JPS6256902B2 - - Google Patents

Info

Publication number
JPS6256902B2
JPS6256902B2 JP1699680A JP1699680A JPS6256902B2 JP S6256902 B2 JPS6256902 B2 JP S6256902B2 JP 1699680 A JP1699680 A JP 1699680A JP 1699680 A JP1699680 A JP 1699680A JP S6256902 B2 JPS6256902 B2 JP S6256902B2
Authority
JP
Japan
Prior art keywords
rubber
mbts
vulcanization
present
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1699680A
Other languages
Japanese (ja)
Other versions
JPS56139542A (en
Inventor
Tatsuo Nukui
Hidetaka Oshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaguchi Chemical Industry Co Ltd
Original Assignee
Kawaguchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaguchi Chemical Industry Co Ltd filed Critical Kawaguchi Chemical Industry Co Ltd
Priority to JP1699680A priority Critical patent/JPS56139542A/en
Publication of JPS56139542A publication Critical patent/JPS56139542A/en
Publication of JPS6256902B2 publication Critical patent/JPS6256902B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ゴム用新規加硫促進剤に関し、ゴム
特に合成ゴムに配合して高温で加工処理する際に
適する新規なゴム用新規加硫促進剤に関する。 [従来の技術] 天然または合成ゴムの硫黄加硫に際しては、通
常種々の加硫促進剤が使用されている。近年、ゴ
ム製品の製造工程の合理化の一環として、ゴム製
品の製造における加硫促進剤などのゴムへの配
合、混練り工程および配合ゴムの成形加工工程
は、高温下にゴムの可塑性を上げて短時間で加硫
促進剤などを均一に混練りし、次いで高温下に短
時間で成形加工することが望まれている。しかる
に、現在使用されている加硫促進剤についてみる
と、ゴムに混練りする場合に、比較的加硫の速い
加硫促進剤といわれている2−メルカプトベンゾ
チアゾール、ジベンゾチアジルジスルフイド(以
下、MBTSと略す)などを使う場合には、焼け
(一名スコーチともいう)を起し易い。一方、一
般に遅効性といわれているN−シクロヘキシル−
2−ベンゾチアゾリルスルフエンアミド(以下、
CBSと略す)、N−t−ブチル−2−ベンゾチア
ゾリルスルフエンアミド(以下、BBSと略す)な
どを使う場合には、ゴムに低温で混練りするとス
コーチ性が弱く、焼けを起さないが、次いで、高
温で加工処理をすると次第に焼け易くなることが
多い。 [発明の解決しようとする問題点] 本発明者は、この様な現状の加硫促進剤の欠点
を改善し、遅効性で、その上、高温加工処理を行
なう場合でも焼けを起さない、即ち、加工処理温
度による影響の少ない加硫促進剤を提供すべく、
鋭意研究を重ねた。その結果、次のような新規知
見を得るに至り、本発明を達成したものである。 すなわち、ビス(4−メチル−ベンゾチアゾリ
ル−2)ジスルフイド(以下、M−MBTSと略
す)およびビス(4・5−ジメチル−ベンゾチア
ゾリル−2)ジスルフイド(以下、Di−M−
MBTSと略す)よりなるゴム用加硫促進剤は、例
えば、米国特許第3925401号明細書などにより知
られているが、これらM−MBTSおよび/または
Di−M−MBTSに特定の加硫活性剤を併用するこ
とにより、上記目的が円滑有利に達成可能である
ことを見出したものである。特定の加硫活性剤
は、ジフエニルグアニジン(以下、DPGと略
す)、ジオルトトリルグアニジン(以下、DOTG
と略す)および微粉末尿素(以下、PURと略
す)からなる群から選ばれる少なくとも一種であ
るが、これら特定の加硫活性剤を従来の速効性加
硫促進剤MBTSや遅効性加硫促進剤CBSなどと併
用しても、上記目的は達成され難いものである。
勿論、M−MBTSおよび/またはDi−M−MBTS
の単独使用では上記目的が達成されない。 [問題点を解決するための手段] 本発明は、上記の新規知見に基いて完成された
ものであり、ビス(4−メチル−ベンゾチアゾリ
ル−2)ジスルフイドおよび/またはビス(4・
5−ジメチル−ベンゾチアゾリル−2)ジスルフ
イドにジフエニルグアニジン、ジオルトトリルグ
アニジンおよび微粉末尿素からなる群から選ばれ
る加硫活性剤の少なくとも一種を併用することを
特徴とするゴム用加硫促進剤を提供するものであ
る。 本発明におけるM−MBTSおよびDi−M−
MBTSは、ゴムに配合する場合、加硫する温度に
近い温度、即ち、70〜200℃、特に好ましくは90
〜170℃の高温の状態のロール、インターナルミ
キサーなどで混練りし、次いで高温下で成形加工
することのできる加硫促進剤である。 これに対し、現在使用されている遅効性の加硫
促進剤、例えばCBS、BBS、N−オキシ−ジエチ
レン−2−ベンゾチアゾリルスルフエンアミド
(以下、OBSと略す)、またはN・N−ジイソプ
ロピル−2−ベンゾチアゾリルスルフエンアミド
などを使用する場合、配合ゴムの加工処理中に加
工処理温度の低いうちは焼け難いが、次第に発熱
して高温になると焼け易くなり、ゴムのゲル化が
進み、その結果、配合ゴムの流動性、粘着性、表
面肌を悪くする。同様に、従来のMBTSまたは
MBTSと本発明における特定の加硫活性剤との併
用系では、配合ゴムの加工処理温度および発熱に
より高温になると焼け易くなり、ゴムのゲル化が
進み、その結果、配合ゴムの流動性、粘着性、表
面肌を悪くする。特に、カーボンブラツクなどを
配合すると、この傾向が強くなる。 本発明におけるM−MBTSおよび/またはDi−
M−MBTSと特定加硫活性剤の併用系は、上記の
如き難点を解消した理想的な加硫促進剤である。
本発明におけるM−MBTSおよびDi−M−MBTS
は、従来より公知乃至周知の方法、例えば、米国
特許第3925401号明細書などに記載されている方
法で合成され得る。例えば、オルト−トルイジン
または2・3−キシリジンに二硫化炭素および硫
黄を加えて、温度200〜260℃、高圧下に撹拌しつ
つ6〜10時間反応させることによつて4−メチル
−2−メルカプトベンゾチアゾールまたは4・5
−ジメチル−2−メルカプトベンゾチアゾールを
合成し、次いで、これらの化合物を苛性ソーダ水
溶液に溶解した後、過酸化水素、次亜塩素酸ソー
ダ、または亜硝酸ソーダなどの水溶液を用いて酸
化すれば合成することができる。 本発明の加硫促進剤は、ゴム特に合成ゴムに使
用するのが好ましいが、天然ゴムにも使用でき
る。合成ゴムの例としては、例えば、スチレン・
ブタジエンゴム(以下、SBRと略す)、ブタジエ
ンゴム(以下、BRと略す)、アクリロニトリルと
ブタジエンとの共重合体(以下、NBRと略す)、
クロロプレンゴム、イソプレンとイソブチレンと
の共重合体、イソプレンとイソブチレンとの共重
合体に塩素または臭素を導入したゴム、イソプレ
ン重合体、不飽和結合を持つエチレン・プロピレ
ン共重合体などがある。 本発明の加硫促進剤のゴムへの配合量は、ゴム
100重量部に対し、M−MBTSおよび/またはDi
−M−MBTSを0.1〜5重量部、好ましくは0.3〜
2.0重量部と、DPG、DOTGおよびPURからなる
群から選ばれる少なくとも一種を0.01〜5重量
部、好ましくは0.1〜1.0重量部である。 本発明の加硫促進剤を使用したゴムの加硫は、
硫黄で加硫する以外に、含硫黄化合物、例えば、
テトラメチルチウラムジスルフイド、テトラエチ
ルチウラムジスルフイド、テトラブチルチウラム
ジスルフイド、ジペンタメチルチウラムテトラス
ルフイド、またはジモルホリノジスルフイドなど
と共に加硫することもできる。例えば、加硫し難
いゴムの加硫、汎用ゴムの低温加硫および短時間
加硫などの場合には、本発明の特定の組み合せ
に、さらにテトラメチルチウラムモノスルフイ
ド、テトラエチルチウラムジスルフイド、テトラ
ブチルチウラムジスルフイド、ジペンタメチルチ
ウラムテトラスルフイドの如きチウラム類、ジメ
チルジチオカルバミン酸亜鉛、ジエチルジチオカ
ルバミン酸亜鉛、ジブチルジチオカルバミン酸亜
鉛、ジエチルジチオカルバミン酸エステルの如き
ジチオカルバミン酸類、アルデヒドアミン、ヘキ
サメチレンテトラミンの如きアミン類、または2
−メルカプトベンゾチアゾールなどを併用するこ
ともできる。 本発明の加硫促進剤を使用して加硫したゴムの
物性は、加工条件にもよるが、引張強さ、伸びな
どの加硫物性が他の促進剤と比較して優れてい
る。この様な性質は、充填剤、軟化剤などを多量
に加えることを可能にするもので、ゴム製品製造
上有利になる。 本発明の加硫促進剤を使用するゴム製品には、
タイヤ、チユーブ類、防振ゴム、ホース類、ベル
ト類、およびゴムロール類などがある。 [実施例] 以下に、参考までに本発明におけるM−MBTS
およびDi−M−MBTSの合成例を示すと共に、本
発明の加硫促進剤の有用性を実施例として示す。 合成例 1 1のオートクレーブにオルト−トルイジン
214g、二硫化炭素154g、硫黄66gを入れ、230
〜260℃にて2〜10時間加熱撹拌して反応を終了
する。次いで、内容物を取り出して精製して、
282g(理論値の78%)の4−メチル−2−メル
カプトベンゾチアゾールを得た。元素分析値C:
52.24%(計算値53.00%)、H:3.91%(計算値
3.89%)、N:7.78%(計算値7.73%)、S:35.25
