JPH04243998A - Production of barium beta-metaborate single crystal - Google Patents

Production of barium beta-metaborate single crystal

Info

Publication number
JPH04243998A
JPH04243998A JP2692891A JP2692891A JPH04243998A JP H04243998 A JPH04243998 A JP H04243998A JP 2692891 A JP2692891 A JP 2692891A JP 2692891 A JP2692891 A JP 2692891A JP H04243998 A JPH04243998 A JP H04243998A
Authority
JP
Japan
Prior art keywords
barium
single crystal
phase
metaborate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2692891A
Other languages
Japanese (ja)
Inventor
Yasushi Kozuki
神月 靖
Masahiro Ito
雅宏 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2692891A priority Critical patent/JPH04243998A/en
Publication of JPH04243998A publication Critical patent/JPH04243998A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title production stably and assuredly. CONSTITUTION:First, barium beta-metaborate powder is synthesized using (A) as barium compound(s), barium nitrate and/or barium hydroxide and (B) as boron compound(s), boron oxide and/or boric acid. Thence, the objective barium beta-metaborate single crystal is obtained by pull method using the powder as raw material. In this case, in particular, the temperature gradient for a stock melt is set at ca.10 deg.C/cm along the direction of the pull axis for the crystal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、第二次高調波発生可能
な光学結晶として使用し得る高品質なβ−メタホウ酸バ
リウムを製造するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high quality barium β-metaborate which can be used as an optical crystal capable of generating second harmonics.

【0002】0002

【従来の技術】一般に、β−メタホウ酸バリウムはその
非線形光学定数が大きいことや透光領域が広いこと等に
より紫外線域のレーザ光の発生のために極めて有用であ
る。そしてかかるβ−メタホウ酸バリウムの結晶育成は
、β相が低温相であるため、フラックス法によりβ相か
らα相(高温相)への転移温度(920°C)以下の溶
液を徐冷することによって行われる。この場合、結晶の
育成速度は0.5〜1.0mm/日程度であり、極めて
遅いものである(Journal  of  Syns
etic  Crystals,vol.19  No
.1,21;1990)。
BACKGROUND OF THE INVENTION In general, barium β-metaborate is extremely useful for generating laser light in the ultraviolet range because of its large nonlinear optical constant and wide light-transmitting region. Since the β-phase is a low-temperature phase, crystal growth of β-barium metaborate requires slow cooling of a solution below the transition temperature (920°C) from the β-phase to the α-phase (high-temperature phase) using a flux method. carried out by In this case, the crystal growth rate is approximately 0.5 to 1.0 mm/day, which is extremely slow (Journal of Syns
etic Crystals, vol. 19 No.
.. 1, 21; 1990).

【0003】ところで、特開平2−172891号公報
及び特開平2−17892号公報には、フラックスを含
まないBaB2 O4 組成の融液から引上げ法により
β相の単結晶を得る方法が開示されている。そして先ず
、前者公報により開示された方法によれば、ホウ酸と塩
化バリウム水溶液の沈殿反応により生じたバリウムボレ
イトを引上げ原料にして良質なβ相の単結晶が育成され
る。
By the way, JP-A-2-172891 and JP-A-2-17892 disclose a method for obtaining a β-phase single crystal from a flux-free melt having a BaB2O4 composition by a pulling method. . According to the method disclosed in the former publication, a high-quality β-phase single crystal is grown using barium borate produced by a precipitation reaction of boric acid and an aqueous barium chloride solution as a pulling raw material.

