JPS6254423A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6254423A
JPS6254423A JP18637285A JP18637285A JPS6254423A JP S6254423 A JPS6254423 A JP S6254423A JP 18637285 A JP18637285 A JP 18637285A JP 18637285 A JP18637285 A JP 18637285A JP S6254423 A JPS6254423 A JP S6254423A
Authority
JP
Japan
Prior art keywords
semiconductor
additive
fluorine
oxygen
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18637285A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Takashi Inushima
犬島 喬
Kunio Suzuki
邦夫 鈴木
Susumu Nagayama
永山 進
Masayoshi Abe
阿部 雅芳
Takeshi Fukada
武 深田
Mikio Kanehana
金花 美樹雄
Ippei Kobayashi
一平 小林
Katsuhiko Shibata
克彦 柴田
Masato Usuda
真人 薄田
Kaoru Koyanagi
小柳 かおる
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP18637285A priority Critical patent/JPS6254423A/en
Priority to DE3689735T priority patent/DE3689735T2/en
Priority to EP86305952A priority patent/EP0211634B1/en
Publication of JPS6254423A publication Critical patent/JPS6254423A/en
Priority to US07/251,940 priority patent/US4986213A/en
Priority to US07/320,788 priority patent/US4888305A/en
Priority to US07/520,998 priority patent/US5171710A/en
Priority to US07/933,718 priority patent/US5296405A/en
Priority to US08/396,780 priority patent/US5753542A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To assure the high reliability by a method wherein a non-single crystal semiconductor containing hydrogen or halogen element is formed on a substrate to be kept under reduced pressure for optical annealing process and then an additive is doped to the surface or inside of semiconductor. CONSTITUTION:A semiconductor material containing hydrogen or halogen element is formed and then Stabler Wronskian effect is diminished or extinguished by keeping the semiconductor under reduced pressure; optical annealing process; and doping an additive such as oxygen, fluorine or chlorine to the surface or inside of semiconductor following the preceding process. After forming a semiconductor film, if the Stabler Wronskian effect is induced under ultra-high degree of vacuum to dope any neutralizing additive mainly for recoupling to the semiconductor, any unstable nonpaired coupling branch and said additive can be coupled with each other for stabilization to prevent any characteristic deterioration due to photoirradiation from happening.

Description

【発明の詳細な説明】 本発明は、水素またはハロゲン元素を含む半導体材料を
形成し、この半導体を減圧下に保持し、光アニールを行
う工程と、この工程の後この半専体表面または半導体中
(以下単に半導体中という)に酸素、窒素、弗素または
塩素の如き添加物を添加することによりステブラ・ロン
スキ効果を減少または消滅せしめ、高信頼性特性を得る
ことに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a process of forming a semiconductor material containing hydrogen or a halogen element, holding this semiconductor under reduced pressure, and photo-annealing the semiconductor material, and after this process, forming a semiconductor material containing hydrogen or a halogen element. The present invention relates to reducing or eliminating the Stebler-Lonski effect by adding additives such as oxygen, nitrogen, fluorine, or chlorine into the semiconductor (hereinafter simply referred to as the semiconductor) to obtain highly reliable characteristics.

本発明は、光照射により光起電力を発生する活性半導体
層である真性または実質的に真性(PまたはN型用不純
物をlXl014〜5X10”cm司の濃度に人為的に
混入させた、またはバックグラウンドレベルで混入した
)の水素またはハロゲン元素が添加された半導体に対し
、この半導体を大気に触れさせることなく減圧状態に保
持し、またはこの雰囲気で光アニールを行うことにより
光照射で発生する不対結合手を十分生成する。この後こ
の生成された不対結合手に酸素、弗素、塩素または窒素
を半導体中に添加して結合中和せしめることを目的とし
ている。
The present invention is an active semiconductor layer that generates a photovoltaic force upon irradiation with light, which is an intrinsic or substantially intrinsic (P or N-type impurity artificially mixed or back-contained at a concentration of 1X1014 to 5X10"cm). For semiconductors to which hydrogen or halogen elements (contaminated at ground level) have been added, the semiconductors are held in a reduced pressure state without being exposed to the atmosphere, or photo-annealed in this atmosphere to eliminate defects caused by light irradiation. The purpose is to sufficiently generate pair bonds and then add oxygen, fluorine, chlorine, or nitrogen to the generated unpair bonds to neutralize the bonds.

本発明は、かかる目的のため、基板上にプラズマCVD
法、光CVD法または光プラズマCVD法により水素ま
たはハロゲン元素を含む非単結晶半導体(以下単に半導
体という)を500℃以下の温度、−)IQには150
〜300℃の減圧下にて形成する。
For this purpose, the present invention provides plasma CVD on a substrate.
A non-single crystal semiconductor (hereinafter simply referred to as a semiconductor) containing hydrogen or a halogen element is produced by a method, photo CVD method or photo plasma CVD method at a temperature of 500°C or less, -) IQ is 150
Formed under reduced pressure at ~300°C.

特に、本発明はこの活性半導体層である1層において、
半導体中の最低濃度領域における酸素の濃度(SIMS
で測定した場合における最低濃度)を5×10I8CI
11−3以下、好ましくはI XIO”cm−’以下し
か含有しない水素またはハロゲン元素が添加された非単
結晶半導体、例えばシリコン半導体を用いたものである
。そしてかかる半導体の再結合中心、特に光照射により
生じる再結合中心の密度をI XIO”cm−’よりl
 XIO”cm−”以下、好ましくは概略5 X101
6cm−’程度にまで下げんとするものである。
In particular, the present invention provides that in one layer, which is the active semiconductor layer,
Oxygen concentration in the lowest concentration region in a semiconductor (SIMS
5×10I8CI
A non-single crystal semiconductor, such as a silicon semiconductor, to which a hydrogen or halogen element containing less than 11-3, preferably less than I The density of recombination centers caused by irradiation is calculated from IXIO"cm-'
XIO"cm-" or less, preferably approximately 5 X101
The aim is to lower the distance to about 6 cm-'.

