JPS6247000A - Production of crystal body of tungsten carbide - Google Patents

Production of crystal body of tungsten carbide

Info

Publication number
JPS6247000A
JPS6247000A JP18707885A JP18707885A JPS6247000A JP S6247000 A JPS6247000 A JP S6247000A JP 18707885 A JP18707885 A JP 18707885A JP 18707885 A JP18707885 A JP 18707885A JP S6247000 A JPS6247000 A JP S6247000A
Authority
JP
Japan
Prior art keywords
composition
tungsten carbide
zone
tungsten
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18707885A
Other languages
Japanese (ja)
Other versions
JPH027919B2 (en
Inventor
Takao Tanaka
高穂 田中
Shigeki Otani
茂樹 大谷
Yoshio Ishizawa
石沢 芳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP18707885A priority Critical patent/JPS6247000A/en
Publication of JPS6247000A publication Critical patent/JPS6247000A/en
Publication of JPH027919B2 publication Critical patent/JPH027919B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a large-sized crystal body of high quality by a floating zone method by providing the composition of a liq. phase consisting of W, C and B in a prescribed ratio and coexisting with a solid phase of WC in equilibrium to the composition of a melting zone of a starting material rod. CONSTITUTION:Part of a starting material rod 3 of WC is heated with a high frequency coil 7 of or the like to form a melting zone 6. The composition of a liq. phase consisting of W, C and B in 1:(0.4-1):(0.03-0.5) molar ratio and coexisting with a solid phase of WC in equilibrium is provided to the composition of the melting zone 6. The melting zone 6 is moved to obtain a crystalbody 5 of WC.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はタングステン・カーバイド(以下WCと記載す
る)の結晶体の製造法、更に詳しくはフローティング・
ゾーン法によるWCの結晶体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a tungsten carbide (hereinafter referred to as WC) crystal, more specifically a floating crystal.
This invention relates to a method for producing WC crystals using a zone method.

H’wcは極めて高い温度(約2750℃)まで安定)
有し、高い靭性な持っているので、各種の超硬工具とし
て広く実用に供せられている。
H'wc is stable up to extremely high temperatures (approximately 2750℃)
Because of its high toughness, it is widely used in various types of carbide tools.

従来技術 従来のWC結晶体の製造法としては、 (1)  コバルト金属浴にWCを溶解し、一定温度に
保った後、徐冷し、弗硝酸などによりコバルト金属を溶
解除去するコバルト金属をフラックスとして用いるフラ
ンクス法。
Prior Art Conventional methods for manufacturing WC crystals include: (1) Dissolving WC in a cobalt metal bath, keeping it at a constant temperature, cooling slowly, and dissolving and removing the cobalt metal with hydrofluoric nitric acid, etc. Franks method used as

(2)Weを溶解したコバルト金属上面から浴を徐冷す
ると共にWCの結晶を引上げるモディファイド・チョコ
ラルスキー法がある。
(2) There is a modified Czochralski method in which the bath is slowly cooled from the top surface of the cobalt metal in which We is dissolved and the WC crystals are pulled up.

しかし、(1)の方法では一般に敷部の結晶しか得られ
ず、(2)の方法ではl Cm程度の結晶を得るのに約
1週間を要する問題点があった。しかも(2)はいずれ
もフラックス法であるため、フラックス法属やるつぼか
らの不純物の混入が避けられず、高純度の結晶が得難い
欠点があった。
However, method (1) generally only yields crystals at the bottom, and method (2) has the problem that it takes about one week to obtain crystals of about 1 Cm. Moreover, since (2) is a flux method, contamination with impurities from the flux method or crucible is unavoidable, which has the drawback that it is difficult to obtain high-purity crystals.

一方、4族、5族遷移金属炭化物の大型単結晶を得る方
法としてフローティング・ゾーン法(以下iF Z法と
言う)が知られている。
On the other hand, a floating zone method (hereinafter referred to as iFZ method) is known as a method for obtaining large single crystals of group 4 and group 5 transition metal carbides.