【0004】一方、後者公報(特開平2−172892
号)に開示された方法によれば、純度99.9995%
のBaCO3 と純度99.9999%のH3 B03
 のそれぞれ粉末を混合・焼成して成る原料を用いて引
上げ法によりβ相の単結晶が育成されるが、この場合か
かるβ相の単結晶を得るための第一の条件として融液は
β−BaB2 O4 を融解したものであり且つ加熱さ
れていないものであること、そして第二の条件として融
液は過冷却状態から凝固するために必要な温度環境下に
置かれていることの二つの点があげられている。又、β
相の単結晶の育成条件としては、融体の直上1cmまで
の範囲の温度勾配を約600°C/cmに調節し、結晶
の種子としてC軸棒を用いてその回転速度を15回転/
分及び引上げ速度は0.3mm/時にそれぞれ設定され
る。
On the other hand, the latter publication (Japanese Unexamined Patent Publication No. 2-172892
Purity of 99.9995% according to the method disclosed in
of BaCO3 and 99.9999% purity H3 B03
A β-phase single crystal is grown by a pulling method using raw materials made by mixing and firing powders of each of the above. In this case, the first condition for obtaining such a β-phase single crystal is that the melt is β- The two conditions are that it is made by melting BaB2O4 and is not heated, and the second condition is that the melt is placed in a temperature environment necessary for it to solidify from a supercooled state. are listed. Also, β
The conditions for growing a single crystal of the phase are to adjust the temperature gradient within the range of 1 cm directly above the melt to approximately 600°C/cm, and to use a C-axis rod as a crystal seed at a rotation speed of 15 rotations/cm.
Minutes and pulling speed are each set at 0.3 mm/hour.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記第一の
条件は、結晶化する相が融液融解前の固体の状態に依存
して変化する、即ちBaB2 O4の融液より引き上げ
た単結晶の形態は履歴によって変わってしまうというこ
とを示しており、この点、例えばBaB2 O4 の融
液を1200°Cに3時間保持した場合にはβ相の単結
晶を得ることができないという報告がある(古宇田;応
用物理学会結晶工学分科会第93回研究会)。又、上記
特開平2−17892号公報には原料の合成に際してB
aCO3 及びH3 BO3 の混合粉末を1250°
Cの温度まで加熱するという例が記載されているが、こ
のような加熱を行う方法では上記第一の条件よりすれば
β相の単結晶は育成され得ない。つまり、CO2 のB
aCO3 からの分離温度は1450°Cであり極めて
高く、従って純度が高いBaB2 O4 化合物を得る
ためには1200°C以上の温度条件で加熱処理する必
要があるから、上記公報の記載例のようにBaの供給源
にBaCO3 を用いる限り良質なβ相を育成すること
が困難になる。一方、第二の条件による温度環境につい
て特に融体の直上1cmまでの範囲の温度勾配を約60
0°C/cmに設定して結晶育成を行ってみたところ、
得られた結晶はα相及びβ相のクラックを無数に含んだ
多結晶体が殆どであった。
[Problem to be Solved by the Invention] The first condition mentioned above is that the phase to be crystallized changes depending on the state of the solid before melting, that is, the crystallization phase of the single crystal pulled from the BaB2O4 melt. This shows that the morphology changes depending on the history, and in this regard, for example, there is a report that a β-phase single crystal cannot be obtained when a BaB2O4 melt is held at 1200°C for 3 hours ( Kouda; 93rd meeting of the Crystal Engineering Subcommittee of the Japan Society of Applied Physics). Moreover, in the above-mentioned Japanese Patent Application Laid-Open No. 2-17892, B
Mixed powder of aCO3 and H3 BO3 at 1250°
An example of heating to a temperature of C is described, but with such a heating method, a β-phase single crystal cannot be grown under the first condition. In other words, B of CO2
The separation temperature from aCO3 is 1450°C, which is extremely high. Therefore, in order to obtain a BaB2O4 compound with high purity, it is necessary to perform heat treatment at a temperature of 1200°C or higher. As long as BaCO3 is used as a Ba supply source, it becomes difficult to grow a high quality β phase. On the other hand, regarding the temperature environment under the second condition, the temperature gradient in the range up to 1 cm directly above the melt is approximately 60%.
When I tried growing crystals at 0°C/cm,
Most of the obtained crystals were polycrystalline bodies containing countless α-phase and β-phase cracks.

【0006】本発明はかかる実情に鑑み、特にβ−メタ
ホウ酸バリウム単結晶を安定して確実に得ることができ
る製造方法を提供することを目的とする。
[0006] In view of the above-mentioned circumstances, it is an object of the present invention to provide a manufacturing method that can stably and reliably obtain a barium β-metaborate single crystal.