%(計算値35.37%)、融点:186〜188℃。 得られた4−メチル−2−メルカプトベンゾチ
アゾール182gを苛性ソーダ5重量%水溶液880g
に加熱溶解し、冷却後脱色炭を約10g加え、撹拌
後過する。液を約40℃にし、撹拌しつつ次亜
塩素酸ソーダ5重量%水溶液を徐々に添加し酸化
する。酸化生成物は結晶で析出する。それを
過、水洗、乾燥し、次にベンゼンにて再結晶を数
回繰返して針状、淡黄色結晶のM−MBTSを得
た。元素分析値C:53.25%(計算値53.30%)、
H:3.34%(計算値3.36%)、N:7.80%(計算値
7.77%)、S:35.49%(計算値35.58%)、融点:
168〜168.5℃。 合成例 2 1のオートクレーブに2・3−キシリジン
242g、二硫化炭素154g、硫黄66gを入れ、240
〜260℃にて2〜10時間加熱撹拌して反応させ
た。以下合成例1と同様に操作することにより
324g(理論値の83%)の4・5−ジメチル−2
−メルカプトベンゾチアゾールを得た。元素分析
値C:55.30%(計算値55.35%)、H:4.68%(計
算値4.65%)、N:7.20%(計算値7.17%)、S:
32.06%(計算値32.84%)、融点:229〜230℃。 次に、得られた4・5−ジメチル−2−メルカ
プトベンゾチアゾール195gを合成例1と同様に
苛性ソーダ水溶液に溶解し、次亜塩素酸ソーダ5
重量%水溶液を徐々に添加して酸化を行なう。酸
化生成物は結晶で析出する。その結果を過、水
洗、乾燥し、クロロホルムにて再結晶を繰返し
て、微褐色針状結晶のDi−M−MBTSを得た。元
素分析値C:55.59%(計算値55.63%)、H:4.18
%(計算値4.15%)、N:7.28%(計算値7.21
%)、S:32.93%(計算値33.01%)、融点:163
〜164℃。 実施例1〜2及び比較例1〜6 NBR(#1042)を使用し、配合はJIS K6384
(1975)に準拠して行なつた。配合表を表1に示
す。配合ゴムのムーニー試験はJIS K6300
(1975)に、加硫方法及び加硫物の物理的試験方
法はJIS K6301(1975)にそれぞれ準拠して行な
つた。次に、高温下での配合ゴムの流動持続性試
験をラボプラストミル[(株)東洋精機製作所製]試
験機で行ない、ゲル開始時間を測定した。次に、
配合ゴムの熱処理は試験ロール(直径150mm、長
さ330mm、ロール間隙1mm、回転比1.14、蒸気加
熱)を使用し、ゴムの切返しを行いながら、均一
熱処理100℃(ロール温度)×60分または120℃×
30分を行なつた。それらの結果を表2に示する。 表 1 NBR(日本ゼオン社製、Nipol1042) 100重量部 SRF(東海カーボン社製、シーストS)
40重量部 亜鉛華(三井金属工業社製、1号) 5重量部 ステアリン酸(日本油脂社製) 1重量部 硫黄(細井化学工業社製、コロイド硫黄)
1.5重量部 加硫促進剤(表2に示す) 1重量部
[Industrial Application Field] The present invention relates to a novel vulcanization accelerator for rubber, and more particularly, to a novel vulcanization accelerator for rubber that is suitable for compounding with synthetic rubber and processing it at high temperatures. [Prior Art] Various vulcanization accelerators are usually used in sulfur vulcanization of natural or synthetic rubber. In recent years, as part of the rationalization of the manufacturing process of rubber products, in the manufacturing of rubber products, the compounding of vulcanization accelerators and other substances into rubber, the kneading process, and the molding process of compounded rubber have been increased by increasing the plasticity of the rubber at high temperatures. It is desired to uniformly knead a vulcanization accelerator and the like in a short period of time, and then mold the product at high temperatures in a short period of time. However, looking at the vulcanization accelerators currently in use, 2-mercaptobenzothiazole and dibenzothiazyl disulfide (2-mercaptobenzothiazole and dibenzothiazyl disulfide) are said to be vulcanization accelerators that cause relatively fast vulcanization when kneaded into rubber. When using MBTS (hereinafter abbreviated as MBTS), burns (also referred to as scorch) are likely to occur. On the other hand, N-cyclohexyl-
2-Benzothiazolylsulfenamide (hereinafter referred to as
(abbreviated as CBS), N-t-butyl-2-benzothiazolylsulfenamide (hereinafter abbreviated as BBS), etc., when kneaded into rubber at a low temperature, has weak scorch properties and does not cause burning. However, when processed at high temperatures, it often becomes easier to burn. [Problems to be Solved by the Invention] The present inventor has improved the drawbacks of the current vulcanization accelerators, and has developed a vulcanization accelerator that is slow-acting and does not cause burning even when subjected to high-temperature processing. That is, in order to provide a vulcanization accelerator that is less affected by processing temperature,
I have done extensive research. As a result, the following new findings were obtained and the present invention was achieved. That is, bis(4-methyl-benzothiazolyl-2) disulfide (hereinafter abbreviated as M-MBTS) and bis(4,5-dimethyl-benzothiazolyl-2) disulfide (hereinafter referred to as Di-M-
Rubber vulcanization accelerators consisting of M-MBTS and/or M-MBTS are known, for example, from U.S. Pat.
It has been discovered that the above object can be achieved smoothly and advantageously by using Di-M-MBTS in combination with a specific vulcanization activator. Specific vulcanization activators include diphenylguanidine (hereinafter abbreviated as DPG), diorthotolylguanidine (hereinafter referred to as DOTG),
(hereinafter referred to as "PUR") and finely powdered urea (hereinafter referred to as "PUR"). Even if it is used in combination with CBS or the like, it is difficult to achieve the above objective.
Of course, M-MBTS and/or Di-M-MBTS
The above purpose cannot be achieved when used alone. [Means for Solving the Problems] The present invention has been completed based on the above-mentioned new findings, and includes bis(4-methyl-benzothiazolyl-2) disulfide and/or bis(4.