しかし、従来、かかる高純度になった半導体を被膜形成
の直後に大気中に取り出し、大気圧中で光照射を行うと
、電気伝導度が劣化し、また熱アニールにより電気伝導
度が回復するいわゆるステブラ・ロンスキ効果が観察さ
れてしまう。
However, conventionally, when such a highly purified semiconductor is taken out into the atmosphere immediately after film formation and irradiated with light at atmospheric pressure, the electrical conductivity deteriorates, and the electrical conductivity is restored by thermal annealing. The Stebla-Lonski effect is observed.

他方、本発明人はかかる高純度の半導体を形成した後、
この半導体を大気に触れさせることなく超高真空雰囲気
に保持し、この真空中で光照射、熱アニールを行うと、
このいずれに対しても電気伝導度が漸減するいわゆる5
EL(State Excited byLight)
効果が観察された。
On the other hand, after forming such a high-purity semiconductor, the inventors
If this semiconductor is held in an ultra-high vacuum atmosphere without being exposed to the atmosphere, and light irradiation and thermal annealing are performed in this vacuum,
For both of these, the electrical conductivity gradually decreases.
EL (State Excited by Light)
The effect was observed.

この結果、従来より知られているステブラ・ロンスキ効
果は半導体を形成した後大気にふれさせることにより初
めて観察されるものであることが判明した。その要因は
大気特に酸素が半導体中に含浸していってしまうためで
あると推定されるに至った。かかるSEL効果およびそ
の対策として、形成された半導体を酸素を含まない雰囲
気で大気圧にまで戻すことに関しては、本発明人の出願
になる特許願(特願昭60.−120881 、昭和6
0年6月3日出願)に示されている。
As a result, it was found that the conventionally known Stebla-Lonski effect can only be observed when a semiconductor is formed and then exposed to the atmosphere. It has been assumed that the reason for this is that the atmosphere, particularly oxygen, is impregnated into the semiconductor. Regarding this SEL effect and its countermeasure, returning the formed semiconductor to atmospheric pressure in an oxygen-free atmosphere, there is a patent application filed by the present inventor (Japanese Patent Application No. 1983-120881, 1982).
(filed June 3, 2013).

本発明はかかる本発明人が発見したSEL効果を積極的
に利用し、実使用条件下において光劣化作用が生じない
ようにしたものである。即ち、SEL効果により非単結
晶半導体中には光照射により生成する不対結合手(電゛
気的には再結合中心またはエネルギバンド的には深いレ
ベルに準位をもつ再結合中心という)を十分に生成させ
てしまう。そして十分に光照射により生じた不対結合手
に対し弗素、酸素、塩素または窒素の中和用添加剤を添
加して、この不対結合手と結合させて、中和し安定化さ
せてしまう。かくの如く中途半端な弱い結合手を一度す
べて切って不対結合手にし、この不対結合手に対し十分
な時間をおいて中和させてしまうものである。その結果
、実使用下では再び光照射を行ってもこの照射により不
対結合手が生成し、ひいては再結合中心の増加がおきる
ことにより観察されるステブラ・ロンスキ効果が生じな
いようにしたものである。
The present invention actively utilizes the SEL effect discovered by the present inventors to prevent photodegradation from occurring under actual use conditions. In other words, due to the SEL effect, dangling bonds (called recombination centers in terms of electrical power or recombination centers with levels at deep levels in energy bands) are generated in non-single crystal semiconductors by light irradiation. Generate enough. Then, a neutralizing additive such as fluorine, oxygen, chlorine, or nitrogen is added to the dangling bonds generated by sufficient light irradiation to combine with the dangling bonds, neutralizing and stabilizing them. . In this way, all half-finished weak bonds are cut once to create unpaired bonds, and these unpaired bonds are neutralized after a sufficient period of time. As a result, in actual use, even if light is irradiated again, this irradiation will generate unpaired bonds and, as a result, the Stebla-Lonski effect, which is observed due to an increase in recombination centers, will not occur. be.

以下に図面に従って本発明を示す。The present invention will be illustrated below according to the drawings.

第1図は本発明の半導体装置の作製に用いられた製造装
置の概要を示す。
FIG. 1 shows an outline of the manufacturing equipment used for manufacturing the semiconductor device of the present invention.

第1図は本発明に用いられた超高真空装置([IHV装
置)のブロックダイヤグラム図を示す。
FIG. 1 shows a block diagram of an ultra-high vacuum device (IHV device) used in the present invention.

基板(10”)は、第1の予備室(1)の中にあるヒー
タ(図面では(12’)に示しである)の下側に配設す
る。この基板は予め一対の電気伝導度の測定用電極(第
2図(24) 、 (24’)に示す)を有している。
The substrate (10'') is placed under the heater (indicated by (12') in the drawing) in the first preliminary chamber (1). It has measurement electrodes (shown in FIG. 2 (24) and (24')).

この電極には、電気特性を測定せんとする際には被膜形
成後外部よりの一対のプローブ(17)。
When measuring electrical properties, a pair of probes (17) are attached to this electrode from the outside after the coating is formed.

(17’)を移動させ接触させることができ(第2図参
照)、半導体被膜形成後この被膜を大気に触れさせるこ
とな(、光照射(20)の有無により先任導度と暗転導
度との測定を可能とする即ち真空中でTN 5TTUの
条件下での評価を可能としている。
(17') can be moved and brought into contact (see Figure 2), and after the semiconductor film is formed, this film is not exposed to the atmosphere (depending on the presence or absence of light irradiation (20), the leading conductivity and dark conversion conductivity can be changed. In other words, it enables evaluation under the condition of TN 5TTU in vacuum.

基板(10°)の挿入、脱着用の第1の予備室(1)と
この予備室にゲイト弁(3)により連結された第2の予
備室(2)とを有する。かかる第1の予備室で基板P1
台も併用したヒータ(12’)にとりつける。第2の予
備室は、第2のゲイト弁(5)によりクライオポンプ(
6)と分離され、第3のゲイト弁(7)によりターボ分
子ポンプ(8)とも分離されている。そして、基1反(
10′)とヒータ(12’ )とを第1の予備室に挿着
後ゲイト弁(3) 、 (7)を開、ゲイト弁(5) 
、 (4)を閉とし、ターボ分子ポンプ(8)にて第1
、第2の予備室を真空引きする。さらに10−3tor
r以下とした後、基板(10’)およびヒータ(12’
)を第1の予備室(1)より移動機構(19)を用い第
2の予備室に移し、ゲイト弁(3)を閉とする。
It has a first preliminary chamber (1) for inserting and removing a substrate (10 degrees) and a second preliminary chamber (2) connected to this preliminary chamber by a gate valve (3). In this first preliminary chamber, the substrate P1
The stand is also attached to the heater (12'). The second preliminary chamber is connected to the cryopump (
6), and also from the turbomolecular pump (8) by a third gate valve (7). And base 1 anti(
After inserting the heater (10') and the heater (12') into the first preliminary chamber, open the gate valves (3) and (7), and then open the gate valve (5).
, (4) is closed, and the turbo molecular pump (8)
, evacuate the second preliminary chamber. Furthermore 10-3tor
After reducing the temperature to below r, the substrate (10') and the heater (12'
) is transferred from the first preliminary chamber (1) to the second preliminary chamber using the moving mechanism (19), and the gate valve (3) is closed.