−1−jFz法は第1図の概念図に示すように、目的と
する化合物の原料棒3の一部を例えば、高周波コイル7
により加熱し、溶融帯6を形成させる。この溶融帯6を
はさんだ棒の両端をホールダ−2で保持し、一体に、上
または下に移動させて結晶5を成長させる方法である。
In the -1-jFz method, as shown in the conceptual diagram of FIG.
is heated to form a molten zone 6. In this method, both ends of the rod sandwiching the melted zone 6 are held by holders 2, and the rod is moved upward or downward as a unit to grow the crystal 5.

図中1はシャフト、4は種子棒を示す。In the figure, 1 indicates a shaft and 4 indicates a seed rod.

この方法による4族、5族遷移金属炭化物の単結晶育成
においては、得られる結晶の組成を目的の組成と一致さ
せるために、溶融帯の組成を目的固相組成と平衡共存す
る液相組成とする方法(特許第1186975号)。ま
た、育成中、溶融帯からの蒸発により、溶融帯の組成が
変化するのを防ぐため、これを補う目的で原料棒の組成
を予め調整することが行われている(%願昭55−37
963号)。
When growing single crystals of Group 4 and Group 5 transition metal carbides using this method, in order to match the composition of the resulting crystal with the target composition, the composition of the molten zone is adjusted to the liquid phase composition that coexists in equilibrium with the target solid phase composition. (Patent No. 1186975). Additionally, in order to prevent the composition of the molten zone from changing due to evaporation from the molten zone during growth, the composition of the raw material rod is adjusted in advance in order to compensate for this.
No. 963).

発明の目的 本発明はFZ法により大型のWe結晶体の製造法を提供
せんとするものである。
OBJECTS OF THE INVENTION The present invention aims to provide a method for producing large We crystals by the FZ method.

、r’、”=yx、!Aomt。, r’,”=yx,!Aomt.

1・ ・□jIt本発明者らは前記目的を達成すべく、FZ法
にj: p w c単結晶の育成を試みた。その結果、
WCの固相と平衡共存できるタングステンとカーボンの
みからなる液相組成は存在せず、そのような液相組成と
平衡共存するのは、カーボン欠損型の立方晶W O(O
wc、−x)であることが分った。
1. ・□jIt In order to achieve the above object, the present inventors attempted to grow a j: p w c single crystal using the FZ method. the result,
There is no liquid phase composition consisting only of tungsten and carbon that can coexist in equilibrium with the solid phase of WC, and what coexists in equilibrium with such a liquid phase composition is the carbon-deficient cubic crystal WO(O
wc, -x).

すなわち、タングステンとカーボンからのみなる液相を
用いる限り、FZ法ではWCの結晶体は育成できないこ
とが分った。
That is, it has been found that as long as a liquid phase consisting only of tungsten and carbon is used, WC crystals cannot be grown by the FZ method.

この問題点を解決すべく更に研究の結果、WCは昇温に
伴い、約2750℃で固相分解するが、固相分解によっ
て生ずるc −we、−エは僅か数10℃の昇温で更に
液相とカーボンに分解する。この場合、何らかの元素ま
たは化合物を添加することにより、WCを安定化させ直
接液相に分解させるようにすればFZ法の適用が可能に
なる。WCと類似の結晶構造を持ち、高温まで安定なタ
ングステン化合物にW2B5があシ、これはWCと同じ
くタングステンの積層が単純六方の構造をとり、ボロン
の数・がWC中のカーボンに比し2倍であるWB2を変
形じ;た構造であ)、比較的組成範囲が広く、一致溶、
; ゛融組成はWB〜2.3 とされている。従って、WC
とWB〜2.、の間には固溶関係が存在し、その組成比
に応じ、WCの多い方から順に固相分解、液相への分解
p−一致融と移行する。すなわち、モル比でwc:wB
〜2.x = 1 : 0.06の組成比を持つ焼結体
を作り、これにFZ法を適用した結果、溶融帯の移動に
伴い、当初カーボンが多量に析出し、次いでWCが単一
層で析出することを究明した。
As a result of further research to solve this problem, it was found that WC undergoes solid phase decomposition at approximately 2750°C as the temperature rises, but c-we and -e produced by solid-phase decomposition can be further degraded by increasing the temperature by just a few tens of degrees Celsius. Decomposes into liquid phase and carbon. In this case, the FZ method can be applied by adding some element or compound to stabilize the WC and directly decompose it into a liquid phase. W2B5 is a tungsten compound that has a similar crystal structure to WC and is stable up to high temperatures. Like WC, the tungsten stack has a simple hexagonal structure, and the number of boron atoms is 2 compared to the carbon in WC. It has a structure that is a modified version of WB2, which is twice the size of WB2), and has a relatively wide composition range, and
; The melt composition is WB~2.3. Therefore, W.C.
and WB~2. A solid solution relationship exists between the two, and depending on the composition ratio, the transition occurs from solid phase decomposition to liquid phase decomposition to p-coincident melting in the order of WC content. That is, wc:wB in molar ratio
~2. As a result of creating a sintered body with a composition ratio of x = 1: 0.06 and applying the FZ method to it, a large amount of carbon precipitates at first as the molten zone moves, and then WC precipitates in a single layer. I found out.