5-Dimethyl-benzothiazolyl-2) A vulcanization accelerator for rubber, characterized in that disulfide is used in combination with at least one vulcanization activator selected from the group consisting of diphenylguanidine, diorthotolylguanidine, and finely powdered urea. This is what we provide. M-MBTS and Di-M- in the present invention
When compounded into rubber, MBTS is heated at a temperature close to the vulcanization temperature, i.e., 70 to 200°C, particularly preferably 90°C.
It is a vulcanization accelerator that can be kneaded using a roll or internal mixer at a high temperature of ~170°C, and then molded at a high temperature. In contrast, currently used slow-acting vulcanization accelerators, such as CBS, BBS, N-oxy-diethylene-2-benzothiazolylsulfenamide (hereinafter abbreviated as OBS), or N/N-diisopropyl - When using 2-benzothiazolyl sulfenamide, etc., during the processing of compounded rubber, it is difficult to burn at low processing temperatures, but as it gradually heats up and reaches high temperatures, it becomes easy to burn, and the gelation of the rubber progresses. As a result, the fluidity, tackiness, and surface texture of the compounded rubber deteriorate. Similarly, traditional MBTS or
In the combination system of MBTS and the specific vulcanization activator of the present invention, the processing temperature of the compounded rubber and the heat generated make it easy to burn at high temperatures, and the gelation of the rubber progresses, resulting in a decrease in the fluidity and adhesion of the compounded rubber. It worsens the skin and surface skin. This tendency becomes particularly strong when carbon black or the like is added. M-MBTS and/or Di- in the present invention
A combination system of M-MBTS and a specific vulcanization activator is an ideal vulcanization accelerator that overcomes the above-mentioned difficulties.
M-MBTS and Di-M-MBTS in the present invention
can be synthesized by conventionally known or well-known methods, for example, the method described in US Pat. No. 3,925,401. For example, 4-methyl-2-mercapto can be produced by adding carbon disulfide and sulfur to ortho-toluidine or 2,3-xylidine and reacting at a temperature of 200 to 260°C with stirring under high pressure for 6 to 10 hours. Benzothiazole or 4.5
-Dimethyl-2-mercaptobenzothiazole is synthesized, and then these compounds are dissolved in an aqueous solution of caustic soda and then oxidized using an aqueous solution of hydrogen peroxide, sodium hypochlorite, or sodium nitrite. be able to. The vulcanization accelerator of the present invention is preferably used for rubber, particularly synthetic rubber, but can also be used for natural rubber. Examples of synthetic rubber include styrene,
Butadiene rubber (hereinafter abbreviated as SBR), butadiene rubber (hereinafter abbreviated as BR), copolymer of acrylonitrile and butadiene (hereinafter abbreviated as NBR),
Examples include chloroprene rubber, copolymers of isoprene and isobutylene, rubbers with chlorine or bromine introduced into copolymers of isoprene and isobutylene, isoprene polymers, and ethylene/propylene copolymers with unsaturated bonds. The compounding amount of the vulcanization accelerator of the present invention in rubber is as follows:
M-MBTS and/or Di
-M-MBTS from 0.1 to 5 parts by weight, preferably from 0.3 to
2.0 parts by weight and at least one selected from the group consisting of DPG, DOTG and PUR in an amount of 0.01 to 5 parts by weight, preferably 0.1 to 1.0 parts by weight. Vulcanization of rubber using the vulcanization accelerator of the present invention is as follows:
Besides vulcanization with sulfur, sulfur-containing compounds, e.g.
It can also be vulcanized with tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, dipentamethylthiuram tetrasulfide, dimorpholino disulfide, or the like. For example, in the case of vulcanization of rubbers that are difficult to vulcanize, low-temperature vulcanization and short-time vulcanization of general-purpose rubbers, the specific combination of the present invention may further include tetramethylthiuram monosulfide, tetraethylthiuram disulfide, etc. , thiurams such as tetrabutylthiuram disulfide and dipentamethylthiuram tetrasulfide, dithiocarbamic acids such as zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc dibutyldithiocarbamate, and diethyldithiocarbamate, aldehyde amine, hexamethylene. Amines such as tetramine, or 2