そしてゲイト弁(5)を開、ゲイト弁(7)を閉とし、
クライオポンプにてto−” torrのオーダにまで
真空引きをする。
Then, the gate valve (5) is opened and the gate valve (7) is closed.
A cryopump is used to evacuate to the order of to-'' torr.

さらに第4のゲイト弁(4)を開とし、ここをへて反応
室(11)に基板(10)、ヒータ(12)を移動機構
(19’)を用いて移設する。そして反応室(11)も
クライオポンプ(6)にてLQ−’ 〜10− ” t
orrの背圧とする。さらにゲイト弁(4)を閉とする
。図面では反応室(11)に基tffl(10)および
ヒータ(12)が配設された状態を示す。反応室(11
)には高周波電源(13)より一対の電極(14) 、
 (15)間にプラズマ放電を成さしめ得る。このプラ
ズマCVD法以外に紫外光、エキシマレーザ光を窓(1
6)より入射して光CVD法またはこれと高周波エネル
ギとを加える光プラズマCVD法により半導体被膜を形
成してもよい。
Further, the fourth gate valve (4) is opened, and the substrate (10) and heater (12) are transferred to the reaction chamber (11) using the moving mechanism (19'). And the reaction chamber (11) is also LQ-'~10-''t using the cryopump (6).
orr back pressure. Furthermore, the gate valve (4) is closed. The drawing shows a reaction chamber (11) in which a base tffl (10) and a heater (12) are installed. Reaction chamber (11
) is connected to a pair of electrodes (14) from a high frequency power source (13),
(15) Plasma discharge can be generated between the two. In addition to this plasma CVD method, ultraviolet light and excimer laser light are
6) The semiconductor film may be formed by a photo-CVD method or a photo-plasma CVD method in which high-frequency energy is added to the photo-CVD method.

反応性気体はドーピング系(21)より加えられ、プラ
ズマCVD中の不要物は他のターボ分子ポンプ(9)に
より圧力をコントロールパルプ(22)により制御させ
つつ排気される。
Reactive gas is added from the doping system (21), and unnecessary substances during plasma CVD are exhausted by another turbo molecular pump (9) while the pressure is controlled by the control pulp (22).

反応炉内の圧力はコントロールバルブ(22)により0
.001〜10torr代表的には0.05〜0.1t
orrに制御した。高周波エネルギを(13)より加え
(13,56Ml1z出力10−)プラズマCVD法に
より非単結晶半導体被膜、ここでは水素の添加されたア
モルファスシリコン膜を形成した。かくして基板上に0
.6μの厚さにPまたはN型の不純物の添加のない非単
結晶半導体を500℃以下の温度例えば250℃によっ
て形成した。
The pressure inside the reactor is reduced to 0 by the control valve (22).
.. 001~10torr typically 0.05~0.1t
It was controlled to orr. High frequency energy was applied from (13) (13,56Ml1z output 10-) and a non-single crystal semiconductor film, here an amorphous silicon film doped with hydrogen, was formed by plasma CVD. Thus 0 on the board
.. A non-single crystal semiconductor having a thickness of 6 μm without addition of P or N type impurities was formed at a temperature of 500° C. or less, for example, 250° C.

反応性気体及びキャリアガスは、酸素、水の不純物を0
.IPPM以下好ましくはIPPBにまで下げた高純度
としく21)より導入させた。また、珪素膜を形成させ
ようとする場合、超高純度に液化精製した珪化物気体で
あるシランを用いた。
Reactive gas and carrier gas contain zero impurities of oxygen and water.
.. It was introduced from 21) with a high purity of IPPM or lower, preferably IPPB. Furthermore, when attempting to form a silicon film, silane, which is a silicide gas purified by liquefaction to ultra-high purity, was used.

光電変換装置を構成する場合はこのドーピング系数を増
し、P型用不純物であるジボランをシランにより500
〜5000PPMに希釈させて(21”)より導入すれ
ばよい。また、N型不純物であるフォスヒンをシランに
より5000PPMに希釈して(21”)より導入すれ
ばよい。
When constructing a photoelectric conversion device, this doping number is increased, and diborane, which is an impurity for P-type, is mixed with silane by 500%.
It may be diluted to ~5000 PPM and introduced from (21''). Also, phosphin, which is an N-type impurity, may be diluted to 5000 PPM with silane and introduced from (21'').

かくして、反応室にて半導体被膜を形成した後、反応性
気体の供給を中止して、ターボ分子ポンプ(9)により
反応室内の不要物を除去した。
After the semiconductor film was thus formed in the reaction chamber, the supply of reactive gas was stopped, and unnecessary substances in the reaction chamber were removed by the turbo molecular pump (9).

また中和用添加物として酸素、弗素、塩素または窒素を
添加する場合は、第1図のドーピング系(25)よりこ
れらの気体を予備室内に導入した。
When adding oxygen, fluorine, chlorine, or nitrogen as a neutralizing additive, these gases were introduced into the preliminary chamber from the doping system (25) in FIG.