その時の溶融帯の組成はモル比でW:O:B=1 : 
0.7 : 0.1であった。この知見に基いて本発明
を完成した。
The composition of the molten zone at that time is W:O:B=1 in molar ratio:
0.7: It was 0.1. The present invention was completed based on this knowledge.

本発明の要旨は、タングステン・カーバイド原料棒の一
部分を加熱して溶融帯を形成し、該溶融帯を移動させて
タングステン・カーバイドの結晶体を製造する所謂フロ
ーティング・ゾーン法による製造法において、該溶融帯
の組成をタングステン・カーバイドの固相と平衡共存す
るタングステン、カーボン及びボロンからなる液相組成
と1−17二−1 結晶を育成することを特徴とするタングステン・−、”
f)’I  /<イ)”(7)結、え、)、ヤよよああ
The gist of the present invention is to heat a part of a tungsten carbide raw material rod to form a molten zone, and move the molten zone to manufacture a tungsten carbide crystal in a manufacturing method using the so-called floating zone method. 1-172-1 Tungsten characterized by the fact that the composition of the molten zone is a liquid phase composition consisting of tungsten, carbon, and boron coexisting in equilibrium with the solid phase of tungsten carbide, and 1-172-1 Tungsten characterized by growing crystals.
f)'I /<I)'' (7) Yui, eh, ), yayoyoaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

、・”−ivxm*ts、。、ユ、よ、wcoemよ−
ややケイヤうタングステン、カーボン及びボロンからな
る液相組成とする。そのためにはモル比で、W:C:B
= 1: (0,4〜1.0 ) : (0,03〜0
.50 )、望ましくは、1 : (0,6〜o、s 
) : (0,05〜0.30)であることが好ましい
。この組成からずれると、結晶育成の初期段階に、カー
ボン濃度の高低に応じ、CまたはW2CがWC相内に析
出し、また、ボロン濃度の高低に応じ過大なボロンが結
晶に含まれるか、低いとWC相の安定な成長ができなく
なる。従って、前記の組成であることが好ましい。
,・"-ivxm*ts,.,Yo,wcoem-
The liquid phase composition consists of slightly dark tungsten, carbon, and boron. For this purpose, the molar ratio is W:C:B
= 1: (0,4~1.0): (0,03~0
.. 50), preferably 1: (0,6~o,s
) : It is preferable that it is (0.05-0.30). If the composition deviates from this composition, C or W2C will precipitate in the WC phase depending on the carbon concentration during the initial stage of crystal growth, and depending on the boron concentration, too much boron will be included in the crystal or the crystal will be too low. This makes stable growth of the WC phase impossible. Therefore, the above composition is preferred.

