Publication date
JPS56128634A (en) 1981-10-08

Similar Documents

Publication Publication Date Title
US20110041580A1 (en) Rolling mill for a plate or a sheet and its control technique
JPS6257408B2 (en)
EP0055781B1 (en) Method for controlling the automatic rolling of pipes in a reeling mill
JP2000288614A (en) Gage controller for rolling mill
CN112474819B (en) Method and device for controlling shape of product
WO2022214527A1 (en) Apparatus for continuous monitoring of a metallic material in a rolling process, and related method for continuous monitoring of a metallic material in a rolling process
WO2021024448A1 (en) Method for assisting operation of rolling facility, operation assistance device, and rolling facility
JP2002210504A (en) Method and apparatus for rolling by ring rolling
JPH10263640A (en) Method for learning-controlling rolling load in rolling mill
JPH09276915A (en) Dynamic setup method in continuous rolling mill
CN114433640B (en) Method and device for determining roll gap pre-control adjustment value
JPS6323848B2 (en)
JPS6119321B2 (en)
JP2843764B2 (en) Heating furnace extraction time determination method
SU1659141A1 (en) Method of hot rolling of strip in wide-strip mill
JPH075995B2 (en) Tension control method for metal strip in continuous annealing furnace
JPH09253727A (en) Cold rolling method for metal strip
JPH0677766B2 (en) Cr metal roll for rolling
JPH02165806A (en) Method for controlling sheet thickness in rolling mill for steel strip
JPS61202701A (en) Precognizing method for abnormal rolling in metallic sheet rolling
SU1207592A1 (en) Method of producing profile rings
JPH0527688B2 (en)
SU1696014A1 (en) Method of slabbing
SU1590180A1 (en) Method of controlling the reeling of ring-type blanks
WO2023146701A1 (en) System and method for controlling threading in a rolling mill