この後この反応室の真空引きをターボ分子ポンプ(9)
により行った。さらに基板(10)上の半導体(26)
、ヒータ(12)をゲイト弁(4) 、 (3)を開と
して移動機構(19’)、 (19)を用いて第1の予
備室(1)°内に移設する。さらにゲイト弁(4)を閉
、ゲイト弁(5)を開としてクライオポンプ(6)によ
り第1の予備室を減圧下に保持した。この減圧の程度は
少なくも10− ’ torr以下であり、一般には1
0−” 〜10−3torrとした。この予備室に保持
された半導体(26)。
After this, the reaction chamber is evacuated using a turbo molecular pump (9).
This was done by Furthermore, the semiconductor (26) on the substrate (10)
, open the gate valves (4) and (3) and move the heater (12) into the first preliminary chamber (1) using the moving mechanisms (19') and (19). Further, the gate valve (4) was closed, the gate valve (5) was opened, and the first preliminary chamber was maintained under reduced pressure by the cryopump (6). The degree of this pressure reduction is at least 10-' torr or less, and generally 1
0-'' to 10-3 torr. The semiconductor (26) was held in this preliminary chamber.

基板(10)は50℃以下の熱アニール効果を誘発しな
い温度に保ち、半導体被膜形成後まったく大気に触れさ
せることなく光照射を行った。さらに不対結合手中和用
添加物の半導体中への添加を実行せしめる工程および光
アニール、熱アニールの後の電気伝導度の変化を調べる
工程を行った。光アニキゼノン ールは窓(20)より=#≠中光(loomW/cm2
)を照射し、また熱アニールはヒータ(12’)に電気
を供給して実施した。
The substrate (10) was kept at a temperature of 50° C. or lower, which does not induce thermal annealing effects, and after the semiconductor film was formed, it was irradiated with light without being exposed to the atmosphere at all. Furthermore, we performed a step of adding an additive for neutralizing dangling bonds into the semiconductor, and a step of examining changes in electrical conductivity after photo-annealing and thermal annealing. Light Aniki Zenonor is from the window (20) = #≠ medium light (roomW/cm2
), and thermal annealing was performed by supplying electricity to the heater (12').

第2図は合成石英基板(10)上に一対の電極(ここで
はクロムを使用) (24) 、 (24’ )を形成
し、この上面を覆って真性または実質的に真性の水素ま
たはハロゲン元素が添加された非単結晶半導体であるア
モルファス半導体(26)を形成した。そして光転導度
及び喧伝導度を第1図に示す第1の予備室にてIN 5
ITU 、即ち被膜形成後雰囲気を真空中より変えるこ
となく一対の電極(24) 、 (24”)にブローブ
(17) 、 (17’ )をたてて接触法で測定した
In Figure 2, a pair of electrodes (chromium is used here) (24) and (24') are formed on a synthetic quartz substrate (10), and the upper surface is covered with an intrinsic or substantially intrinsic hydrogen or halogen element. An amorphous semiconductor (26) which is a non-single crystal semiconductor doped with was formed. Then, the optical conductivity and optical conductivity were measured at IN 5 in the first preliminary room shown in Figure 1.
ITU, that is, after the film was formed, the probes (17) and (17') were set up on the pair of electrodes (24) and (24''), and the measurement was carried out by the contact method without changing the atmosphere from vacuum.

本発明においては、真空中で光照射アニールを行った後
、この半導体に対し弗素、塩素、酸素または窒素の再結
合中心中和用の添加物の添加を行った。弗素を添加する
場合、純度99%以上の超高純度の弗素(F2)をドー
ピング系(25)より導入した。
In the present invention, after light irradiation annealing was performed in a vacuum, an additive for neutralizing recombination centers of fluorine, chlorine, oxygen, or nitrogen was added to the semiconductor. When adding fluorine, ultra-high purity fluorine (F2) with a purity of 99% or more was introduced from the doping system (25).

即ち、弗素(融点−223℃、沸点−187℃)を容器
内で液体窒素(沸点−195,8℃)により冷却し液化
する。そして液体状態の弗素をこの容器を減圧下とする
ことにより気化せしめて超高純度弗素とした。このため
、この弗素中の不純物、特に水は十分除去され、露点は
一60℃以下となり、実質的に99、992以上になっ
ているものと推定される。
That is, fluorine (melting point -223°C, boiling point -187°C) is cooled and liquefied in a container with liquid nitrogen (boiling point -195.8°C). Then, the liquid fluorine was vaporized by reducing the pressure in this container to obtain ultra-high purity fluorine. Therefore, impurities, especially water, in this fluorine are sufficiently removed, and the dew point is estimated to be -60°C or lower, and substantially 99,992 or higher.

また専大された弗素は半導体の表面および空穴より内部
に浸透付着し、光照射により予め作られていた珪素の不
対結合手と結合し、5i−F結合を作り中和安定化する
。さらに膜中に形成されている5t−Hと置換して5i
−Fの結合も作り得る。
Further, the concentrated fluorine penetrates and adheres to the surface of the semiconductor and the interior of the semiconductor through the holes, and combines with the dangling bonds of silicon previously created by light irradiation to form a 5i-F bond and neutralize and stabilize it. Furthermore, by replacing 5t-H formed in the film, 5i
-F bonds can also be created.

第3図は従来より公知の装置において、アモルファスシ
リコン半導体被膜を作り、この後、大気中にて電気伝導
度を測定・評価したものである。
FIG. 3 shows an amorphous silicon semiconductor film formed using a conventionally known apparatus, and then its electrical conductivity measured and evaluated in the atmosphere.

そして、基板としての石英ガラス上にシリコン半導体層
を0.6 μの厚さに形成した場合の光照射(AMI)
 (loOmW/am2)での光転導度(28)、喧伝
導度(28”)を示す。
Light irradiation (AMI) when a silicon semiconductor layer is formed to a thickness of 0.6 μ on a quartz glass substrate
The optical conductivity (28) and the optical conductivity (28'') are shown in (loOmW/am2).

即ち初期状態の光転導度(2B−1)、喧伝導度(28
゜−1)の測定の後、AMI (100mW/cm”)
の光を2時間照射し、その後の光転導度(28−2)及
び喧伝導度(28゛−2)を測定・評価した。更にこの
試料を150℃、2時間の熱アニールを行い、再び同様
に光転導度(2B−3)、喧伝導度(28’−3)を測
定した。これを繰り返すと、光照射により電気伝導度が
減少し、また熱アニールにより回復するという可逆特性
が第3図に示すごとく観察された。この反復性をいわゆ
るステブラ・ロンスキ効果という。
That is, the optical conductivity (2B-1) and the optical conductivity (28
After measuring ゜-1), AMI (100mW/cm”)
Light was irradiated for 2 hours, and the photoconductivity (28-2) and conductivity (28゛-2) were then measured and evaluated. Further, this sample was thermally annealed at 150°C for 2 hours, and the optical conductivity (2B-3) and optical conductivity (28'-3) were measured again in the same manner. When this process was repeated, a reversible characteristic was observed as shown in FIG. 3, in which the electrical conductivity decreased due to light irradiation and was recovered by thermal annealing. This repeatability is called the Stebla-Lonski effect.