-Mercaptobenzothiazole and the like can also be used together. Although the physical properties of the rubber vulcanized using the vulcanization accelerator of the present invention depend on the processing conditions, the vulcanization physical properties such as tensile strength and elongation are superior to those of other accelerators. Such properties make it possible to add large amounts of fillers, softeners, etc., which is advantageous in the production of rubber products. Rubber products using the vulcanization accelerator of the present invention include:
These include tires, tubes, anti-vibration rubber, hoses, belts, and rubber rolls. [Example] Below, for reference, M-MBTS in the present invention
In addition to showing a synthesis example of Di-M-MBTS and Di-M-MBTS, the usefulness of the vulcanization accelerator of the present invention will be shown as an example. Synthesis Example 1 Place ortho-toluidine in the autoclave of 1.
214g, carbon disulfide 154g, sulfur 66g, 230
The reaction is completed by heating and stirring at ~260°C for 2 to 10 hours. Then, the contents are extracted and purified,
282 g (78% of theory) of 4-methyl-2-mercaptobenzothiazole were obtained. Elemental analysis value C:
52.24% (calculated value 53.00%), H: 3.91% (calculated value
3.89%), N: 7.78% (calculated value 7.73%), S: 35.25
% (calculated value 35.37%), melting point: 186-188℃. 182 g of the obtained 4-methyl-2-mercaptobenzothiazole was added to 880 g of a 5% by weight aqueous solution of caustic soda.
After cooling, add about 10 g of decolorizing charcoal, stir, and filter. The solution is heated to about 40°C, and while stirring, a 5% by weight aqueous solution of sodium hypochlorite is gradually added to oxidize. The oxidation products precipitate out as crystals. It was filtered, washed with water, dried, and then recrystallized several times in benzene to obtain M-MBTS in the form of needle-shaped, pale yellow crystals. Elemental analysis value C: 53.25% (calculated value 53.30%),
H: 3.34% (calculated value 3.36%), N: 7.80% (calculated value
7.77%), S: 35.49% (calculated value 35.58%), Melting point:
168-168.5℃. Synthesis example 2 2,3-xylidine in autoclave 1
242g, carbon disulfide 154g, sulfur 66g, 240
The reaction was carried out by heating and stirring at ~260°C for 2 to 10 hours. By operating in the same manner as in Synthesis Example 1 below,
324 g (83% of theory) of 4,5-dimethyl-2
-Mercaptobenzothiazole was obtained. Elemental analysis values C: 55.30% (calculated value 55.35%), H: 4.68% (calculated value 4.65%), N: 7.20% (calculated value 7.17%), S:
32.06% (calculated value 32.84%), melting point: 229-230℃. Next, 195 g of the obtained 4,5-dimethyl-2-mercaptobenzothiazole was dissolved in a caustic soda aqueous solution in the same manner as in Synthesis Example 1, and 5 g of sodium hypochlorite was dissolved.
Oxidation is carried out by gradual addition of a wt% aqueous solution. The oxidation products precipitate out as crystals. The resultant was filtered, washed with water, dried, and recrystallized repeatedly in chloroform to obtain Di-M-MBTS as slightly brown needle-like crystals. Elemental analysis value C: 55.59% (calculated value 55.63%), H: 4.18
% (calculated value 4.15%), N: 7.28% (calculated value 7.21
%), S: 32.93% (calculated value 33.01%), melting point: 163
~164℃. Examples 1-2 and Comparative Examples 1-6 NBR (#1042) was used, and the formulation was JIS K6384.
(1975). The recipe is shown in Table 1. Mooney test for compounded rubber is JIS K6300
(1975), the vulcanization method and the physical test method of the vulcanizate were conducted in accordance with JIS K6301 (1975). Next, a flow sustainability test of the compounded rubber at high temperatures was conducted using a Labo Plastomill [manufactured by Toyo Seiki Seisakusho Co., Ltd.] testing machine, and gel initiation time was measured. next,
Heat treatment of the compounded rubber was performed using a test roll (diameter 150 mm, length 330 mm, roll gap 1 mm, rotation ratio 1.14, steam heating), and uniform heat treatment at 100°C (roll temperature) x 60 minutes or 120 minutes while cutting the rubber. ℃×
It lasted 30 minutes. The results are shown in Table 2. Table 1 NBR (manufactured by Nippon Zeon Co., Ltd., Nipol1042) 100 parts by weight SRF (manufactured by Tokai Carbon Co., Ltd., Seast S)
40 parts by weight zinc white (manufactured by Mitsui Kinzoku Kogyo Co., Ltd., No. 1) 5 parts by weight stearic acid (manufactured by Nippon Oil & Fats Co., Ltd.) 1 part by weight sulfur (manufactured by Hosoi Chemical Industries, Ltd., colloidal sulfur)
1.5 parts by weight Vulcanization accelerator (shown in Table 2) 1 part by weight