原料棒としては、溶融帯から蒸発により失われるカーボ
ン及びボロン、また溶融帯と結晶の間の界面の分配によ
り結晶に取り込まれるボロンを丁度補うように原料棒に
、カーボン及びボロンを含有させた組成のものとするの
がよい。その組成の好ましい範囲はモル比でW : (
3: B=1 : (1,00〜1.30 ) : (
0,00〜0.20 ) 、望ましくはW:C:B=1
:(1,05〜1.20 ) : (0,01〜0.0
7 )である。C濃度が低過ぎると、We結晶中にW2
O相が析出し、また高過き゛るとC相が析出し、結晶の
質を低下させる。
The raw material rod has a composition in which carbon and boron are contained in the raw material rod to exactly compensate for the carbon and boron lost from the molten zone through evaporation, and the boron taken into the crystal by distribution at the interface between the molten zone and the crystal. It is better to make it the one of . The preferred range of its composition is the molar ratio W: (
3: B=1: (1,00~1.30): (
0.00 to 0.20), preferably W:C:B=1
:(1,05~1.20) :(0,01~0.0
7). If the C concentration is too low, W2 will be present in the We crystal.
The O phase precipitates, and if the temperature is too high, the C phase precipitates, reducing the quality of the crystal.

BS度が低過ぎると、十分な長さの溶融帯の移動ができ
ない間にWCの安定な成長ができなくなり、またB濃度
が高過ぎるとWC結晶内にボロンが取り込まれるので望
ましくない。しかし、その組成は一定のものではなく、
溶融帯移動速度、雰囲気ガスの種類、及び圧力等の結晶
育成条件によって変化するので実験的に決めればよい。
If the BS degree is too low, stable growth of WC will not be possible while the molten zone cannot move for a sufficient length, and if the B concentration is too high, boron will be incorporated into the WC crystals, which is not desirable. However, its composition is not constant;
It may be determined experimentally since it varies depending on the crystal growth conditions such as the moving speed of the molten zone, the type of atmospheric gas, and the pressure.

原料棒に相対し、溶融帯部なはさんで置かれる種子棒の
組成は、原料棒と同じでもまたは相違してもよく、マた
、W2O、w cの単結晶を用いて育成する単結晶の方
位を(0001)  、  (1010)  。
The composition of the seed rod placed opposite the raw material rod across the melting zone may be the same as or different from that of the raw material rod. The directions are (0001) and (1010).

(1120)等に平行にすることも可能である。It is also possible to make it parallel to (1120) etc.

本発明の方法を行う装置としては、例えばADL社製の
高圧タイプの結晶育成炉が挙げられ、この炉による結晶
育成法を説明する。
An example of an apparatus for carrying out the method of the present invention is a high-pressure type crystal growth furnace manufactured by ADL, and the crystal growth method using this furnace will be described.

直径約1 am 、長さ10〜20cmの原料棒を上方
、−’m:置き、長さ3〜7 cmの種子棒を下方に置
き、該種子棒の上に溶融帯部となる棒を置き、原料棒の
棒の上部に置く方法のほか、珈子欅自身を溶融帯の組成
と一致させてもよく、また、撫子棒と原料棒の間に必要
量のW及びBまたはC及びBをはさみ、この部分を溶融
帯としてもよい。
A raw material rod with a diameter of about 1 am and a length of 10 to 20 cm is placed above -'m, a seed rod with a length of 3 to 7 cm is placed below, and the rod that will become the melting zone is placed on top of the seed rod. In addition to the method of placing it on the top of the raw material rod, the coffee zelkova itself may be made to match the composition of the melting zone, and the required amount of W and B or C and B may be placed between the diande rod and the raw material rod. Scissors, this part may be used as a melting zone.

この溶融帯部を例えば高周波加熱(光集光方式でもよい
)して溶融帯を作り、その後、原料棒及び種子棒を一体
に、または異なる速度で下方に移動させる。この移動に
よってWC結晶が成長を続ける。
This molten zone is heated, for example, by high frequency (light condensing method may also be used) to form a molten zone, and then the raw material rod and the seed rod are moved downward together or at different speeds. This movement causes the WC crystal to continue growing.

この時の種子欅移動速度は、結晶成長が溶融体の同化で
はなく、溶融帯からのWCの析出によるものであるから
、おそい方が良く、0.5〜lO門/ h、望ましくは
1〜3tm/hとするのがよい。
The seed zelkova movement speed at this time is preferably as slow as 0.5 to 1 O/h, preferably 1 to 1, since crystal growth is not due to assimilation of the melt but by precipitation of WC from the melt zone. It is preferable to set the speed to 3tm/h.