【0007】[0007]

【課題を解決するための手段】本発明によるβ−メタホ
ウ酸バリウム単結晶の製造方法は、バリウム化合物とし
て硝酸バリウム及び/又は水酸化バリウムを、又、ホウ
素化合物として酸化ホウ素及び/又はホウ酸を用いてβ
−メタホウ酸バリウム粉を合成し、該β−メタホウ酸バ
リウム粉の粉末を原料として引上げ法によりβ−メタホ
ウ酸バリウム単結晶を得るが、特に原料融液の温度勾配
を結晶の引上げ軸方向に沿って約10°C/cmに設定
して行われる。
[Means for Solving the Problems] The method for producing a β-barium metaborate single crystal according to the present invention uses barium nitrate and/or barium hydroxide as a barium compound, and boron oxide and/or boric acid as a boron compound. using β
- Barium metaborate powder is synthesized, and a β-barium metaborate single crystal is obtained by a pulling method using the powder of the β-barium metaborate powder as a raw material. The temperature is set at approximately 10°C/cm.

【0008】[0008]

【作用】本発明によれば、バリウム化合物とホウ素化合
物とを所定のモル比で混合・焼成することにより、例え
ばBaCO3 の場合のように1200°C以上の高温
処理をすることなくβ−BaB2 O4 を得ることが
できるが、特に引上炉内の温度勾配を上記のように10
°C/cmと緩く設定することによりβ相からα相への
転移を防止することができ、これによりβ相の単結晶を
安定して育成することができる。
[Operation] According to the present invention, by mixing and firing a barium compound and a boron compound at a predetermined molar ratio, β-BaB2 O4 can be produced without the need for high-temperature treatment at 1200°C or higher, as is the case with BaCO3, for example. However, in particular, the temperature gradient in the pulling furnace can be adjusted to 10
By setting the temperature as low as °C/cm, transition from β phase to α phase can be prevented, and thereby a β phase single crystal can be stably grown.

【0009】[0009]

【実施例】以下、図1及び図2を参照して本発明による
β−メタホウ酸バリウム単結晶の製造方法の一実施例を
説明する。バリウム化合物として硝酸バリウムを、又ホ
ウ素化合物として酸化ホウ素をそれぞれ選び、1モルの
硝酸バリウム及び2モルの酸化ホウ素を十分混合して白
金製容器に入れて電気炉内において排気を行いながら8
50°Cの温度で6時間の仮焼を行う。更に、仮焼され
た硝酸バリウム及び酸化ホウ素を粉砕・混合せしめて白
金製容器に入れて電気炉内において850°Cの温度で
6時間の加熱を行う。この加熱された硝酸バリウム及び
酸化ホウ素を再び粉砕・混合せしめて850°Cの温度
で6時間の加熱処理を行う。
EXAMPLE An example of the method for producing a barium β-metaborate single crystal according to the present invention will be described below with reference to FIGS. 1 and 2. Barium nitrate was selected as the barium compound, and boron oxide was selected as the boron compound, and 1 mol of barium nitrate and 2 mol of boron oxide were thoroughly mixed, placed in a platinum container, and heated in an electric furnace while being evacuated.
Calcination is carried out for 6 hours at a temperature of 50°C. Furthermore, the calcined barium nitrate and boron oxide are crushed and mixed, placed in a platinum container, and heated in an electric furnace at a temperature of 850° C. for 6 hours. The heated barium nitrate and boron oxide are ground and mixed again and heat treated at a temperature of 850°C for 6 hours.

【0010】これにより得られた原料の微粉末を白金坩
堝(直径50mm,高さ50mm)に入れて高周波加熱
炉内において1100°Cの温度で溶解せしめ、次に融
液の温度が1048°Cになったときに白金棒をシード
として空気中で引上げを行う。ここで、上記白金棒の引
上げは、融液の直上3cmまでの範囲の温度勾配を結晶
の引上げ軸方向に沿って約10°C/cmに設定して行
われる。そしてかかる温度勾配の設定は炉内の耐火物の
構造並びに外部チャンバー及び坩堝の大きさを適宜選択
することによって調節することができる。又、上記白金
棒の引上げ速度を1.0〜3.0mm/時に、回転速度
を5〜10回転/分にそれぞれ設定し、かかる条件の下
で9時間結晶育成を行ったところ、直径15mm,長さ
15mmの寸法のβ相の単結晶が得られた。
The fine powder of the raw material thus obtained was placed in a platinum crucible (diameter 50 mm, height 50 mm) and melted at a temperature of 1100°C in a high frequency heating furnace, and then the temperature of the melt was raised to 1048°C. When this happens, pull up the material in the air using a platinum rod as a seed. Here, the platinum rod is pulled by setting a temperature gradient of about 10° C./cm along the direction of the crystal pulling axis up to 3 cm directly above the melt. The temperature gradient setting can be adjusted by appropriately selecting the structure of the refractory in the furnace and the sizes of the external chamber and crucible. In addition, the pulling speed of the platinum rod was set to 1.0 to 3.0 mm/hour, and the rotation speed was set to 5 to 10 revolutions/minute, respectively, and crystal growth was performed for 9 hours under these conditions, resulting in a crystal with a diameter of 15 mm, A β-phase single crystal with a length of 15 mm was obtained.