【表】【table】

【表】【table】

【表】 表2の試験結果から、表2−1においてはムー
ニー粘度は各試料ともほぼ同等である。スコーチ
時間についてみると、DPGまたはDOTGとの併
用系において、本発明のM−MBTSおよびDi−M
−MBTSは、比較例のMBTSの場合よりも、t5
t35ともに時間が長いことを示している。更に、
表2−2熱処理(100℃×60分)において、この
傾向は顕著になり、スコーチ変化率においては、
表2−3熱処理(120℃×30分)の場合と共に、
約2倍の差となつた。次に表2−4に示すラボプ
ラストミル混練試験においても、本発明のM−
MBTSおよびDi−M−MBTSの併用系は、比較例
のMBTSの併用系に比して、ゲル化開始時間が長
い。従つて、本発明の加硫促進剤は、高温下でゴ
ムに混練及び配合ゴムの成形処理しても、配合ゴ
ムに優れた流動性を持続させ得るものである。ま
た表2−5の加硫試験では、加硫物性、即ちカタ
サ、引張り応力が比較例のMBTS、CBS及び
MBTS/DPG又はDOTG併用系と同等であるが、
引張強さに顕著な差が認められる。引張強さの差
は、M−MBTSまたはDi−M−MBTSの単独系
(比較例)に対しても認められる。次に、表2−
6の老化試験において、本発明は老化後の引張強
さ及び伸びの変化率が少ない。このことは、本発
明の加硫促進剤が、比較例のMBTSやCBSあるい
はMBTS/DPG又はDOTG併用系よりも耐熱性が
優れていることを示すものである。このような本
発明の加硫促進剤はゴム業界で強く要望された性
質を有するものである。 実施例3〜5及び比較例7〜12 SBR(#1500)を使用し、基礎配合で試験を行
なつた。配合表を表3に示す。 表 3 SBR 1500(日本合成ゴム社製) 100重量部 ISAF(東海カーボン社製、シースト6)
50重量部 亜鉛華(三井金属工業社製、1号) 3重量部 ステアリン酸(日本油脂社製) 2重量部 硫黄(細井化学工業社製、コロイド硫黄)
2重量部 加硫促進剤(表4に示す) 1.5重量部 以上の配合物は、JIS K6383(1975)に準拠し
て配合し、ムーニー試験をJIS K6300(1975)
に、加硫試験をJIS K6301(1975)に準拠して行
なつた。次に、配合ゴムの熱処理は実施例1と同
様に100℃(ロール温度)×60分行ない、その結果
を表4に示す。
[Table] From the test results in Table 2, the Mooney viscosity of each sample in Table 2-1 is almost the same. Regarding the scorch time, in the combination system with DPG or DOTG, the M-MBTS and Di-M of the present invention
- MBTS has lower t 5 ,
Both t and 35 indicate that the time is long. Furthermore,
In Table 2-2 heat treatment (100°C x 60 minutes), this tendency became remarkable, and the scorch change rate was
Table 2-3 Along with the case of heat treatment (120℃ x 30 minutes),
The difference was approximately twice that. Next, in the Laboplast Mill kneading test shown in Table 2-4, the M-
The combination system of MBTS and Di-M-MBTS has a longer gelation initiation time than the combination system of MBTS in the comparative example. Therefore, the vulcanization accelerator of the present invention can maintain excellent fluidity in a rubber compound even when the rubber is kneaded and the compound rubber is molded at high temperatures. In addition, in the vulcanization test shown in Table 2-5, the vulcanization physical properties, that is, the stiffness and tensile stress of the comparative examples MBTS, CBS, and
It is equivalent to the MBTS/DPG or DOTG combination system, but
A significant difference in tensile strength is observed. Differences in tensile strength are also observed for M-MBTS or Di-M-MBTS alone (comparative example). Next, Table 2-
In the aging test No. 6, the present invention showed a small change in tensile strength and elongation after aging. This shows that the vulcanization accelerator of the present invention has better heat resistance than the comparative examples of MBTS, CBS, MBTS/DPG, or DOTG combination system. The vulcanization accelerator of the present invention has properties strongly desired in the rubber industry. Examples 3 to 5 and Comparative Examples 7 to 12 Tests were conducted using SBR (#1500) and the basic formulation. The recipe is shown in Table 3. Table 3 SBR 1500 (manufactured by Japan Synthetic Rubber Co., Ltd.) 100 parts by weight ISAF (manufactured by Tokai Carbon Co., Ltd., Seat 6)
50 parts by weight zinc white (manufactured by Mitsui Kinzoku Kogyo Co., Ltd., No. 1) 3 parts by weight stearic acid (manufactured by Nippon Oil & Fats Co., Ltd.) 2 parts by weight sulfur (manufactured by Hosoi Chemical Industries, Ltd., colloidal sulfur)
2 parts by weight of vulcanization accelerator (shown in Table 4) 1.5 parts by weight The above formulation was formulated in accordance with JIS K6383 (1975), and the Mooney test was conducted in accordance with JIS K6300 (1975).
A vulcanization test was conducted in accordance with JIS K6301 (1975). Next, the compounded rubber was heat treated at 100°C (roll temperature) for 60 minutes in the same manner as in Example 1, and the results are shown in Table 4.

【表】【table】

【表】 表4の試験結果から、ムーニー粘度について
は、表4−1、4−2において、本発明と比較例
とはほぼ同等である。スコーチ時間については、
表4−1から、本発明の併用系は、比較例の
MBTS単独系又はMBTS/DPG併用系より若干長
く、CBS又はOBSよりは短い。しかるに、表−
2において熱処理(100℃×60分)を行なうと、
比較例のMBTS、CBS、OBS、MBTS/DPG併用
系は、スコーチ時間が著しく短くなり、本発明の
併用系に比してスコーチ(t5)変化率およびスコ
ーチ(t35)変化率ともに大きな差を生ずる。この
ことは、本発明の加硫促進剤をSBRの加硫に使用
すれば、比較例のMBTS、CBSあるいはMBTS/
DPGの併用系に比して、高温加工処理において
焼け難く、加工処理温度に対し影響され難いとい
う特徴を示すものである。 また、表4−3の加硫試験では、本発明の併用
系が比較例に比して引張応力および引張強さとも
に大きくなる。これも本発明加硫促進剤の特徴で
ある。次に、表4−4は、熱処理配合ゴムの加硫
物性についても、前記した表4−3の加硫物性と
同様の特徴が得られることを示している。 本発明の併用系をSBRの加硫に使用すると、ロ
ールで熱処理を行なつてもスコーチ変化率が小さ
く、焼けゴムができ難いから、高温苛酷の条件下
でもゴムと加硫剤、加硫促進剤などの混練り、お
よび配合ゴムのウオーミング、カレンダー、押出
作業を円滑にすることができ、作業時間の短縮、
能率化のみならず、冷却水、蒸気、電気量の節約
をすることができる。 なお、本発明の加硫促進剤を使用したゴム加硫
物の物性において引張強さ、伸びが良好であるこ
とは、ゴムに充填剤、軟化剤などを多量に配合で
きるから、ゴム製品製造上有利である。 実施例 6〜8 SBR(#1500)を使用し、配合はJIS K6300
(1975)に準拠して行なつた。配合は、実施例3
〜5において加硫促進剤を下記の表5に示す組み
合せと配合量に変えた以外は前記表3と同じにし
た。 配合ゴムのムーニー試験はJIS K6300(1975)
に準拠して行なつた。次に、配合ゴムの熱処理
は、試験ロール(直径150mm、長さ330mm、ロール
間隙1mm、ロール回転比1.14蒸気加熱)を使用
し、ゴムの切返しを行ないながら、均一熱処理
100℃(ロール温度)×60分を行なつた。試験結果
を表5に示す。
[Table] From the test results in Table 4, it can be seen that the Mooney viscosity of the present invention and the comparative example are almost the same in Tables 4-1 and 4-2. Regarding scorch time,
From Table 4-1, the combination system of the present invention is different from that of the comparative example.
Slightly longer than MBTS alone or MBTS/DPG combination system, but shorter than CBS or OBS. However, the table
When heat treatment (100℃ x 60 minutes) is performed in step 2,
The MBTS, CBS, OBS, and MBTS/DPG combination systems of comparative examples have significantly shorter scorch times, and have a large difference in both the scorch (t 5 ) change rate and the scorch (t 35 ) change rate compared to the combination system of the present invention. will occur. This means that if the vulcanization accelerator of the present invention is used for vulcanization of SBR, MBTS, CBS or MBTS/
Compared to systems in which DPG is used, it exhibits the characteristics of being less likely to burn during high-temperature processing and less affected by processing temperature. Further, in the vulcanization test shown in Table 4-3, the combination system of the present invention has higher tensile stress and tensile strength than the comparative example. This is also a feature of the vulcanization accelerator of the present invention. Next, Table 4-4 shows that the same characteristics as the vulcanized physical properties shown in Table 4-3 described above can be obtained with respect to the vulcanized physical properties of the heat-treated compounded rubber. When the combination system of the present invention is used for vulcanization of SBR, the scorch change rate is small even when heat treated with a roll, and burnt rubber is difficult to form. It can facilitate the kneading of agents, warming of compounded rubber, calendering, and extrusion work, reducing work time.
It not only improves efficiency, but also saves on cooling water, steam, and electricity. In addition, the physical properties of the rubber vulcanizate using the vulcanization accelerator of the present invention, such as good tensile strength and elongation, are due to the fact that large amounts of fillers, softeners, etc. can be blended into the rubber, making it easy to manufacture rubber products. It's advantageous. Examples 6 to 8 SBR (#1500) was used, and the composition was JIS K6300.
(1975). The formulation is as in Example 3.
Table 3 was the same as in Table 3 except that the combinations and amounts of vulcanization accelerators in Table 5 were changed to those shown in Table 5 below. Mooney test for compounded rubber is JIS K6300 (1975)
This was done in accordance with the. Next, the compounded rubber was heat-treated using a test roll (diameter 150 mm, length 330 mm, roll gap 1 mm, roll rotation ratio 1.14 steam heating), and while the rubber was turned, uniform heat treatment was performed.
The test was carried out at 100°C (roll temperature) for 60 minutes. The test results are shown in Table 5.