第4図は本発明に至るための電気特性であってSEL効
果を示すものである。第1図に示されたU)IV装置に
より半導体被膜を形成する。その後反応室にて半導体中
に添加物の添加工程を経ず、この反応室を真空引きし、
さらに第1の予備室(1)にまでこのヒータ(12’)
下に保持された半導体(22)が形成された基板(10
’)を大気に触れさせることなく超高真空下において光
照射(20)熱アニール(12’)の有無による電気伝
導度の変化(29) 、 (29’ ”)をlN5IT
Uで測定したものである。
FIG. 4 shows the electrical characteristics for achieving the present invention and shows the SEL effect. A semiconductor film is formed using the U) IV apparatus shown in FIG. After that, without going through the process of adding additives to the semiconductor in the reaction chamber, the reaction chamber is evacuated.
Furthermore, this heater (12') extends to the first preliminary chamber (1).
A substrate (10) with a semiconductor (22) formed thereon held below.
Changes in electrical conductivity (29), (29''') due to the presence or absence of light irradiation (20) and thermal annealing (12') under ultra-high vacuum without exposing lN5IT to the atmosphere (29), (29''')
It was measured in U.

即ち、温度25℃、真空度4 X 1O−8torrの
測定で噴4!/ン 使用)を得た。これに#雰ケ÷ランプ(100mW/c
m2)を2時間照射すると、電気伝導度は(29−2)
 、 (29’ −2)と光転導度が3.5 Xl0−
’Scm−’、暗伝導度が6×10−93cm−’に低
下した。この試料に対しその後150℃3時間の加熱処
理を行った。すると、従来は第3図(28−3) 、 
(28″−3)に示す如く初期状態の値にまで電気伝4
度が回復すべきであるが、本発明のUIIV下でのIN
 5rTIJ測定方法においては、第4図(29−3)
 、 (29’−3)に示される如く、さらに減少する
。再びbランプで2時間照射しく29−4)、 (29
”−4)て(29−6) 、 (29’−6)を得る。
That is, the measurement at a temperature of 25°C and a vacuum level of 4 x 10-8 torr resulted in a jet of 4! /n) was obtained. Add this to #atmosphere ÷ lamp (100mW/c
m2) for 2 hours, the electrical conductivity is (29-2)
, (29' -2) and the optical conductivity is 3.5 Xl0-
'Scm-', the dark conductivity decreased to 6 x 10-93 cm-'. This sample was then subjected to heat treatment at 150°C for 3 hours. Then, conventionally, Fig. 3 (28-3),
As shown in (28″-3), the electrical conductivity increases to the initial state value.
Although the degree should be restored, the IN under the UIIV of the present invention
In the 5rTIJ measurement method, Fig. 4 (29-3)
, (29'-3), it further decreases. Irradiate it again with the b lamp for 2 hours.29-4), (29
”-4) to obtain (29-6) and (29'-6).

また熱アニールにして(29−7) 、 (29°−7
)を得る。これら熱照射、熱アニールを繰り返しても、
その光転導度(29)及び喧伝導度(29“)は単純に
減少傾向となって第3図とはまったく異なる特性となっ
た。
Also, by thermal annealing (29-7), (29°-7
). Even if these heat irradiation and thermal annealing are repeated,
The optical conductivity (29) and conductivity (29'') simply tended to decrease, resulting in characteristics completely different from those in FIG. 3.

これは光照射により準位が誘発されることにより電気伝
導度が減少するもので、かかる減少を本発明人は5EL
(State Exicited by Light)
効果と称する。
This is because electrical conductivity decreases when a level is induced by light irradiation.
(State Excited by Light)
It is called an effect.

第5図は第4図のSEL効果を有する即ち光照射により
再結合中心が誘起された半導体に対し、さらに同じ第1
の予備室を用いてIN Sr↑U評価および再結合中心
中和用の添加物の1つである酸素の添加を行った本発明
方法を示す。
FIG. 5 shows that the semiconductor having the SEL effect shown in FIG.
The method of the present invention is shown in which the IN Sr↑U evaluation and the addition of oxygen, which is one of the additives for neutralizing the recombination center, are performed using a preliminary chamber.

即ち第4図に示した試料に対し4?の処理を行ったが、
その状態での光転導度(30−1)、喧伝導度(30’
−1)を示す。ここで酸素を4 X10’Pa(大気中
の酸素と同一分圧)の圧力まで第1の予備室に導入した
。その後の光転導度と喧伝導度を(30−2) 。
That is, 4? for the sample shown in Figure 4. I processed the
In that state, the optical conductivity (30-1) and the optical conductivity (30'
-1). Here, oxygen was introduced into the first preliminary chamber to a pressure of 4×10'Pa (same partial pressure as oxygen in the atmosphere). The subsequent optical conductivity and conductivity are (30-2).

(30’−2)に示す。さらに、光照射(100mW/
cm22時間)行った。しかし、光転導度(30−3)
 、暗転導度(30’−3)は若干減少したがほとんど
一定であった。
(30'-2). Furthermore, light irradiation (100mW/
cm22 hours). However, the degree of optical conductivity (30-3)
, the dark conductivity (30'-3) decreased slightly but remained almost constant.

さらに150℃熱アニールを3時間行った。するとそれ
らは(30−4) (30’−4)それぞれ1.3 X
IOXlo−5S’。
Furthermore, thermal annealing at 150° C. was performed for 3 hours. Then they are (30-4) (30'-4) each 1.3 X
IOXlo-5S'.

12 X10−’Sc+n−’と若干向上した。さらに
1週間減圧下(酸素が若干残留している)にて放置する
12 X10-'Sc+n-', which was a slight improvement. The sample was left for another week under reduced pressure (some oxygen remained).

するとその後の光転導度(30−5)、暗転導度(30
“−5)はそれぞれ2.5 Xl0−’Scm −’、
2.lX1O−’Scm −’を得、電流も向上する。
Then, the subsequent light conversion conductivity (30-5) and dark conversion conductivity (30
"-5) is 2.5 Xl0-'Scm-', respectively
2. lX1O-'Scm-' is obtained, and the current is also improved.

この試料に対し再び光照射を2時間行っても、2.5 
Xl0−’Scm −’(30−6)、3.0XIO−
’Scm−’(30’−6)と殆ど不変である。
Even if this sample is irradiated with light for 2 hours again, the result is 2.5
Xl0-'Scm-' (30-6), 3.0XIO-
'Scm-'(30'-6), which is almost unchanged.

また熱アニール(150℃、3時間)、光照射(100
mW/cm” 2時間)での光転導度および暗転導度は
それぞれ2.7 X10−’Scm−’(30−7)、
喧伝4度は2.3xlO−”Scm −’(30’−7
)  と一定になってしまう。
In addition, thermal annealing (150℃, 3 hours), light irradiation (100℃,
The light and dark conductivities at mW/cm" (2 hours) are respectively 2.7 X10-'Scm-' (30-7),
The fourth degree is 2.3xlO-"Scm-'(30'-7
) becomes constant.

即ち十分SEL効果を誘起し、予め減圧下で光照射を行
い、光による再結合中心を十分生成してしまった後、こ
の生成した不安定な再結合中心に対し中和用添加物を添
加して中和せしめ安定化するならば、この後はこの不安
定な再結合中心が再びA乍られることなく、第3図に示
した如きステブラ・ロンスキ効果は生じないことがわか
る。
That is, after sufficiently inducing the SEL effect and performing light irradiation under reduced pressure in advance to generate sufficient recombination centers due to light, a neutralizing additive is added to the generated unstable recombination centers. It can be seen that if this is neutralized and stabilized, this unstable recombination center will not be returned to A again after this, and the Stebla-Lonski effect as shown in FIG. 3 will not occur.

念のためこの試料が再びSEL効果を生ずるかを調べて
みた。すると光転導度が2.7 Xl0−’Scm −
’の条件下より真空(10−3torr) としても2
.6 Xl0−’Scm−’となったのみであり、これ
により真空下で光照射(2時間)を行って2.3 Xl
0−’Scm −’(30−8)。
Just to be sure, I investigated whether this sample would produce the SEL effect again. Then, the optical conductivity becomes 2.7 Xl0−'Scm −
Even if the vacuum (10-3 torr) is
.. 6 Xl0-'Scm-', which resulted in 2.3
0-'Scm-'(30-8).

熱アニール(150℃3時間)で2.46 X 10−
 ’Scm −’(図面省略)とほぼ一定である。
2.46 x 10- by thermal annealing (150℃ for 3 hours)
'Scm -' (drawing omitted) is almost constant.

このことは一度SEL効果により不安定な不対結合手(
再結合中心)を誘起しこの不対結合手を添加物により添
加中和してしまうならばもはやSEL効果は生じないこ
とがわかった。
This means that once the SEL effect causes an unstable dangling bond (
It has been found that if the dangling bonds are neutralized by addition of an additive, the SEL effect will no longer occur.

即ち本発明方法により光学的、熱的にきわめて安定な水
素またはハロゲン元素が添加された半導体を得ることが
できることが判明した。
That is, it has been found that by the method of the present invention, it is possible to obtain an optically and thermally extremely stable semiconductor to which hydrogen or halogen elements are added.

第6図は本発明方法により作られた他の電気特性である
FIG. 6 shows other electrical characteristics produced by the method of the present invention.

即ち第1図の装置において半導体被膜を形成した。その
後、反応室または第1の予備室にて真空中に保持し、十
分な時間(3時間以上ここでは48時間)はど光照射を
行い、再結合中心を誘起した。
That is, a semiconductor film was formed using the apparatus shown in FIG. Thereafter, the reaction chamber or the first preparatory chamber was kept in a vacuum, and irradiation with light was performed for a sufficient period of time (3 hours or more, here 48 hours) to induce recombination centers.

さらにこのSEL効果がおきている半導体に対し系(2
5)より高純度の弗素ガスを導入した。するとこの弗素
は半導体表面および半導体中に含浸しこの半導体中のS
i−の不対結合手と結合し2Si−+  F2   2
SiF としてSiF結合に置換し得る。そしてこのSiF結合
はこの後大気中にこの半導体が放置されても安定である
ことが期待でき(弗素および酸素の電気陰性度はそれぞ
れ4.Q、3.5である)かくして本発明方法で形成さ
れた半導体はIN 5ITUの真空中の光照射・熱アニ
ールのサイクルを第3図と同様に同時に実施した。しか
し、第6図に示す如く殆ど変化がなかった。
Furthermore, for semiconductors in which this SEL effect occurs, the system (2
5) Higher purity fluorine gas was introduced. Then, this fluorine impregnates the semiconductor surface and into the semiconductor, and the S in the semiconductor.
Combines with the unpaired bond of i- to form 2Si-+ F2 2
SiF may be substituted for the SiF bond. This SiF bond is expected to be stable even if the semiconductor is left in the atmosphere (the electronegativities of fluorine and oxygen are 4.Q and 3.5, respectively), and thus formed by the method of the present invention. The semiconductor thus prepared was simultaneously subjected to a cycle of light irradiation and thermal annealing in a vacuum at IN 5ITU as shown in FIG. However, as shown in FIG. 6, there was almost no change.

得る。そしてこの電気伝導度は若干の変化を有するが、
殆ど変化がなく、この光照射、熱アニールにより再結合
中心が新たにほとんど生じていないことがわかる。
obtain. Although this electrical conductivity varies slightly,
There is almost no change, and it can be seen that almost no new recombination centers are generated by this light irradiation and thermal annealing.

以上の実験の結果より、ステブラ・ロンスキ効果は半導
体を形成した後、大気中にこの半導体装置し、酸素を半
導体と吸着または反応させた試料の大気中での光アニー
ルおよび熱アニール処理においてのみ観察される現象で
あることが判明した。そして本発明人の発見したSEL
効果は光アニール及び熱アニールを半導体被膜を形成し
た後この半導体被膜を大気にふれさせることなく超高真
空下で電気特性評価を行うことにより観察される。
From the results of the above experiments, the Stebla-Lonski effect is observed only in photo-annealing and thermal annealing in the atmosphere of a sample in which a semiconductor is formed, the semiconductor device is exposed to the atmosphere, and oxygen is adsorbed or reacted with the semiconductor. It turns out that this is a phenomenon that occurs. And the SEL discovered by the inventor
The effect can be observed by performing optical annealing and thermal annealing to form a semiconductor film, and then evaluating the electrical characteristics of the semiconductor film under ultra-high vacuum without exposing it to the atmosphere.

さらに本発明人の示す半導体被膜を形成した後、超高真
空下でSEL効果を誘起し、この半導体に対し再結合中
心中和用添加物を添加することによって、不安定な不対
結合手と添加物とが結合し安定化することにより光照射
による特性劣化の発生を防ぐことができる。
Furthermore, after forming the semiconductor film shown by the present inventor, the SEL effect is induced under ultra-high vacuum, and by adding an additive for neutralizing recombination centers to this semiconductor, unstable dangling bonds are removed. By combining with additives and stabilizing it, it is possible to prevent property deterioration due to light irradiation.

さらに本発明は半導体を形成してしまった後、この半導
体を超高純度の不活性気体中で大気圧とする。さらに、
この半導体を異なる真空容器に移し、再び超高真空下に
保持して加熱(被膜形成温度またはその付近以上の温度
)し、脱ガス化を図り、光照射により不安定な不対結合
手を十分に生成しておき、ここに添加物を半導体に機械
的な損傷応力を与えることなく添加して不安定な不対結
合手を中和することも有効である。しかしこの工程によ
り作られた半導体装置の電気伝導度の変化は第5図、第
6図の結果より若干劣化が大きいと推定される。
Further, in the present invention, after forming a semiconductor, this semiconductor is brought to atmospheric pressure in an ultra-high purity inert gas. moreover,
This semiconductor is transferred to a different vacuum container, held under ultra-high vacuum again, heated (at or above the film formation temperature), degassed, and irradiated with light to remove unstable unpaired bonds. It is also effective to neutralize unstable dangling bonds by adding additives to the semiconductor without mechanically damaging stress. However, it is estimated that the change in electrical conductivity of the semiconductor device manufactured by this process is slightly more degraded than the results shown in FIGS. 5 and 6.

さらに本発明方法においてこの弗素との混合気体を紫外
光にて活性にし、活性弗素雰囲気中に基板を保持し、大
気圧とするとともにこれら100〜500℃代表的には
250〜300℃にて熱処理を施し、活性弗素元素を半
導体内部にまで拡散し不対結合手と中和させることもで
き得る。
Furthermore, in the method of the present invention, this gas mixture with fluorine is activated with ultraviolet light, the substrate is held in an activated fluorine atmosphere, brought to atmospheric pressure, and heat-treated at 100 to 500°C, typically 250 to 300°C. It may also be possible to diffuse the active fluorine element into the interior of the semiconductor and neutralize the dangling bonds.

この試料に対し、その後大気中で光アニール熱アニール
のサイクルを第6図に示す如くに加えても、その変化は
第6図に示した特性と概略一致し、光劣化の程度を従来
の第3図に示す程度よりよりはるかに減少させ得ること
が判明した。
Even if this sample is then subjected to photo-annealing thermal annealing cycles in the air as shown in Figure 6, the changes roughly match the characteristics shown in Figure 6, and the degree of photodegradation is comparable to that of the conventional one. It has been found that it can be reduced much more than the extent shown in Figure 3.

なお以上の本発明方法は、半導体被膜を形成する際、弗
素等の不純物を含む雰囲気中で被膜形成をし、この被膜
形成と同時にこれらの添加物を添加する従来より公知の
方法(例えばUSP4226898S、R,オブチンス
キー)とは根本よりその技術思想が異なる。
The method of the present invention described above is based on conventionally known methods (for example, US Pat. No. 4,226,898S, His technical philosophy is fundamentally different from that of R. Ovczynski.

本発明において形成される被膜は水素が添加されたアモ
ルファスシリコン半導体を主として示した。しかし弗素
化アモルファスシリコン、水素または/および弗素が添
加された5ixC+□(0<X<1)。
The film formed in the present invention mainly consisted of an amorphous silicon semiconductor doped with hydrogen. However, 5ixC+□ (0<X<1) doped with fluorinated amorphous silicon, hydrogen or/and fluorine.

5ixGe+−x(0<X<1) +5ixSn+−x
(0<X<1)その他の非単結晶半導体に対しても適用
が可能であることはいうまでもない。
5ixGe+-x (0<X<1) +5ixSn+-x
(0<X<1) It goes without saying that it is also applicable to other non-single crystal semiconductors.

本発明において、弗素化物または塩素化物は弗素(F2
)、塩素(C12)の添加により試みた。しかしこれら
の弗化物、塩化物は紫外光の照射等により他の弗化物(
例えばHF + CHF s + CII z F 2
1 CP 4.I Ge F a + S I 2F、
等または塩化物(HCI、ClICl3.CHzClz
、CC1zFz等)を用いてもよい。また酸素は0□の
みならず、No、。
In the present invention, the fluorinated or chlorinated compound is fluorine (F2
), an attempt was made by adding chlorine (C12). However, when these fluorides and chlorides are irradiated with ultraviolet light, other fluorides (
For example, HF + CHF s + CII z F 2
1 CP 4. I Ge Fa + S I 2F,
etc. or chloride (HCI, ClICl3.CHzClz
, CC1zFz, etc.) may be used. Also, oxygen is not only 0□ but also No.

N13.NOその他の酸化物を用い、またこれを光によ
り分離し活性の酸素または窒素を添加することも有効で
ある。
N13. It is also effective to use NO or other oxides, separate them with light, and add active oxygen or nitrogen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置作製用のプラズマ気相反応
炉の概要を示す。 第2図は電気伝導度の測定用系の縦断面図を示す。 第3図は従来より知られた真性半導体の電気特性を示す
。 第4図は本発明を実施するための真性半導体の電気特性
を示す。 第5図、第6図は本発明方法により作られた真性半導体
の電気特性を示す。
FIG. 1 shows an outline of a plasma vapor phase reactor for manufacturing a semiconductor device according to the present invention. FIG. 2 shows a longitudinal cross-sectional view of a system for measuring electrical conductivity. FIG. 3 shows the electrical characteristics of conventionally known intrinsic semiconductors. FIG. 4 shows the electrical characteristics of an intrinsic semiconductor for implementing the present invention. FIGS. 5 and 6 show the electrical characteristics of an intrinsic semiconductor produced by the method of the present invention.

Claims (1)

【特許請求の範囲】 1、基板上に水素またはハロゲン元素を含む非単結晶半
導体を形成する工程と、前記半導体を減圧下に保持し、
光アニールを行う工程と、該工程の後、前記半導体中ま
たは表面に添加物を添加することを特徴とした半導体装
置作製方法。 2、特許請求の範囲第1項において、半導体が保持され
た減圧状態は10^−^3torrまたはそれ以下であ
るとともに50℃以下の温度に保持されていることを特
徴とする半導体装置作製方法。 3、特許請求の範囲第1項において、添加物は酸素、弗
素、塩素および窒素より選ばれた元素よりなることを特
徴とする半導体装置作製方法。 4、特許請求の範囲第1項において、基板上に形成され
た半導体被膜は最低濃度領域において酸素及び窒素の不
純物濃度が5×10^1^8cm^−^3またはそれ以
下しか添加されていないことを特徴とする半導体装置測
定方法。
[Claims] 1. A step of forming a non-single crystal semiconductor containing hydrogen or a halogen element on a substrate, and holding the semiconductor under reduced pressure,
A method for manufacturing a semiconductor device, comprising the steps of performing photo-annealing, and adding an additive into or on the surface of the semiconductor after the step. 2. A method for manufacturing a semiconductor device according to claim 1, wherein the reduced pressure state in which the semiconductor is maintained is 10^-^3 torr or less, and the temperature is maintained at 50°C or less. 3. A method for manufacturing a semiconductor device according to claim 1, wherein the additive comprises an element selected from oxygen, fluorine, chlorine, and nitrogen. 4. In claim 1, the semiconductor film formed on the substrate is doped with impurity concentrations of oxygen and nitrogen of 5×10^1^8 cm^-^3 or less in the lowest concentration region. A method for measuring a semiconductor device, characterized in that:
JP18637285A 1985-08-02 1985-08-23 Manufacture of semiconductor device Pending JPS6254423A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP18637285A JPS6254423A (en) 1985-08-23 1985-08-23 Manufacture of semiconductor device
DE3689735T DE3689735T2 (en) 1985-08-02 1986-08-01 Method and device for manufacturing semiconductor devices.
EP86305952A EP0211634B1 (en) 1985-08-02 1986-08-01 Method and apparatus for manufacturing semiconductor devices
US07/251,940 US4986213A (en) 1985-08-02 1988-09-28 Semiconductor manufacturing device
US07/320,788 US4888305A (en) 1985-08-02 1989-03-09 Method for photo annealing non-single crystalline semiconductor films
US07/520,998 US5171710A (en) 1985-08-02 1990-05-09 Method for photo annealing non-single crystalline semiconductor films
US07/933,718 US5296405A (en) 1985-08-02 1992-08-24 Method for photo annealing non-single crystalline semiconductor films
US08/396,780 US5753542A (en) 1985-08-02 1995-03-01 Method for crystallizing semiconductor material without exposing it to air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18637285A JPS6254423A (en) 1985-08-23 1985-08-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6254423A true JPS6254423A (en) 1987-03-10

Family

ID=16187228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18637285A Pending JPS6254423A (en) 1985-08-02 1985-08-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6254423A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707344A2 (en) 1994-09-19 1996-04-17 Hitachi, Ltd. Semiconductor device using a polysilicium thin film and production thereof
US6329229B1 (en) 1993-11-05 2001-12-11 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device, apparatus for processing a semiconductor and apparatus for processing semiconductor device
US6897100B2 (en) 1993-11-05 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device apparatus for processing a semiconductor and apparatus for processing semiconductor device
US7097712B1 (en) 1992-12-04 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Apparatus for processing a semiconductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7097712B1 (en) 1992-12-04 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Apparatus for processing a semiconductor
US6329229B1 (en) 1993-11-05 2001-12-11 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device, apparatus for processing a semiconductor and apparatus for processing semiconductor device
US6897100B2 (en) 1993-11-05 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device apparatus for processing a semiconductor and apparatus for processing semiconductor device
EP0707344A2 (en) 1994-09-19 1996-04-17 Hitachi, Ltd. Semiconductor device using a polysilicium thin film and production thereof
US6559037B2 (en) 1994-09-19 2003-05-06 Hitachi, Ltd. Process for producing semiconductor device having crystallized film formed from deposited amorphous film

Similar Documents

Publication Publication Date Title
US4888305A (en) Method for photo annealing non-single crystalline semiconductor films
US5296405A (en) Method for photo annealing non-single crystalline semiconductor films
KR0181532B1 (en) Thermal treatment of a semiconductor wafer
US5300187A (en) Method of removing contaminants
KR101770845B1 (en) Method for ion source component cleaning
EP0264774B1 (en) Improved post-oxidation anneal of silicon dioxide
KR100777321B1 (en) In situ growth of oxide and silicon layers
US5171710A (en) Method for photo annealing non-single crystalline semiconductor films
EP0445754A1 (en) Method for growing a diamond or c-BN thin film
JPH06177062A (en) Formation method of semiconductor layer doped with rare earth
JPH01244623A (en) Manufacture of oxide film
JPS6254423A (en) Manufacture of semiconductor device
JP2660243B2 (en) Semiconductor device manufacturing method
EP0622472A1 (en) Method for growing a diamond or c-BN thin film on a diamond or c-BN substrate
JPS6247116A (en) Semiconductor device manufacturing equipment
JPS6252924A (en) Manufacture of semiconductor device
JPS6254448A (en) Measurement for semiconductor device
JPS6251210A (en) Manufacture of semiconductor device
JP2012204694A (en) Manufacturing method of semiconductor device and substrate processing device
JP2521427B2 (en) Semiconductor device manufacturing method
Green et al. The influence of silicon heat treatments on the minority carrier generation and the dielectric breakdown in MOS structures
JPH06244174A (en) Formation of insulating oxide film
JPS6252925A (en) Semiconductor device manufacturing equipment
US6083354A (en) Treatment method for diamonds
JPS6269608A (en) Manufacture of semiconductor device