【0011】本発明によるβ−メタホウ酸バリウム単結
晶の製造方法は上記のように構成されているから、先ず
バリウム化合物として硝酸バリウムを、又ホウ素化合物
として酸化ホウ素をそれぞれ選び、これらの化合物をバ
リウムとホウ素とのモル比が1:2となるように混合・
焼成することにより、従来のように高温(1200°C
)にすることなく純粋なβ−BaB2 O4 を得るこ
とができる。これは、硝酸バリウムと酸化ホウ素との組
合わせとしたことにより、バリウム化合物としてBaC
O3 を選んだ場合にはCO2 のBaCO3 からの
分離温度が高いため高温処理を行わなければならないの
とは異なり、比較的低い温度でβ−メタホウ酸バリウム
粉を合成することができるためである。又、このことに
より、沈殿原料からβ−BaB2 O4 を得る方法に
比べて製造が簡単になり、工業的規模で製造する場合に
極めて有利である。一方、白金棒を引き上げる際の融液
の温度勾配を緩く設定したことにより、結晶育成中にお
けるβ相からα相への転移を防止することができ、これ
によりβ相の単結晶を安定して育成することができる。 そして、得られたβ相の単結晶は光学的にも優れた特性
を備えており、該単結晶にNd−YAGレーザ光を入射
せしめたところ緑色の二次高調波が発生した。又、肉眼
ではクラックの存在を確認することはできず、更に結晶
のX線ラウエ写真によれば良好な単結晶性が確認された
。尚、バリウム化合物及びホウ素化合物の組合わせは上
記の場合を始めとして、バリウム化合物として硝酸バリ
ウム及び/又は水酸化バリウムを、又、ホウ素化合物と
して酸化ホウ素及び/又はホウ酸を用いることができる
Since the method for producing a single crystal of β-barium metaborate according to the present invention is constructed as described above, first, barium nitrate is selected as the barium compound, and boron oxide is selected as the boron compound, and these compounds are converted into barium. and boron in a molar ratio of 1:2.
By firing, it can be heated to a high temperature (1200°C) like conventional
), pure β-BaB2 O4 can be obtained. By using a combination of barium nitrate and boron oxide, BaC can be used as a barium compound.
This is because β-barium metaborate powder can be synthesized at a relatively low temperature, unlike when O3 is selected, which requires high-temperature treatment due to the high separation temperature of CO2 from BaCO3. Moreover, this makes production simpler than the method of obtaining β-BaB2 O4 from precipitated raw materials, which is extremely advantageous when producing on an industrial scale. On the other hand, by setting the temperature gradient of the melt when pulling up the platinum rod to be gentle, it is possible to prevent the transition from the β phase to the α phase during crystal growth, thereby stabilizing the β phase single crystal. Can be cultivated. The β-phase single crystal obtained had excellent optical properties, and when an Nd-YAG laser beam was applied to the single crystal, a green second harmonic was generated. Moreover, the presence of cracks could not be confirmed with the naked eye, and furthermore, good single crystallinity was confirmed by X-ray Laue photography of the crystal. In addition to the above-mentioned combinations of barium compounds and boron compounds, barium nitrate and/or barium hydroxide may be used as the barium compound, and boron oxide and/or boric acid may be used as the boron compound.

【0012】次に、育成中の結晶内の温度勾配がβ相か
らα相への転移に影響を与えていることを調べるために
行った高温X線回折及び熱膨張測定の測定結果について
説明する。β相粉末を試料にして高温X線回折を、又、
β相5mm角バルク単結晶を試料にして熱膨張測定をそ
れぞれ行うが、α相とβ相との間には室温において約2
.6%の体積差があるため熱膨張を測定することによっ
てβ相からα相への転移を容易に検出することができる
。ここで、図1はβ−メタホウ酸バリウムの粉末の高温
X線回折の測定グラフを示し、又、図2はβ−メタホウ
酸バリウムの単結晶の熱膨張変化の測定グラフを示して
いる。そして、これらの測定結果から次の表1が得られ
る。
[0012] Next, the results of high-temperature X-ray diffraction and thermal expansion measurements conducted to investigate the influence of the temperature gradient within the growing crystal on the transition from the β phase to the α phase will be explained. . High-temperature X-ray diffraction using β-phase powder as a sample,
Thermal expansion measurements are carried out using a 5 mm square bulk single crystal of the β phase as a sample.
.. Since there is a volume difference of 6%, the transition from the β phase to the α phase can be easily detected by measuring thermal expansion. Here, FIG. 1 shows a measurement graph of high-temperature X-ray diffraction of β-barium metaborate powder, and FIG. 2 shows a measurement graph of thermal expansion change of a single crystal of β-barium metaborate. The following Table 1 is obtained from these measurement results.

【0013】[0013]

【表1】[Table 1]

【0014】上記表1からも明らかなように、先ず高温
X線回折では試料の各々の単結晶が微小であるため、単
結晶内における温度勾配を容易に均一にすることができ
るので、1050°Cにおいてもβ相は準安定状態のま
まである。一方、熱膨張測定では試料がバルクであるた
めに、昇温率が0.1°C/分程度と比較的小さくても
1010°Cにおいてβ相からα相への転移が生じてい
ることが分かる。従って、上記実施例における結晶は実
質的に0.1°C/分以下の温度変化率で育成されたこ
とが分かる。
As is clear from Table 1 above, first, in high-temperature X-ray diffraction, since each single crystal of the sample is minute, the temperature gradient within the single crystal can be easily made uniform; Even in C, the β phase remains in a metastable state. On the other hand, in thermal expansion measurements, since the sample is a bulk, it is possible that a transition from the β phase to the α phase occurs at 1010°C even if the heating rate is relatively small, about 0.1°C/min. I understand. Therefore, it can be seen that the crystals in the above examples were grown at a temperature change rate of substantially 0.1°C/min or less.

【0015】[0015]

【発明の効果】上述したように本発明によれば、不純物
を含まないβ−BaB2 O4 微結晶を形成し、この
微結晶を用いてβ−BaB2 O4 単結晶を育成する
ようにしたから、得られた単結晶にはクラックの発生が
ないばかりか、高純度な単結晶を容易に製造することが
できる。 そして、製造されたたβ−BaB2 O4 単結晶は第
二次高調波発生用の光学素子として優れた性能を発揮す
る等の利点がある。
Effects of the Invention As described above, according to the present invention, β-BaB2 O4 microcrystals containing no impurities are formed and β-BaB2 O4 single crystals are grown using these microcrystals. Not only does the resulting single crystal have no cracks, but it is also possible to easily produce a highly pure single crystal. The produced β-BaB2 O4 single crystal has the advantage of exhibiting excellent performance as an optical element for second harmonic generation.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】β−メタホウ酸バリウムの粉末の高温X線回折
の測定結果を示すグラフである。
FIG. 1 is a graph showing the measurement results of high temperature X-ray diffraction of barium β-metaborate powder.

【図2】β−メタホウ酸バリウムの単結晶の熱膨張変化
の測定結果を示すグラフである。
FIG. 2 is a graph showing measurement results of changes in thermal expansion of a single crystal of β-barium metaborate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  バリウム化合物として硝酸バリウム及
び/又は水酸化バリウムを、又、ホウ素化合物として酸
化ホウ素及び/又はホウ酸を用いてβ−メタホウ酸バリ
ウム粉を合成し、該β−メタホウ酸バリウム粉の粉末を
原料として引上げ法によりβ−メタホウ酸バリウム単結
晶を得る方法において、原料融液の温度勾配を結晶の引
上げ軸方向に沿って約10°C/cmに設定して行うこ
とを特徴とするβ−メタホウ酸バリウム単結晶の製造方
法。
Claim 1: Synthesizing barium β-metaborate powder using barium nitrate and/or barium hydroxide as a barium compound and boron oxide and/or boric acid as a boron compound, and producing the barium β-metaborate powder. A method for obtaining a β-barium metaborate single crystal by a pulling method using powder as a raw material, characterized in that the temperature gradient of the raw material melt is set at about 10 ° C / cm along the direction of the pulling axis of the crystal. A method for producing a β-barium metaborate single crystal.
JP2692891A 1991-01-28 1991-01-28 Production of barium beta-metaborate single crystal Pending JPH04243998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2692891A JPH04243998A (en) 1991-01-28 1991-01-28 Production of barium beta-metaborate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2692891A JPH04243998A (en) 1991-01-28 1991-01-28 Production of barium beta-metaborate single crystal

Publications (1)

Publication Number Publication Date
JPH04243998A true JPH04243998A (en) 1992-09-01

Family

ID=12206834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2692891A Pending JPH04243998A (en) 1991-01-28 1991-01-28 Production of barium beta-metaborate single crystal

Country Status (1)

Country Link
JP (1) JPH04243998A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062319C (en) * 1997-04-15 2001-02-21 中国科学院上海光学精密机械研究所 Growth method for high-temp. phase barium metaborate (alpha-BaB*O*)
CN108557836A (en) * 2018-04-28 2018-09-21 陕西师范大学 A kind of BaB8O11(OH)4Flame retardant nano-materials and preparation method thereof
CN112919485A (en) * 2021-01-21 2021-06-08 中国科学院新疆理化技术研究所 Compound potassium boronitrate, nonlinear optical crystal of potassium boronitrate, preparation method and application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062319C (en) * 1997-04-15 2001-02-21 中国科学院上海光学精密机械研究所 Growth method for high-temp. phase barium metaborate (alpha-BaB*O*)
CN108557836A (en) * 2018-04-28 2018-09-21 陕西师范大学 A kind of BaB8O11(OH)4Flame retardant nano-materials and preparation method thereof
CN108557836B (en) * 2018-04-28 2021-10-22 陕西师范大学 BaB8O11(OH)4 nano flame-retardant material and preparation method thereof
CN112919485A (en) * 2021-01-21 2021-06-08 中国科学院新疆理化技术研究所 Compound potassium boronitrate, nonlinear optical crystal of potassium boronitrate, preparation method and application

Similar Documents

Publication Publication Date Title
KR101451995B1 (en) Process for producing ZnO single crystal according to method of liquid phase growth
JP4419937B2 (en) Method for producing silicon carbide single crystal
US5057492A (en) Method for preparing a single crystal of lanthanum cuprate
Beregi et al. Growth and morphology of Nd3+, Er3+ and Cr3+ doped YAl3 (BO3) 4 single crystals
JPH04243998A (en) Production of barium beta-metaborate single crystal
Savytskii et al. Growth and properties of YAlO3: Nd single crystals
JP3115250B2 (en) Cesium-lithium-borate crystal
EP0199440A1 (en) A method of manufacturing a single crystal of BaPb1-xBix03
Dursun et al. Growth of NBT template particles through topochemical microcrystal conversion and their structural characterization
Sun et al. Growth of large PbTiO3 crystals by a self-flux technique
Garbato et al. Phase diagram of the (CuInTe2) 1− x(2ZnTe) x system and crystal growth of CuZn2InTe4 from zinc chloride flux
US5900054A (en) Method of manufacturing oxide single crystal
Gharibshahian et al. Growth of KTiOPO 4 crystals by flux technique and their characterization
US4537653A (en) Synthesis of beryl crystals
JPH05148090A (en) Production of barium beta-metaborate single crystal l
JPS59152285A (en) Preparation of single crystal
JPH09263496A (en) Production of barium titanate single crystal
JPS5938193B2 (en) Manufacturing method of corundum single crystal that emits starry colors
Jiang et al. Growth and thermal properties of LaCa4O (BO3) 3 crystals
JPH0723280B2 (en) Single crystal growth method
CN117888199A (en) Centimeter level (Bi0.5Na0.5)TiO3Preparation method of relaxation ferroelectric single crystal material
Palaniappan et al. The influence of temperature fluctuations on melt growth of antimony sulfoiodide
KR970007336B1 (en) Process for the preparation of single crystal for radioelectronics and piezotechnology
JPH085741B2 (en) Single crystal growth method
Dąbkowska et al. 8.1 Optical Floating Zone—Complementary Crystal