【表】 表5の試験結果から、実施例の場合はいずれも
熱処理(100℃×60分)を行なつても、前記表4
−2の比較例のMBTS/DPG、MBTS、CBSなど
に比して、スコーチ(t5)、(t35)変化率が極めて
少ない。このことは、本発明の併用系が通常用い
られているMBTS/DPG、MBTS、CBSなどに比
して、高温度加工処理において焼け難く、加工処
理温度に対し影響され難いという特徴を示すもの
で、ゴム配合設計上極めて有用である。 実施例9〜14及び比較例13〜15 SBRに対するM−MBTSまたはDi−M−MBTS
とDPG、DOTG、PURとの併用系の効果を示
す。配合は実施例6〜8と同様の方法で行ない、
配合表を下記の表6に示す。配合ゴムのムーニー
試験、熱処理は実施例6〜8と同様の方法で行な
つた。また、加硫物の物理的試験方法は、JIS
K6301(1975)に準拠して行なつた。次に高温下
での配合ゴムの流動持続性試験をラボプラストミ
ル[(株)東洋精機製作所製]試験機で行ない、ゲル
開始時間を測定した。これらの結果を表7に示
す。 表 6 SBR1500(日本合成ゴム社製) 100重量部 ISAF(東海カーボン社製、シースト6)
50重量部 プロセス油(サンオイルケミカル社製、サーコラ
イトRPO) 5重量部 亜鉛華(三井金属工業社製、1号) 3重量部 ステアリン酸(日本油脂社製) 1重量部 硫黄(細井化学工業社製、コロイド硫黄)
2重量部 加硫促進剤(表7に示す) 1.5重量部
[Table] From the test results in Table 5, it can be seen that even if heat treatment (100°C x 60 minutes) is performed in all of the examples,
The scorch (t 5 ) and (t 35 ) change rates are extremely small compared to MBTS/DPG, MBTS, CBS, etc. of Comparative Example -2. This indicates that the combination system of the present invention is less likely to burn during high-temperature processing and is less affected by processing temperature than the commonly used MBTS/DPG, MBTS, CBS, etc. This is extremely useful for designing rubber compounds. Examples 9 to 14 and Comparative Examples 13 to 15 M-MBTS or Di-M-MBTS for SBR
The effect of the combination system with DPG, DOTG, and PUR is shown. The blending was carried out in the same manner as in Examples 6 to 8,
The recipe is shown in Table 6 below. The Mooney test and heat treatment of the compounded rubber were carried out in the same manner as in Examples 6-8. In addition, the physical test method for vulcanized products is JIS
Conducted in accordance with K6301 (1975). Next, a flow sustainability test of the compounded rubber at high temperatures was conducted using a Labo Plastomill [manufactured by Toyo Seiki Seisakusho Co., Ltd.] testing machine, and gel initiation time was measured. These results are shown in Table 7. Table 6 SBR1500 (manufactured by Japan Synthetic Rubber Co., Ltd.) 100 parts by weight ISAF (manufactured by Tokai Carbon Co., Ltd., Seat 6)
50 parts by weight of process oil (manufactured by Sun Oil Chemical Co., Ltd., Circolite RPO) 5 parts by weight of zinc white (manufactured by Mitsui Kinzoku Kogyo Co., Ltd., No. 1) 3 parts by weight of stearic acid (manufactured by Nippon Oil & Fats Co., Ltd.) 1 part by weight of sulfur (manufactured by Hosoi Chemical Industries, Ltd.) made of colloidal sulfur)
2 parts by weight Vulcanization accelerator (shown in Table 7) 1.5 parts by weight