原料棒の移動速度は前記種子棒と同じ速度でもよいが、
溶融帯を安定に維持できる速度例えば種子欅の移動速度
の80〜90%であってもよい。
The moving speed of the raw material rod may be the same speed as the seed rod, but
The speed at which the melting zone can be stably maintained may be, for example, 80 to 90% of the moving speed of Zelkova seeds.

また、原料棒?種子棒の上下関係を逆にし、上方に移動
するようにしてもよい。
Also, the raw material stick? The vertical relationship of the seed rods may be reversed so that they move upward.

□溶融帯の組成を均一に保つためには回転操作な−加え
ることが効果的である。即ち上下の棒を固定したシャフ
トを逆方向に回転させ、溶融帯部を混合させる。その回
転速度は通常5〜30rpm程度が適当である。
□In order to keep the composition of the molten zone uniform, it is effective to add rotation. That is, a shaft to which the upper and lower rods are fixed is rotated in opposite directions to mix the molten zone. The appropriate rotational speed is usually about 5 to 30 rpm.

結晶を育成する際の雰囲気は、ヘリウム!アルゴン等の
不活性ガスの他、窒素、水素ガスであってもよい。
The atmosphere when growing crystals is helium! In addition to an inert gas such as argon, nitrogen or hydrogen gas may also be used.

雰囲気圧は大気圧(txxOPa)でもよいが、加圧雰
囲気とすると、溶融帯からの成分の蒸発を抑制するので
有効である。しかじ高過ぎると、対流による熱損失が増
大するので、通常2〜30×105Pa l好ましくは
3〜15 x 105Paであることが適当である。
Although the atmospheric pressure may be atmospheric pressure (txxOPa), a pressurized atmosphere is effective because it suppresses evaporation of components from the molten zone. However, if it is too high, heat loss due to convection increases, so it is usually 2 to 30 x 105 Pa, preferably 3 to 15 x 105 Pa.

このようにして、約10時間溶融帯を移動すると、直径
8〜9 m 、長さ30鱈程度のWC単結晶を育成する
ことができる。
By moving the melt zone in this manner for about 10 hours, a WC single crystal with a diameter of 8 to 9 m and a length of about 30 m can be grown.

実施例1゜ 市販のWC原料粉(平均粒径0.7μm、全炭素″″:
1 .6.11wt%)を用い、WGIモルに対し、カーボ
剤としてアルコールに溶解した樟脳を適量加えて十分混
合した。これを乾燥した後、BxlOPaでラバープレ
スを行い、直径12 m 、長さ130羽の棒とした。
Example 1 Commercially available WC raw material powder (average particle size 0.7 μm, total carbon ″″:
1. 6.11 wt %), an appropriate amount of camphor dissolved in alcohol as a carbon agent was added to the WGI mol, and the mixture was thoroughly mixed. After drying this, a rubber press was performed using BxlOPa to obtain a rod with a diameter of 12 m and a length of 130 birds.

この棒を真空中2000℃において1時間焼結した。得
られた焼結棒は約直径10馴、長さ110鰭で、密度は
90%程度であった。この焼結棒な原料棒とした。
This bar was sintered in vacuum at 2000° C. for 1 hour. The obtained sintered rod had a diameter of about 10 cm, a length of 110 fins, and a density of about 90%. This sintered rod was used as a raw material rod.

一方種子棒として、WC1モルに対しタングステン0.
41モル夛ボロン0.05モルノ比テ、全重量が401
となるように、WC粉、W粉、アモルファスボロン粉を
秤量し、この混合物を原料棒と同じ条件で焼結し、直径
g wr 、長さ50簡の種子棒とした。
On the other hand, as a seed rod, 0.00% tungsten per mol of WC is used.
41 mole of boron 0.05 mole ratio, total weight is 401
WC powder, W powder, and amorphous boron powder were weighed so that the mixture was sintered under the same conditions as the raw material rod to form a seed rod with a diameter g wr and a length of 50 pieces.

原料棒を上方に1種子棒を下方に置き、両者の間に、ボ
ロン塊0.005 fをはさんだ。
A raw material rod was placed above and one seed rod was placed below, and a boron mass of 0.005 f was sandwiched between the two.

内径約16M、2段各3回巻の高周波コイルを、コイル
上端にほぼ種子棒上端がくるようにセット、シ、加熱し
て溶融帯を形成した。そして上下棒を逆方向に各15 
rpmで回転させ、種子欅を3.0fi1.1・ /h、原料棒を2.7 m/ hで、下方に移動させた
A high-frequency coil with an inner diameter of about 16 M and three turns each in two stages was set so that the upper end of the seed rod was almost at the upper end of the coil, heated, and a molten zone was formed. Then move the upper and lower bars in the opposite direction for 15 each.
It was rotated at rpm, and the seed zelkova was moved downward at 3.0 m/h and the raw material rod at 2.7 m/h.

雰囲気はHeガスgx10Paとした。The atmosphere was He gas gx10Pa.

溶融帯移動開始と殆んど同時に、WC相の析出が認めら
れ、約10時間の移動によシ直径約9鴎。
Almost at the same time as the melt zone started to move, precipitation of the WC phase was observed, and after about 10 hours of movement, the WC phase became about 9 mm in diameter.

長さ30謔のwCの結晶体が得られた。A wC crystal with a length of 30 cm was obtained.

得られた結晶体を粉末X線法によって調べた結果、WC
単−相であることが確認された。反射ラウェ法により結
晶成長方向がほぼ(1120)方向に平行していること
が分った。また、結晶中のボロンは化学分析の結果、3
00 ppm (重量)と少なく、高純度であることが
分った。
As a result of examining the obtained crystalline body by powder X-ray method, it was found that WC
It was confirmed that it was single-phase. It was found by the reflection Laue method that the crystal growth direction was approximately parallel to the (1120) direction. In addition, as a result of chemical analysis, boron in the crystal was found to be 3
It was found that the purity was as low as 0.00 ppm (by weight) and that the purity was high.

発明の効果 本発明の方法によると、従来FZ法ではWCの結晶体の
育成が不可能とされていたのを可能にし、しかも良質大
型の結晶体を極めて容易に製造し得られる優れた効果を
有する。
Effects of the Invention According to the method of the present invention, it has become possible to grow WC crystals, which was previously thought to be impossible with the FZ method, and the excellent effect of producing high-quality, large-sized crystals extremely easily has been achieved. have

【図面の簡単な説明】[Brief explanation of the drawing]

−こ図面はFZ法の概念図である。 T′)1 ′11:シャフト、     2:ホルダー、特許出願
人 科学技術庁無機材質研究所長後  藤     優 第  1 qOD    000 ooo      o−o。 ′ 子
- This drawing is a conceptual diagram of the FZ method. T') 1 '11: Shaft, 2: Holder, Patent Applicant Yu Goto, Director of the Institute for Inorganic Materials, Science and Technology Agency 1 qOD 000 ooo o-o. ' Child

Claims (1)

【特許請求の範囲】 1)タングステン・カーバイド原料棒の一部分を加熱し
て溶融帯を形成し、該溶融帯を移動させてタングステン
・カーバイドの結晶体を製造する所謂フローティング・
ゾーン法による製造法において、該溶融帯の組成をタン
グステン・カーバイドの固相と平衡共存するタングステ
ン、カーボン及びボロンからなる液相組成とし、結晶を
育成することを特徴とするタングステン・カーバイドの
結晶体の製造法。 2)タングステン、カーボン及びボロンからなる液相組
成がモル比でW:C:B=1:(0.4〜1.0):(
0.03〜0.50)からなる液相組成である特許請求
の範囲第1項記載のタングステン・カーバイドの結晶体
の製造法。 3)タングステン・カーバイド原料棒の組成比を、予め
タングステンに対するカーボン及びボロンの割合を調整
する特許請求の範囲第1項記載のタングステン・カーバ
イドの結晶体の製造法。
[Claims] 1) A so-called floating method in which a part of the tungsten carbide raw material rod is heated to form a molten zone, and the molten zone is moved to produce a tungsten carbide crystal.
A tungsten carbide crystal body characterized in that, in a production method using a zone method, the composition of the molten zone is a liquid phase composition consisting of tungsten, carbon, and boron that coexist in equilibrium with the solid phase of tungsten carbide, and crystals are grown. manufacturing method. 2) The liquid phase composition consisting of tungsten, carbon and boron has a molar ratio of W:C:B=1:(0.4-1.0):(
A method for producing a tungsten carbide crystal according to claim 1, wherein the tungsten carbide crystal has a liquid phase composition of 0.03 to 0.50). 3) The method for producing a tungsten carbide crystal according to claim 1, wherein the composition ratio of the tungsten carbide raw material rod is adjusted in advance by adjusting the ratio of carbon and boron to tungsten.
JP18707885A 1985-08-26 1985-08-26 Production of crystal body of tungsten carbide Granted JPS6247000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18707885A JPS6247000A (en) 1985-08-26 1985-08-26 Production of crystal body of tungsten carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18707885A JPS6247000A (en) 1985-08-26 1985-08-26 Production of crystal body of tungsten carbide

Publications (2)

Publication Number Publication Date
JPS6247000A true JPS6247000A (en) 1987-02-28
JPH027919B2 JPH027919B2 (en) 1990-02-21

Family

ID=16199746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18707885A Granted JPS6247000A (en) 1985-08-26 1985-08-26 Production of crystal body of tungsten carbide

Country Status (1)

Country Link
JP (1) JPS6247000A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508461A (en) * 2000-09-06 2004-03-18 ハー ツェー シュタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Ultra-coarse single crystal tungsten carbide, method for producing the same and hard alloy produced therefrom
JP2016517838A (en) * 2013-03-27 2016-06-20 ハーダイド ピーエルシー Superabrasive material having protective adhesive coating and method for producing the coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508461A (en) * 2000-09-06 2004-03-18 ハー ツェー シュタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Ultra-coarse single crystal tungsten carbide, method for producing the same and hard alloy produced therefrom
JP2016517838A (en) * 2013-03-27 2016-06-20 ハーダイド ピーエルシー Superabrasive material having protective adhesive coating and method for producing the coating

Also Published As

Publication number Publication date
JPH027919B2 (en) 1990-02-21

Similar Documents

Publication Publication Date Title
JP4419937B2 (en) Method for producing silicon carbide single crystal
JP2004002173A (en) Silicon carbide single crystal and its manufacturing method
US3353914A (en) Method of seed-pulling beta silicon carbide crystals from a melt containing silver and the product thereof
US4303465A (en) Method of growing monocrystals of corundum from a melt
Schönherr et al. Growth germanium monosulfide single crystals by sublimation
JP2005112718A5 (en)
JPS6247000A (en) Production of crystal body of tungsten carbide
JPS61178495A (en) Method for growing single crystal
RU2394767C1 (en) Method of preparing mixture of oxide compounds of bismuth and germanium
JP3069656B1 (en) Method for producing spherical metallic titanium and titanium compound
JP2580523B2 (en) Growth method of titanium diboride single crystal
JP2004203721A (en) Apparatus and method for growing single crystal
JPH0471037B2 (en)
JP2929007B1 (en) Method for growing single crystal of group Va diboride
JPH06279174A (en) Production of oxide single crystal
JP3912959B2 (en) Method and apparatus for producing β-FeSi2 crystal
JP2720927B2 (en) Method for producing YB50 single crystal
JPS5860699A (en) Growing method of titanium carbide single crystal
JP3569743B2 (en) Skutterudite single crystal and method for producing the same
JPH04243998A (en) Production of barium beta-metaborate single crystal
RU1816813C (en) Process for preparing potassium and lead orthosilicate monocrystals
CN1115428C (en) Method for growing monocrystal of yttrium boride
JP3412767B2 (en) Method for producing NdGaO3 single crystal
JPH01286996A (en) Method for growing titanium carbide single crystal
JPS5841800A (en) Preparation of strontium titanate single crystal imparted with semiconductivity

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term