【表】【table】

【表】 表7の試験結果から、表7−1においては、本
発明のM−MBTS併用系の方が比較例のMBTS併
用系に比してスコーチ時間は長く、本発明のDi
−M−MBTS併用系の場合には更に長くなる。表
7−2のスコーチ変化率についてみると、本発明
の併用系は比較例の併用系に比して後者が約2〜
8倍と大きな差を生ずる。表7−3においても、
本発明の方がゲル開始時間が長い。従つて、本発
明によれば、配合剤をゴムに混練及び配合ゴムの
成形処理をしても、優れた流動性を持続させるこ
とができる。 また表7−4の加硫試験では、カタサ、引張応
力を低下させることなく引張強さ、伸びは大きく
なり、表7−5の老化試験において、本発明はカ
タサ、引張応力、引張強さ、伸びの変化率が少な
い。このことは、本発明の併用系の方が比較例の
併用系よりも加硫物のカタサ、引張物性および耐
熱性が優れていることを示すものである。 実施例15〜17及び比較例16〜17 SBRとBRをブレンドしたゴムに対する本発明
加硫促進剤の効果を示す。配合は、下記の表8の
配合表により、ロールを使用し、配合方法はJIS
K6383(1975)に、ムーニー試験はJIS K6300
(1975)に、加硫試験はJIS K6301(1975)に準
拠して行なつた。また配合ゴムの熱処理方法は、
実施例1と同じ方法(100℃×60分)で行なつ
た。 表 8 SBR1500(日本合成ゴム社製) 60重量部 SR(日本合成ゴム社製、BR01) 40重量部 ISAF(東海カーボン社製、シースト6)
50重量部 プロセス油(共同石油社製、ソニツクプロセス油
R−50) 5重量部 ステアリン酸(日本油脂社製) 2重量部 酸化亜鉛(三井金属工業社製) 5重量部 硫黄(細井化学工業社製、コロイド硫黄)
1.8重量部 加硫促進剤(表9に示す) 1.5重量部
[Table] From the test results in Table 7, Table 7-1 shows that the M-MBTS combination system of the present invention has a longer scorch time than the MBTS combination system of the present invention, and the Di
- In the case of a combined M-MBTS system, it will be even longer. Looking at the scorch change rate in Table 7-2, the combination system of the present invention has a scorch change rate of about 2 to 30% compared to the combination system of the comparative example.
This makes a huge difference of 8 times. Also in Table 7-3,
The gel initiation time is longer with the present invention. Therefore, according to the present invention, excellent fluidity can be maintained even when compounding agents are kneaded into rubber and the compounded rubber is molded. In addition, in the vulcanization test shown in Table 7-4, the tensile strength and elongation increased without decreasing the stiffness and tensile stress, and in the aging test shown in Table 7-5, the present invention showed that the present invention had a high tensile strength and elongation without decreasing the stiffness, tensile stress, and tensile stress. The rate of change in elongation is small. This shows that the combination system of the present invention is superior to the combination system of the comparative example in the stiffness, tensile properties, and heat resistance of the vulcanizate. Examples 15 to 17 and Comparative Examples 16 to 17 The effect of the vulcanization accelerator of the present invention on a rubber blended with SBR and BR will be shown. The blending is done using a roll according to the blending table in Table 8 below, and the blending method is JIS.
K6383 (1975), Mooney test is JIS K6300
(1975), and the vulcanization test was conducted in accordance with JIS K6301 (1975). In addition, the heat treatment method for compounded rubber is
It was carried out in the same manner as in Example 1 (100°C x 60 minutes). Table 8 SBR1500 (manufactured by Japan Synthetic Rubber Co., Ltd.) 60 parts by weight SR (manufactured by Japan Synthetic Rubber Co., Ltd., BR01) 40 parts by weight ISAF (manufactured by Tokai Carbon Co., Ltd., Seast 6)
50 parts by weight process oil (manufactured by Kyodo Oil Co., Ltd., Sonic Process Oil R-50) 5 parts by weight stearic acid (manufactured by Nippon Oil & Fats Co., Ltd.) 2 parts by weight zinc oxide (manufactured by Mitsui Kinzoku Kogyo Co., Ltd.) 5 parts by weight sulfur (manufactured by Hosoi Chemical Industries, Ltd.) Co., Ltd., colloidal sulfur)
1.8 parts by weight Vulcanization accelerator (shown in Table 9) 1.5 parts by weight

【表】【table】

【表】 表9はSBRとBRをブレンドしたゴムに本発明
の併用系加硫促進剤を適用した場合の試験結果を
示す。 表9−1及び表9−2のムーニー粘度について
みると、本発明の併用系を適用した配合ゴムは、
比較例のMBTSにDPGまたはPURを併用した配
合ゴムとほぼ同等である。 表9−1のスコーチ時間についてみると、本発
明の併用系は、比較例のMBTSにDPGを配合した
配合ゴムに比し長い。表9−2の熱処理後のスコ
ーチ時間についてみると、本発明の併用系の方が
比較例の併用系に比して、スコーチ変化率が小さ
く、熱処理や成形加工の際に有利であることが判
る。なお、表9−3の加硫試験において、加硫物
性は、本発明と比較例とであまり差がない。 以上の試験結果から、本発明の併用系は、比較
例のMBTS併用系に比べ配合ゴムが焼け難く、し
かも熱処理してもスコーチ変化率が小さいことが
判つた。このことは、本発明加硫促進剤を使用す
ると、配合ゴムを高温加工処理しても焼け難く、
加工処理温度に対し影響され難いという特徴を示
している。 実施例18及び比較例18 天然ゴムに対する本発明加硫促進剤の効果を示
す。配合表を表10に示す。 表 10 天然ゴム(SMR−5L) 100重量部 HAF(三菱化成工業社製、ダイヤブラツクH)
50重量部 プロセス油(共同石油社製、ソニツクプロセス油
R−50) 3重量部 ステアリン酸(日本油脂社製) 3重量部 酸化亜鉛(三井金属工業社製) 5重量部 硫黄(細井化学工業社製、コロイド硫黄)
2.5重量部 加硫促進剤(表11に示す) 1重量部 以上の配合物は、実施例1と同様にして配合
し、配合ゴムのムーニー試験も実施例1と同様に
して行なつた。試験結果を表11に示す。
[Table] Table 9 shows the test results when the combined vulcanization accelerator of the present invention was applied to a rubber blended with SBR and BR. Looking at the Mooney viscosity in Tables 9-1 and 9-2, the compounded rubber to which the combination system of the present invention is applied is as follows:
It is almost the same as the comparative example of compounded rubber in which MBTS is combined with DPG or PUR. Looking at the scorch time in Table 9-1, the combination system of the present invention is longer than the compounded rubber of the comparative example, which is a compounded rubber in which MBTS and DPG are blended. Looking at the scorch time after heat treatment in Table 9-2, it can be seen that the combination system of the present invention has a smaller scorch change rate than the combination system of the comparative example, and is advantageous during heat treatment and molding. I understand. In addition, in the vulcanization test shown in Table 9-3, there is not much difference in the vulcanized physical properties between the present invention and the comparative example. From the above test results, it was found that in the combination system of the present invention, the compounded rubber was less likely to burn compared to the MBTS combination system of the comparative example, and the scorch change rate was small even after heat treatment. This means that when the vulcanization accelerator of the present invention is used, even if compounded rubber is subjected to high-temperature processing, it will not burn easily.
It exhibits the characteristic that it is not easily affected by processing temperature. Example 18 and Comparative Example 18 The effect of the vulcanization accelerator of the present invention on natural rubber will be shown. The recipe is shown in Table 10. Table 10 Natural rubber (SMR-5L) 100 parts by weight HAF (manufactured by Mitsubishi Chemical Industries, Ltd., Diamond Black H)
50 parts by weight process oil (manufactured by Kyodo Oil Co., Ltd., Sonic Process Oil R-50) 3 parts by weight stearic acid (manufactured by Nippon Oil & Fats Co., Ltd.) 3 parts by weight zinc oxide (manufactured by Mitsui Kinzoku Kogyo Co., Ltd.) 5 parts by weight sulfur (manufactured by Hosoi Chemical Industries, Ltd.) Co., Ltd., colloidal sulfur)
2.5 parts by weight Vulcanization accelerator (shown in Table 11) 1 part by weight The above compounds were compounded in the same manner as in Example 1, and the Mooney test of the compounded rubber was also conducted in the same manner as in Example 1. The test results are shown in Table 11.

【表】【table】

【表】 表11−1のムーニー試験において、本発明併用
系が比較例よりもスコーチ時間(t5)が長いこと
は熱に対し安定であることを示唆する。 一方、表11−2のODR試験において、本発明
併用系のMHRが比較例よりも大きいことは加硫ゴ
ムの物理的性質が優れていることを示唆するもの
である。 [発明の効果] 本発明の特定併用系の加硫促進剤は、混練りや
加工処理時に比較的高温であつてもスコーチ性が
弱く焼けを起さないという効果を有する。しか
も、引張強さ、伸びなどの加硫物性が優れた加硫
物を与え得るという効果も有する。
[Table] In the Mooney test shown in Table 11-1, the combination system of the present invention has a longer scorch time (t 5 ) than the comparative example, suggesting that it is stable against heat. On the other hand, in the ODR test shown in Table 11-2, the fact that the M HR of the combination system of the present invention is larger than that of the comparative example suggests that the physical properties of the vulcanized rubber are superior. [Effects of the Invention] The vulcanization accelerator of the present invention has a weak scorch property and does not cause burning even at relatively high temperatures during kneading and processing. Moreover, it also has the effect of providing a vulcanized product with excellent vulcanized physical properties such as tensile strength and elongation.

Claims (1)

【特許請求の範囲】 1 ビス(4−メチル−ベンゾチアゾリル−2)
ジスルフイドおよび/またはビス(4・5−ジメ
チル−ベンゾチアゾリル−2)ジスルフイドにジ
フエニルグアニジン、ジオルトトリルグアニジン
および微粉末尿素からなる群から選ばれる加硫活
性剤の少なくとも一種を併用することを特徴とす
るゴム用新規加硫促進剤。 2 ゴムの加硫処理温度70〜200℃において使用
される特許請求の範囲第1項記載のゴム用新規加
硫促進剤。
[Claims] 1 bis(4-methyl-benzothiazolyl-2)
It is characterized by using disulfide and/or bis(4,5-dimethyl-benzothiazolyl-2) disulfide together with at least one vulcanization activator selected from the group consisting of diphenylguanidine, diorthotolylguanidine, and finely powdered urea. A new vulcanization accelerator for rubber. 2. The novel vulcanization accelerator for rubber according to claim 1, which is used at a rubber vulcanization treatment temperature of 70 to 200°C.
JP1699680A 1980-02-14 1980-02-14 Novel vulcanization accelerator for rubber Granted JPS56139542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1699680A JPS56139542A (en) 1980-02-14 1980-02-14 Novel vulcanization accelerator for rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1699680A JPS56139542A (en) 1980-02-14 1980-02-14 Novel vulcanization accelerator for rubber

Publications (2)

Publication Number Publication Date
JPS56139542A JPS56139542A (en) 1981-10-31
JPS6256902B2 true JPS6256902B2 (en) 1987-11-27

Family

ID=11931621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1699680A Granted JPS56139542A (en) 1980-02-14 1980-02-14 Novel vulcanization accelerator for rubber

Country Status (1)

Country Link
JP (1) JPS56139542A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107201U (en) * 1985-12-25 1987-07-09
JPH03925U (en) * 1989-05-26 1991-01-08

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197890B1 (en) 1996-07-11 2001-03-06 Bridgestone Corporation Rubber composition containing SBR rubber, softener and a bis benzothiazolyl disulfide vulcanization accelerator
DE69704813T2 (en) * 1996-07-11 2001-10-04 Bridgestone Corp tire
US6330897B1 (en) * 1996-07-15 2001-12-18 Bridgestone Corporation Pneumatic tire containing a vulcanization accelerator
DE69837498T2 (en) 1997-07-11 2007-12-06 Bridgestone Corp. tire
JP2010282140A (en) * 2009-06-08 2010-12-16 Sumitomo Rubber Ind Ltd Conductive rubber member and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107201U (en) * 1985-12-25 1987-07-09
JPH03925U (en) * 1989-05-26 1991-01-08

Also Published As

Publication number Publication date
JPS56139542A (en) 1981-10-31

Similar Documents

Publication Publication Date Title
JPS5836009B2 (en) vulcanizable rubber mixture
US4008190A (en) Vulcanizates of EPDM and diene rubber blends
JPH0625308A (en) Vulcanizable rubber composition
JPH02248442A (en) Sulfur-vulcanizable rubber mixture having reduced blooming effect
US4172939A (en) Vulcanizable ethylene/vinyl acetate/carbon monoxide terpolymers
JPH064725B2 (en) tire
JPS6256902B2 (en)
CN106164159B (en) Rubber composition, its manufacturing method and sulfide
US5326828A (en) Tetrabenzylthiuram disulfide/urea cured elastomeric composition
JP5230107B2 (en) Tire vulcanization bladder
JPH0689181B2 (en) Rubber composition
JP4493314B2 (en) Rubber composition for tire
TWI225876B (en) In situ preparation of A bis-(benzothiazolesulfen) amide in a polymeric matrix
US3895060A (en) Cycloalkylthio (nitro substituted) aniline compounds
JP2005290356A (en) Rubber composition and pneumatic tire
JPH04264145A (en) Sulfur-vulcanizable rubber composition having improved degree of crosslinking
US3268495A (en) Heat treatment of isobutylene-isoprene copolymers
KR940002279B1 (en) Cured rubber blend and process for the production thereof
JP3887895B2 (en) Chloroprene rubber composition excellent in heat aging resistance and compression set
JPH0434570B2 (en)
JP6774870B2 (en) A method for producing a rubber composition for a tire, and a rubber composition for a tire.
JP6774869B2 (en) Manufacturing method of rubber polymer
JPS61293240A (en) Rubber composition
JPH0341133A (en) Vulcanizable chloroprene rubber composition
JPS6254739A (en) Vulcanization accelerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees