JPS6246718A - Transmission torque controller for four-wheel-drive vehicle - Google Patents

Transmission torque controller for four-wheel-drive vehicle

Info

Publication number
JPS6246718A
JPS6246718A JP18709785A JP18709785A JPS6246718A JP S6246718 A JPS6246718 A JP S6246718A JP 18709785 A JP18709785 A JP 18709785A JP 18709785 A JP18709785 A JP 18709785A JP S6246718 A JPS6246718 A JP S6246718A
Authority
JP
Japan
Prior art keywords
transmission path
torque
rotation speed
wheel side
torque transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18709785A
Other languages
Japanese (ja)
Other versions
JPH0653467B2 (en
Inventor
Shunsuke Kawasaki
俊介 川崎
Kenichi Watanabe
憲一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60187097A priority Critical patent/JPH0653467B2/en
Priority to DE8686111762T priority patent/DE3670051D1/en
Priority to EP86111762A priority patent/EP0217124B1/en
Priority to US06/900,526 priority patent/US4723624A/en
Publication of JPS6246718A publication Critical patent/JPS6246718A/en
Publication of JPH0653467B2 publication Critical patent/JPH0653467B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To achieve 2WD condition having low traveling resistance when traveling straightforward by setting the final speed reduction ratio in the rear wheel side torque transmission path higher than that in the front wheel side torque transmission path while arranging an electromagnetic clutch in one path. CONSTITUTION:Final gear units 18, 24 comprising differential gear are arranged in front and rear wheel side transmission paths F, R for transmitting the torque produced from power plant 10 including an engine to the front and rear wheels 12, 14. here, the final speed change ratio in the final speed reduction mechanism comprising an unit 24 in the rear wheel side torque transmission path R is set higher than similar final speed reduction ratio in the front wheel side torque transmission path F. A viscous fluid clutch 20 for varying the transmission torque with correspondence to the differential rotation between the input and output side rotary shafts 19, 21 and an electromagnetic clutch 22 are arranged in series in the rear wheel side torque transmission path R where the electromagnetic clutch 22 is controlled by control unit 100 in correspondence with the differential rotation between the front and rear wheels.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、4輪駆動車において、パワープラントからト
ルク伝達経路を介して前輪及び後輪に伝達されるトルク
を制御する4輪駆動車の伝達トルク制御装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a four-wheel drive vehicle that controls torque transmitted from a power plant to front wheels and rear wheels via a torque transmission path. The present invention relates to a transmission torque control device.

(従来の技術) 4輪駆動車の分野において、車両の走行状態に応じて4
輪駆動状態と2輪駆動状態とを選択的にとることができ
るようにされた、いわゆる、パートタイム4輪駆動車が
実用に供されている。
(Prior art) In the field of four-wheel drive vehicles, four-wheel drive vehicles are
2. Description of the Related Art So-called part-time four-wheel drive vehicles, which can be selectively operated between a wheel drive state and a two-wheel drive state, are in practical use.

斯かるパートタイム4輪駆動車にあっては、4輪駆動状
態から2輪駆動状態への、もしくは、2輪駆動状態から
4輪駆動状態への切換えを円滑に行う目的で、例えば、
実開昭56−122630号公報にも示される如くに、
パワープラントが発生するトルクを前輪及び後輪に伝達
する前輪側及び後輪側トルク伝達経路のいずれか一方に
湿式クラッチを介在せしめたものが知られている。
In such a part-time four-wheel drive vehicle, for the purpose of smoothly switching from a four-wheel drive state to a two-wheel drive state, or from a two-wheel drive state to a four-wheel drive state, for example,
As shown in Utility Model Application Publication No. 56-122630,
It is known that a wet clutch is interposed in either a front wheel side or a rear wheel side torque transmission path that transmits torque generated by a power plant to the front wheels and rear wheels.

しかしながら、上述の如くの従来のパートタイム4輪駆
動車においては、4輪駆動状態から2輪駆動状態への、
もしくは、2輪駆動状態から4輪駆動状態への切換えが
、車両の走行状態や道路状況等に応じて搭乗員がシフト
レバ−等に設けられたスイッチ類等を操作することによ
って行われるようにされているため、操作上の煩わしさ
が伴われるとともに、前輪と後輪とについての回転数差
が大であるときには、4輪駆動状態から2輪駆動状態へ
の、もしくは、2輪駆動状態から4輪駆動状態への切換
時に切換ショックを生じ易く、その切換タイミングの設
定が難しいという問題がある。
However, in the conventional part-time four-wheel drive vehicle as described above, the transition from four-wheel drive state to two-wheel drive state,
Alternatively, the changeover from the two-wheel drive state to the four-wheel drive state is performed by the driver operating a switch or the like provided on a shift lever or the like, depending on the driving state of the vehicle, road conditions, etc. This causes troublesome operation, and when the rotational speed difference between the front and rear wheels is large, changing from 4-wheel drive to 2-wheel drive, or from 2-wheel drive to 4-wheel There are problems in that a switching shock is likely to occur when switching to the wheel drive state, and it is difficult to set the switching timing.

そこで、自動的に4輪駆動状態と2輪駆動状態との相互
間の切換えを行うようにすべく、前輪側及び後輪側トル
ク伝達経路のいずれか一方に、その入力側回転数と出力
側回転数との差に応じて伝達トルクを変化させる粘性流
体クラッチを介在せしめて、前輪回転数と後輪回転数(
いずれも、左右の車輪の平均回転数)との差に応じて前
輪もしくは後輪への伝達トルクを変化させるようにした
4輪駆動車の伝達トルク制御装置が考えられている。
Therefore, in order to automatically switch between the four-wheel drive state and the two-wheel drive state, the input side rotation speed and the output side By interposing a viscous fluid clutch that changes the transmitted torque according to the difference between the front and rear wheel rotation speeds (
In both cases, a transmission torque control device for a four-wheel drive vehicle has been considered in which the transmission torque to the front wheels or the rear wheels is changed according to the difference between the two wheels (the average rotational speed of the left and right wheels).

しかしながら、上述の如くにトルク伝達経路に粘性流体
クラッチを介在せしめて、前後輪の回転数差に応じて前
輪もしくは後輪への伝達トルクを変化させるようにした
4輪駆動車の伝達トルク制御装置においては、以下に述
べる如くの問題がある。
However, as described above, a transmission torque control device for a four-wheel drive vehicle that uses a viscous fluid clutch in the torque transmission path to change the transmission torque to the front wheels or rear wheels according to the difference in rotational speed between the front and rear wheels. However, there are problems as described below.

即ち、例えば、前輪と後輪とを同一径とし、かつ、粘性
流体クラッチを、パワープラントからのトルクを後輪に
伝達する後輪側トルク伝達経路に介在せしめた場合を採
り上げると、粘性流体クラッチの伝達トルク特性は、第
4図において、横帖に粘性流体クラッチの入力側回転数
(前輪回転数)から出力側回転数(後輪回転数)を減じ
て得られる差(以下、回転数差Δnと呼ぶ)がとられ、
縦軸に伝達トルクTがとられて示される如く、回転数差
Δnが正の場合には、実線で示される如くに後輪に正の
トルク(以下、駆動トルクと呼ぶ)が伝達されるが、回
転数差Δnが負の場合には、一点鎖線で示される如くに
後輪に負のトルク(以下、制動トルクと呼ぶ)が伝達さ
れてしまう。このように後輪に制動トルクが伝達される
場合には後輪が走行抵抗となり、燃費や各部の耐久性等
の低下を生じるという不都合が伴われることになるので
ある。
That is, for example, if the front wheels and the rear wheels have the same diameter and the viscous fluid clutch is interposed in the rear wheel side torque transmission path that transmits torque from the power plant to the rear wheels, the viscous fluid clutch In Fig. 4, the transmission torque characteristic of Δn) is taken,
As shown by plotting the transmitted torque T on the vertical axis, when the rotational speed difference Δn is positive, positive torque (hereinafter referred to as driving torque) is transmitted to the rear wheels as shown by the solid line. , when the rotational speed difference Δn is negative, negative torque (hereinafter referred to as braking torque) is transmitted to the rear wheels as shown by the dashed line. When braking torque is transmitted to the rear wheels in this way, the rear wheels become running resistance, resulting in disadvantages such as reductions in fuel efficiency and durability of various parts.

斯かる不都合を解消するだめの1つの手段として、粘性
流体クラッチが介在せしめられたトルク伝達経路にクラ
ッチ機構を粘性流体クラッチに対して直列に配し、この
クラッチ機構を、前輪と後輪とについての回転数差に基
づいて、後輪に走行抵抗が生じない場合には接続状態と
し、後輪に走行抵抗が生じる場合には遮断状態となすよ
うに断続制御することが考えられる。
As one means to solve this problem, a clutch mechanism is arranged in series with the viscous fluid clutch in the torque transmission path in which the viscous fluid clutch is interposed, and this clutch mechanism is connected to the front wheels and the rear wheels. It is conceivable to carry out intermittent control based on the rotational speed difference such that the connection state is established when no running resistance occurs in the rear wheels, and the disconnected state is established when running resistance occurs in the rear wheels.

(発明が解決しようとする問題点) ところが、上述の如くに、粘性流体クラッチが介在せし
められたトルク伝達経路に、これを断続すべくクラッチ
機構が配され、このクラッチ機構を前輪と後輪との回転
数差に基づいて断続制御するようにされた4輪駆動車の
伝達トルク制御装置においては、例えば、車両が直進走
行状態から旋回走行状態に移行せしめられた際には前輪
の旋回半径が後輪の旋回半径より大となるため、回転数
差Δnが前述した第4図に示される如くに正となる。こ
のときの回転数差Δnの値をΔncとし、パワープラン
トの発生するトルクをT、とすれば、前輪及び後輪に伝
達される駆動トルクは、夫々、第4図においてTf及び
Trで示される如くのものとなる。斯かる状態でパワー
プラントが発生するトルクが低下せしめられて、例えば
、Trより小なるTs’  となると、Ta’  とT
rとの差Tf”が制動トルクとして前輪に伝達されてし
まうことになる。このように、車両の旋回走行時に、前
輪に制動トルクが伝達されると、パワープラントが発生
するトルクが無駄に消費されることになり、駆動効率の
低下が生じるだけでなく、車両の旋回半径が大きくなる
傾向となり、運転の容易性が妨げられる虞が生じる。こ
のような不都合は、粘性流体クラッチを、パワープラン
トからのトルクを前輪に伝達する前輪側トルク伝達経路
に介在せしめた場合にも同様に生じるものとなる。
(Problem to be Solved by the Invention) However, as described above, a clutch mechanism is disposed in the torque transmission path in which the viscous fluid clutch is interposed to connect and disconnect the torque transmission path, and this clutch mechanism is connected to the front and rear wheels. In a transmission torque control device for a four-wheel drive vehicle that performs intermittent control based on the rotational speed difference between Since it is larger than the turning radius of the rear wheels, the rotational speed difference Δn becomes positive as shown in FIG. 4 described above. If the value of the rotational speed difference Δn at this time is Δnc, and the torque generated by the power plant is T, the driving torques transmitted to the front wheels and rear wheels are respectively shown as Tf and Tr in FIG. It will become like this. If the torque generated by the power plant is reduced in such a state and becomes, for example, Ts' smaller than Tr, then Ta' and T
The difference between Tf and r will be transmitted to the front wheels as braking torque.In this way, if braking torque is transmitted to the front wheels when the vehicle is turning, the torque generated by the power plant will be wasted. This not only causes a decrease in drive efficiency, but also tends to increase the turning radius of the vehicle, which may impede the ease of driving. The same problem occurs when the front wheel is interposed in the front wheel torque transmission path that transmits the torque from the front wheel to the front wheels.

斯かる点に鑑み、本発明は、パワープラントからのトル
クを前輪もしくは後輪に伝達するトルク伝達経路のいず
れか一方に、その入出力回転数差に応じて伝達トルクを
変化させる粘性流体クラッチ等の流体式伝動手段が介在
せしめられるとともに、この流体式伝動手段が介在せし
められたトルク伝達経路に、流体式伝動手段に対して直
列にクラッチ機構が配され、このクラッチ機構が断続制
御されることによって、4輪駆動状態から2輪駆動状態
への、もしくは、2輪駆動状態から4輪駆動状態への切
換えが行われるようにされたもとで、車両の直進走行時
における走行抵抗を低減でき、しかも、車両の旋回走行
時においてパワープラントが発生するトルクが低下せし
められた場合にも、前輪に制動トルクが伝達されてしま
うことを防止でき、かつ、車両の旋回半径を可及的に小
となすことができて車両の運転を容易にすることができ
るようにされた4輪駆動車の伝達トルク制御装置を提供
することを目的とする。
In view of this, the present invention provides a viscous fluid clutch or the like that changes the transmitted torque according to the difference in input and output rotational speeds to either the torque transmission path that transmits the torque from the power plant to the front wheels or the rear wheels. A fluid type transmission means is interposed, and a clutch mechanism is disposed in series with the fluid type transmission means in the torque transmission path in which this fluid type transmission means is interposed, and this clutch mechanism is controlled to be on/off. Accordingly, it is possible to reduce the running resistance when the vehicle is traveling straight, while switching from a four-wheel drive state to a two-wheel drive state or from a two-wheel drive state to a four-wheel drive state. Even when the torque generated by the power plant is reduced when the vehicle is turning, it is possible to prevent braking torque from being transmitted to the front wheels, and to make the turning radius of the vehicle as small as possible. It is an object of the present invention to provide a transmission torque control device for a four-wheel drive vehicle that can facilitate driving of the vehicle.

(問題点を解決するための手段) 上述の目的を達成すべく、本発明に係る4輪駆動車の伝
達トルク制御装置は、後輪側トルク伝達経路における最
終減速比を前輪側トルク伝達経路における最終減速比に
比して大とするとともに、流体式伝動手段を介在せしめ
たトルク伝達経路に、直列にクラッチ機構を介在せしめ
、前後輪の回転数差に基づいてクラッチ機構を断続制御
するようにされる。
(Means for Solving the Problems) In order to achieve the above-mentioned object, a transmission torque control device for a four-wheel drive vehicle according to the present invention changes the final reduction ratio in the rear wheel torque transmission path to the final reduction ratio in the front wheel torque transmission path. In addition to making the reduction ratio larger than the final reduction ratio, a clutch mechanism is interposed in series in the torque transmission path that includes a fluid transmission means, and the clutch mechanism is controlled on and off based on the difference in rotation speed between the front and rear wheels. be done.

そして、具体的には、パワープラントが発生するトルク
を前輪及び後輪に伝達する前輪側及び後輪側トルク伝達
経路のいずれか一方に介在せしめられ、その入力側回転
数と出力側回転数との差に応じて、伝達トルクを変化さ
せる流体式伝動手段と、流体式伝動手段が介在せしめら
れた前輪側もしくは後輪側トルク伝達経路を断続すべ(
、流体式伝動手段に対して直列に配されたクラッチ機構
と、前輪側トルク伝達経路における最終減速比を設定す
る前輪側減速機構と、後輪側トルク伝達経路における最
終減速比を前輪側トルク伝達経路における最終減速比よ
り大として設定する後輪側減速機構と、前輪側及び後輪
側減速機構の入力軸回転数を夫々検出する第1及び第2
の回転数検出手段と、第1及び第2の回転数検出手段か
ら得られる信号に基づいて、前輪側減速機構の人力軸回
転数と後輪側減速機構の入力軸回転数との差が正の値側
から零もしくはその近傍の値以下となるとき、上述のク
ラッチ機構を接続状態から遮断状態に切換える制御手段
とを具備して構成される。
Specifically, it is interposed in one of the front wheel side and rear wheel side torque transmission paths that transmit the torque generated by the power plant to the front wheels and rear wheels, and the input side rotation speed and output side rotation speed are The fluid transmission means that changes the transmitted torque and the front wheel side or rear wheel side torque transmission path in which the fluid transmission means is interposed should be disconnected (
, a clutch mechanism arranged in series with the hydrodynamic transmission means, a front wheel speed reduction mechanism that sets the final reduction ratio in the front wheel torque transmission path, and a front wheel torque transmission mechanism that sets the final reduction ratio in the rear wheel torque transmission path. a rear wheel side reduction mechanism that is set to be larger than the final reduction ratio in the route, and first and second input shaft rotation speeds of the front wheel side and rear wheel side reduction mechanisms, respectively.
Based on the signals obtained from the rotation speed detection means and the first and second rotation speed detection means, it is determined that the difference between the rotation speed of the human power shaft of the front wheel side reduction mechanism and the input shaft rotation speed of the rear wheel side reduction mechanism is correct. and a control means for switching the clutch mechanism described above from the connected state to the disconnected state when the value becomes equal to or less than zero or a value in the vicinity thereof.

(作 用) 上述の如くに構成された本発明に係る4輪駆動車の伝達
トルク制御装置においては、後輪側トルク伝達経路にお
ける最終減速比が前輪側トルク伝達経路における最終減
速比より大とされるため、車両の直進走行時においては
、後輪側減速機構の入力軸回転数が前輪側減速機構の入
力軸回転数より高くなり、クラッチ機構が接続状態とさ
れる場合には、前述した第4図における回転数差Δnが
、例えば、負の値Δnbとなる。このため、制御手段が
クラッチ機構を遮断状態として車両を2輪駆動状態とす
る。これにより、車両の走行抵抗が低減されて、車両の
直進走行時における駆動効率が向上され、燃費や各部の
耐久性の低下が防止される。
(Function) In the transmission torque control device for a four-wheel drive vehicle according to the present invention configured as described above, the final reduction ratio in the rear wheel torque transmission path is larger than the final reduction ratio in the front wheel torque transmission path. Therefore, when the vehicle is traveling straight, the input shaft rotation speed of the rear wheel reduction mechanism is higher than the input shaft rotation speed of the front wheel reduction mechanism, and when the clutch mechanism is in the connected state, the above-mentioned The rotational speed difference Δn in FIG. 4 becomes, for example, a negative value Δnb. Therefore, the control means disengages the clutch mechanism and puts the vehicle in a two-wheel drive state. This reduces the running resistance of the vehicle, improves the driving efficiency when the vehicle travels straight, and prevents deterioration in fuel efficiency and durability of various parts.

また、前輪側減速機構の入力軸回転数と後輪側減速機構
の人力軸回転数との差(回転数差Δn)が零もしくはそ
の近傍の値より大であるとき、即ち、前輪にある程度の
滑りが生じたときには、制御手段によりクラッチ機構が
接続状態とされるため、パワープラントが発生するトル
クが流体式伝動手段を介して、前輪の滑り量に応じた分
だけ後輪に伝“達される。これにより、車両が4輪駆動
状態とされて大なる走破性を有するものとなる。
In addition, when the difference between the input shaft rotation speed of the front wheel side reduction mechanism and the human power shaft rotation speed of the rear wheel side reduction mechanism (rotation speed difference Δn) is greater than zero or a value in the vicinity, that is, when the front wheel When slipping occurs, the clutch mechanism is connected by the control means, so that the torque generated by the power plant is transmitted to the rear wheels via the hydraulic transmission means in an amount corresponding to the amount of slippage of the front wheels. As a result, the vehicle is put into a four-wheel drive state and has excellent running performance.

一方、車両が旋回走行状態にあるときには、前輪の回転
数が後輪の回転数より高くなり、前輪側減速機構の入力
軸回転数が後輪側減速機構の入力軸回転数より高くなる
ため、制御手段がクラッチ機構を接続状態とする。この
場合、後輪側トルク伝達経路における最終減速比が、前
輪側トルク伝達経路における最終減速比より大とされて
いるため、前述した第4図に示される如く、回転数差Δ
nが、後輪側及び前輪側トルク伝達経路における最終減
速比が同一とされた場合の値Δncより小なる値Δnc
l とされる。このため、パワープラントが発生するト
ルクがT、からT A ’ に低下された場合、後輪に
は駆動トルクがTr’ が伝達され、かつ、前輪に制動
トルクを伝達されることなく、駆動トルクTf”が伝達
される状態となる。
On the other hand, when the vehicle is in a cornering state, the rotation speed of the front wheels is higher than the rotation speed of the rear wheels, and the input shaft rotation speed of the front wheel side reduction mechanism is higher than the input shaft rotation speed of the rear wheel side reduction mechanism. A control means connects the clutch mechanism. In this case, since the final reduction ratio in the rear wheel torque transmission path is larger than the final reduction ratio in the front wheel torque transmission path, the rotational speed difference Δ
A value Δnc where n is smaller than the value Δnc when the final reduction ratios in the rear wheel side and front wheel side torque transmission paths are the same.
It is assumed that l. Therefore, when the torque generated by the power plant is reduced from T to T A', the driving torque Tr' is transmitted to the rear wheels, and the driving torque is not transmitted to the front wheels without braking torque being transmitted to the front wheels. Tf'' is now transmitted.

これにより、車両の旋回走行時における駆動効率が向上
せしめられるとともに、旋回半径の拡大が抑制される。
This improves the driving efficiency when the vehicle is turning, and also suppresses the turning radius from increasing.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明に係る4輪駆動車の伝達トルク制御装
置の一例を、これが適用された車両とともに概略的に示
す。この第1図において、エンジンとトランスミッショ
ンから成るパワープラント10が発生ずるトルクは、一
点鎖線矢印Fで示される前輪側トルク伝達経路を介して
左右一対の前輪12に伝達されるとともに、一点鎖線矢
印Rで示される後輪側トルク伝達経路を介して、前輪1
2と同一径とされた左右一対の後輪14に伝達される。
FIG. 1 schematically shows an example of a transmission torque control device for a four-wheel drive vehicle according to the present invention, together with a vehicle to which the device is applied. In FIG. 1, torque generated by a power plant 10 consisting of an engine and a transmission is transmitted to a pair of left and right front wheels 12 via a front wheel side torque transmission path indicated by a dashed-dotted arrow F, and is also transmitted to a pair of left and right front wheels 12 indicated by an arrow R The front wheel 1 is transmitted through the rear wheel side torque transmission path shown by
The signal is transmitted to a pair of left and right rear wheels 14 having the same diameter as 2.

前輪側トルク伝達経路Fには、同一歯数の一対のギヤ1
6A及び16Bと前輪用ディブアレンシャルギャ等から
成るファイナルギヤユニット18とが介在せしめられて
いる。ここで、ファイナルギヤユニット18等で構成さ
れる、前輪側トルク伝達経路Fにおける最終減速機構の
最終減速比がi、に設定される。一方、後輪側トルク伝
達経路Rには、その入力側回転軸19と出力側回転軸2
1との回転数差に応じて、その伝達トルクを変化させる
流体式伝動手段とされた粘性流体クラッチ20、この粘
性流体クラッチ20に対して直列に配された電磁フラン
チ22及び後輪用ディファレンシセルギャ等から成るフ
ァイナルギャユニソ1−24とが介在せしめられている
。ここで、ファイナルギヤユニット24等で構成される
、後輪側トルク伝達経路Rにおける最終減速機構の最終
減速比が、前輪側トルク伝達経路Fにおける最終減速比
i、より大なる値のirに設定される。
The front wheel side torque transmission path F includes a pair of gears 1 with the same number of teeth.
6A and 16B, and a final gear unit 18 consisting of a front wheel differential gear and the like are interposed. Here, the final reduction ratio of the final reduction mechanism in the front wheel side torque transmission path F, which is composed of the final gear unit 18 and the like, is set to i. On the other hand, the rear wheel side torque transmission path R has an input side rotating shaft 19 and an output side rotating shaft 2.
1, a viscous fluid clutch 20 that is a fluid transmission means that changes the transmission torque according to the difference in rotational speed from the viscous fluid clutch 20, an electromagnetic flange 22 arranged in series with the viscous fluid clutch 20, and a rear wheel differential lens. A final gear unit 1-24 made of Sissel gear or the like is interposed. Here, the final reduction ratio of the final reduction mechanism in the rear wheel torque transmission path R, which is composed of the final gear unit 24, etc., is set to a larger value ir than the final reduction ratio i in the front wheel torque transmission path F. be done.

そして、本例では、上述の電磁クラッチ22の断続制御
を自動的に行うべく、制御ユニット100が備えられて
いる。この制御ユニット100には、ファイナルギヤユ
ニット18の入力軸26の回転数を検出する前輪側回転
数センサ40とファイナルギヤユニット240入力軸2
7の回転数を検出する後輪側回転数センサ50とから得
られる、前輪12及び後輪14の回転数(いずれも左右
の車輪の平均回転数)に応じた回転検出信号Sf及びS
rが供給される。
In this example, a control unit 100 is provided to automatically perform the on/off control of the electromagnetic clutch 22 described above. This control unit 100 includes a front wheel rotation speed sensor 40 that detects the rotation speed of the input shaft 26 of the final gear unit 18 and a final gear unit 240 that detects the rotation speed of the input shaft 26 of the final gear unit 18.
Rotation detection signals Sf and S according to the rotation speeds of the front wheels 12 and rear wheels 14 (both are average rotation speeds of the left and right wheels) obtained from the rear wheel rotation speed sensor 50 that detects the rotation speed of the wheels 7.
r is supplied.

制御ユニット100は、上述の回転検出信号Sf及びS
rに基づいて、前輪12の回転数に対応する入力軸26
の回転数から後輪14の回転数に対応する入力軸27の
回転数を減じた値が零もしくはその近傍の値より大とな
るときには、電磁クラッチ22を接続状態にする作動信
号Ccを形成して、これを電磁クラッチ22に供給する
。これにより、電磁クラ・ソチ22のソレノイドが励磁
されて電磁クラッチ22が接続状態とされ、出力側回転
軸21と入力軸27とが連結されて粘性流体クラッチ2
0の出力側とファイナルギヤユニット24の入力側とが
接続される。一方、制御ユニット100は、前輪側の入
力軸26の回転数から後輪側の入力軸27の回転数を減
じた値が雰もしくはその近傍の値より小となるときには
、作動信号Ccの供給を停止する。これにより、電磁ク
ラッチ22のソレノイドが消磁されて電iffクラッチ
22が遮断状態とされ、粘性流体クラッチ20の出力側
とファイナルギヤユニット24の入力側との接続状態が
遮断される。
The control unit 100 receives the above-mentioned rotation detection signals Sf and S.
The input shaft 26 corresponds to the rotation speed of the front wheel 12 based on r.
When the value obtained by subtracting the rotational speed of the input shaft 27 corresponding to the rotational speed of the rear wheel 14 from the rotational speed of the rear wheel 14 is greater than zero or a value close to zero, an actuation signal Cc is generated to connect the electromagnetic clutch 22. Then, this is supplied to the electromagnetic clutch 22. As a result, the solenoid of the electromagnetic clutch 22 is energized and the electromagnetic clutch 22 is connected, and the output side rotation shaft 21 and the input shaft 27 are connected, and the viscous fluid clutch 22 is connected.
The output side of 0 and the input side of final gear unit 24 are connected. On the other hand, the control unit 100 stops supplying the actuation signal Cc when the value obtained by subtracting the rotation speed of the input shaft 27 on the rear wheel side from the rotation speed of the input shaft 26 on the front wheel side is smaller than the value at or near the temperature. Stop. As a result, the solenoid of the electromagnetic clutch 22 is demagnetized, the electric IF clutch 22 is disconnected, and the connection between the output side of the viscous fluid clutch 20 and the input side of the final gear unit 24 is disconnected.

上述の如く構成のもとにパワープラント1oが作動せし
められると、パワープラント10が発生ずるトルクが、
前輪側トルク伝達経路Fを介して前輪12に伝達され、
車両が走行状態にされる。
When the power plant 1o is operated with the configuration as described above, the torque generated by the power plant 10 is
is transmitted to the front wheels 12 via the front wheel side torque transmission path F,
The vehicle is put into running condition.

この場合、車両の直進走行時においては、後輪側トルク
伝達経路Rにおける最終減速比i 、が前輪側トルク伝
達経路Fにおける最終減速比i、より大とされていて、
前輪側の入力軸26の回転数が後輪側の入力軸27の回
転数より低くなるため、制御ユニット100は、電磁ク
ラッチ22への作動信号Ccの供給を停止して、電磁ク
ラッチ22を遮断状態とする。これにより、直進走行時
においては、車両が2輪駆動状態とされて走行抵抗が低
減される。この結果、車両の駆動効率が向上され、燃費
や各部の耐久性が低下することが防止される。
In this case, when the vehicle is traveling straight, the final reduction ratio i in the rear wheel torque transmission path R is larger than the final reduction ratio i in the front wheel torque transmission path F,
Since the rotation speed of the input shaft 26 on the front wheel side becomes lower than the rotation speed of the input shaft 27 on the rear wheel side, the control unit 100 stops supplying the actuation signal Cc to the electromagnetic clutch 22 and disconnects the electromagnetic clutch 22. state. As a result, when the vehicle is traveling straight ahead, the vehicle is placed in a two-wheel drive state, and running resistance is reduced. As a result, the driving efficiency of the vehicle is improved, and reductions in fuel efficiency and durability of various parts are prevented.

また、パワープラント10が作動せしめられている状態
において、前輪12にある程度の滑りが生じたときには
、前述した第4図における回転数差Δnが、正の値とな
る。このため、制御ユニット100が電磁クラッチ22
に作動信号Ccを供給して、これを接続状態にする。そ
れにより、パワープラン1−10が発生するトルクが粘
性流体クラッチ20を介して前輪12の滑り量に応じた
分だけ後輪14に伝達される。この結果、車両が4輪駆
動状態とされて大なる走破性を有するものとなる。
Further, when the front wheels 12 slip to some extent while the power plant 10 is in operation, the rotational speed difference Δn in FIG. 4 described above takes a positive value. For this reason, the control unit 100 controls the electromagnetic clutch 22
An activation signal Cc is supplied to the terminal to bring it into a connected state. Thereby, the torque generated by the power plan 1-10 is transmitted to the rear wheels 14 via the viscous fluid clutch 20 in an amount corresponding to the amount of slippage of the front wheels 12. As a result, the vehicle is put into a four-wheel drive state and has excellent running performance.

一方、車両の旋回走行時においては、前輪12の旋回半
径が後輪14の旋回半径より大となるため、前輪側の入
力軸26の回転数が後輪側の入力軸27の回転数より高
くなる。このため、制御ユニット100が電磁クラッチ
22に作りJ信号Ccを供給してこれを接続状態とする
。この場合、後輪側トルク伝達経路Rにおける最終減速
比1rが前輪側トルク伝達経路Fにおける最終減速比i
On the other hand, when the vehicle is turning, the turning radius of the front wheels 12 is larger than the turning radius of the rear wheels 14, so the rotation speed of the input shaft 26 on the front wheel side is higher than the rotation speed of the input shaft 27 on the rear wheel side. Become. Therefore, the control unit 100 supplies the generated J signal Cc to the electromagnetic clutch 22 to bring it into the connected state. In this case, the final reduction ratio 1r in the rear wheel torque transmission path R is the final reduction ratio i in the front wheel torque transmission path F.
.

より大とされているため、回転数差Δnは前述した第4
図に示される如く、前輪側トルク伝達経路F及び後輪側
トルク伝達経路Rにおける最終減速比if及びi、、が
同一とされた場合の値ΔnCより小なる値Δnc+  
とされる。従って、車両の旋回走行時において、パワー
プラント10が発生するトルクがTAからTA’ に低
下せしめられても、前輪12に制動トルクが伝達される
ことなく、駆動トルクTf”が伝達される。これにより
、車両の旋回走行時において、駆動効率が向上せしめら
れるとともに、旋回半径の拡大が抑制されて、車両の運
転制御が容易なものとされる。
Since the rotational speed difference Δn is larger than the above-mentioned fourth
As shown in the figure, the value Δnc+ is smaller than the value ΔnC when the final reduction ratios if and i in the front wheel torque transmission path F and the rear wheel torque transmission path R are the same.
It is said that Therefore, even if the torque generated by the power plant 10 is reduced from TA to TA' when the vehicle is turning, the driving torque Tf'' is transmitted to the front wheels 12 without the braking torque being transmitted to the front wheels 12. As a result, when the vehicle is turning, driving efficiency is improved and the turning radius is suppressed from expanding, making it easier to control the operation of the vehicle.

上述の如くに、本例においては、制御ユニット100に
よって電磁クラッチ22の断続制御が行われて、4輪駆
動状態から2輪駆動状態への、もしくは、4輪駆動状態
から4輪駆動状態への切換えが自動的に行われるが、こ
の切換えが行われるタイミングによっては、電磁クラッ
チ22の動作時間に起因しての切換ショックが発生する
庇がある。そこで、本例においては、斯かる切換ショッ
クを防止すべく、制御ユニット100が、電磁クラッチ
22の動作時間(タイムラグ)を見込んだもとで電磁ク
ラッチ22を接続状態から遮断状態に、もしくは、遮断
状態から接続状態に切換えるべ(、電磁クラッチ22へ
の作動信号Ccの供給タイミング及び停止タイミングを
制御するようにされる。
As described above, in this example, the control unit 100 performs intermittent control of the electromagnetic clutch 22 to change from a four-wheel drive state to a two-wheel drive state or from a four-wheel drive state to a four-wheel drive state. Although switching is performed automatically, depending on the timing at which this switching is performed, a switching shock may occur due to the operating time of the electromagnetic clutch 22. Therefore, in this example, in order to prevent such a switching shock, the control unit 100 switches the electromagnetic clutch 22 from the connected state to the disconnected state, or When switching from the state to the connected state, the supply timing and stop timing of the actuation signal Cc to the electromagnetic clutch 22 are controlled.

ここで、回転数差Δnが、時間とともに、第2図に示さ
れる如くに変化するものとすれば、電磁クラッチ22を
遮断状態から接続状態に切換えるべき目標時期は、回転
数差Δnが零より僅かに小なる値ΔnI、よりその絶対
値が大とされる負の値から上述の値Δ″n、となる時点
t2とされ、また、電磁クラッチ22を接続状態から遮
断状態に切換えるべき目標時期は、回転数差Δnが零よ
り僅かに大なる値Δ 、+ よりその絶対値が犬とされ
る正の値から上述の値Δno゛ となる時点t、とされ
る。このように、電磁クラッチ22の断続時期を夫々回
転数差Δnが零となる時点t3及びり。
Here, assuming that the rotational speed difference Δn changes over time as shown in FIG. The time point t2 is defined as a slightly smaller value ΔnI, which is a negative value whose absolute value is larger, to the above-mentioned value Δ″n, and the target time when the electromagnetic clutch 22 should be switched from the connected state to the disconnected state. is defined as the time t when the rotational speed difference Δn changes from a positive value Δ, which is slightly larger than zero, + to the above-mentioned value Δno゛.In this way, the electromagnetic clutch The intermittent timing of 22 is at the time t3 when the rotational speed difference Δn becomes zero.

より若干率めるようにすることにより、時点t2におけ
る値Δnoと時点t、における値Δ 、1との間の部分
が、いわゆる、制御の不感帯とされて、回転数差Δnが
この部分で微小変動する場合において、電磁クラツチ2
2が頻繁に断続される事態が回避される。
By increasing the speed slightly more, the part between the value Δno at time t2 and the value Δ1 at time t is set as a so-called control dead zone, and the rotational speed difference Δn is minute in this part. In the case of fluctuation, the electromagnetic clutch 2
2 is frequently interrupted.

そして、上述の如くに、電磁クラッチ22を時点t2で
遮断状態から接続状態に切換えるためには、電磁クラッ
チ22が遮断状態から接続状態に切換わる際の動作時間
tKを見込んで、時点t2より動作時間tKだけ早い時
点1.において電磁クラッチ22に作動信号Ccを供給
することが必要となり、また、電磁フランチ22を時点
t、で接続状態から遮断状態に切換えるためには、電磁
クラッチ22が接続状態から遮断状態に切換ねる際の動
作時間tK゛を見込んで、時点t5より動作時間tKl
 だけ早い時点t4において電磁クラッチ22への作動
信号Ccの供給を停止することが必要がとされる。この
ため、回転数差Δnの変化率層Δn(第2図においては
、時点t1及びt4における変化率層ΔnがdN、及び
dN4とされて示されている)に動作時間t8もしくは
、tKoを乗じることによって、動作時間tXもしくは
tKl に相当する期間における回転数差Δnの変化量
を算出し、この算出された回転数差Δnの変化量をその
ときの回転数差Δnに加算することで、動作時間tKも
しくはtKoに相当する期間後における回転数差Δnを
予想し、この予想された回転数差Δnが値609以上と
なるとき、もしくは、値Δ 、1以下となるときが、制
御ユニッ)100が、電磁クラッチ22に作動信号CC
を供給すべきタイミング、もしくは、電磁クラッチ22
への作動信号Ccの供給を停止すべきタイミングとされ
る。
As described above, in order to switch the electromagnetic clutch 22 from the disconnected state to the connected state at time t2, the electromagnetic clutch 22 is operated from time t2 in anticipation of the operating time tK when switching from the disconnected state to the connected state. Time point 1 earlier by time tK. In order to switch the electromagnetic flange 22 from the connected state to the disconnected state at time t, it is necessary to supply the actuation signal Cc to the electromagnetic clutch 22 at time t. The operating time tKl is calculated from the time t5, assuming the operating time tK
It is necessary to stop supplying the actuation signal Cc to the electromagnetic clutch 22 at an earlier point in time t4. Therefore, the rate of change layer Δn of the rotational speed difference Δn (in FIG. 2, the rate of change layer Δn at times t1 and t4 are shown as dN and dN4) is multiplied by the operating time t8 or tKo. By calculating the amount of change in the rotation speed difference Δn during the period corresponding to the operating time tX or tKl, and adding the calculated amount of change in the rotation speed difference Δn to the rotation speed difference Δn at that time, the operation can be adjusted. The control unit predicts the rotational speed difference Δn after a period corresponding to the time tK or tKo, and when the predicted rotational speed difference Δn becomes a value 609 or more or a value Δ1 or less, the control unit 100 However, the actuation signal CC is sent to the electromagnetic clutch 22.
or the timing at which the electromagnetic clutch 22 should be supplied.
This is the timing at which the supply of the actuation signal Cc to the terminal should be stopped.

上述の如くの制御は、主として制御ユニット100に内
蔵されたマイクロコンピュータの動作に基づいて行われ
るが、このマイクロコンピュータが実施するプログラム
の一例を第3図にフローチャートで示す。
The above-mentioned control is mainly performed based on the operation of a microcomputer built into the control unit 100, and an example of a program executed by this microcomputer is shown in a flowchart in FIG.

以下、第3図のフローチャートを参照して制御ユニット
100の制御動作を説明する。
The control operation of the control unit 100 will be described below with reference to the flowchart in FIG.

第3図に示されるプログラムは、例えば、パワープラン
ト10が作動せしめられたときスタートし、スタート後
、プロセス101で前輪側回転数センサ40と後輪側回
転数センサ50とから得られる回転検出信号Sf及びS
rを夫々入力してプロセス102に進む。プロセス10
2においては、プロセス101で入力された回転検出信
号Sf及びSrに基づいて前輪側の人力軸26の前輪側
入力軸回転数Nfと後輪側の入力軸27の後輪側入力軸
回転数Nrとについての回転数差Δnを算出し、続くデ
ィシジョン103においてプロセス102で算出された
回転数差Δnが零もしくは負の値であるか否か、即ち、
前輪側入力軸回転数Nfが後輪側入力軸回転数Nr以下
であるか否かを判断する。そして、回転数差Δnが零も
しくは負の値であると判断された場合には、プロセス1
04に進み、これとは逆に、回転数差Δnが正の値であ
ると判断された場合には、プロセス107に進む。
The program shown in FIG. 3 starts, for example, when the power plant 10 is activated, and after starting, in process 101, rotation detection signals are obtained from the front wheel rotation speed sensor 40 and the rear wheel rotation speed sensor 50. Sf and S
r respectively and proceed to process 102. Process 10
2, based on the rotation detection signals Sf and Sr input in process 101, the front wheel side input shaft rotation speed Nf of the front wheel side human power shaft 26 and the rear wheel side input shaft rotation speed Nr of the rear wheel side input shaft 27 are determined. In the following decision 103, it is determined whether the rotation speed difference Δn calculated in the process 102 is zero or a negative value, that is,
It is determined whether the front wheel input shaft rotation speed Nf is equal to or lower than the rear wheel input shaft rotation speed Nr. Then, if it is determined that the rotational speed difference Δn is zero or a negative value, process 1
On the contrary, if it is determined that the rotational speed difference Δn is a positive value, the process advances to process 107.

ディシジョン103において回転数差Δnが零もしくは
負の値であると判断された場合に進むプロセス104に
おいては、回転数差Δnに、回転数差Δnの変化率層Δ
nに動作時間tKを乗じた、動作時間tKに相当する期
間における回転数差へ〇の変化量を加算して、動作時間
1Kに相当する期間後における予想回転数差の値Δn、
を算出し、その後ディシジョン105に進む。ディシジ
ョン105においては、値ΔnPが値ΔnI、以上であ
るか否かを判断し、値Δn、が値ΔnD以上である場合
には、電磁クラッチ22を遮断状態から接続状態にすべ
く、プロセス106に進み、電磁クラッチ22に作動信
号Ccを供給してプロセス101に戻る′。また、ディ
シジョン105において値Δn、が値638以上でない
と判断された場合には、電磁クラッチ22の遮断状態を
維持すべく、プロセス109に進み、電磁クラッチ22
への作動信号Ccの供給を停止した状態を続行してプロ
セス101に戻る。
In the process 104 that proceeds when the rotational speed difference Δn is determined to be zero or a negative value in the decision 103, a change rate layer Δ of the rotational speed difference Δn is added to the rotational speed difference Δn.
The expected rotation speed difference value Δn after the period corresponding to the operation time 1K is obtained by adding the amount of change of 〇 to the rotation speed difference in the period corresponding to the operation time tK, which is obtained by multiplying n by the operation time tK,
is calculated and then proceeds to decision 105. In decision 105, it is determined whether the value ΔnP is greater than or equal to the value ΔnI, and if the value Δn is greater than or equal to the value ΔnD, the process 106 is performed to change the electromagnetic clutch 22 from the disconnected state to the connected state. Then, the operation signal Cc is supplied to the electromagnetic clutch 22 and the process returns to process 101'. Further, if it is determined in decision 105 that the value Δn is not equal to or greater than 638, the process proceeds to process 109 to maintain the disconnected state of the electromagnetic clutch 22.
The state in which the supply of the actuation signal Cc is stopped is continued and the process returns to process 101.

一方、上述のディシジョン103において回転数差Δn
が零より大であると判断された場合に進むプロセス10
7においては、プロセス104と同様に、回転数差Δn
に、回転数差Δnの変化率基Δn(〈0)に動作時間t
や°を乗じた、動作時間tK゛に相当する期間における
回転数差Δnの変化量を加算して、動作時間tKl に
相当する期間後における予想回転数差値Δn、−゛を算
出してディシジョン108に進む。ディシジョン108
においては、値Δ 、l が値Δno°以下であるか否
かを判断し、値Δn2゛が値Δno゛以下である場合に
は、電磁クラッチ22を接続状態から遮断状態にすべく
、プロセス109に進み、電磁クラッチ22への作動信
号Ccの供給を停止してプロセス101に戻る。また、
ディシジョン108において、値Δn、゛が値ΔnD+
 以下でないと判断された場合には、電磁クラッチ22
の接続状態を維持すべく、プロセス106に進み、電磁
クラッチ22への作動信号Ccの供給を続行してプロセ
ス101に戻る。
On the other hand, in the above-described decision 103, the rotational speed difference Δn
Process 10 to proceed when is determined to be greater than zero
In step 7, similarly to process 104, the rotational speed difference Δn
, the operating time t is based on the rate of change Δn (<0) of the rotational speed difference Δn.
The expected rotational speed difference value Δn, - after the period corresponding to the operating time tKl is calculated by adding the amount of change in the rotational speed difference Δn during the period corresponding to the operating time tK, which is multiplied by . Proceed to step 108. Decision 108
In step 109, it is determined whether the values Δ and l are less than or equal to the value Δno°, and if the value Δn2' is less than or equal to the value Δno', the process 109 is performed to change the electromagnetic clutch 22 from the connected state to the disconnected state. , the supply of the actuation signal Cc to the electromagnetic clutch 22 is stopped, and the process returns to process 101. Also,
In decision 108, the value Δn, ゛ is the value ΔnD+
If it is determined that it is not the following, the electromagnetic clutch 22
In order to maintain the connected state, the process proceeds to process 106, continues supplying the actuation signal Cc to the electromagnetic clutch 22, and returns to process 101.

なお、上述の例においては、後輪側トルク伝達経路Rに
粘性流体クラッチ20及び電磁クラッチ22を介在せし
めた場合について説明したが、本発明はこれに限られる
ことなく、前輪側トルク伝達経路Fに粘性流体クラッチ
20及び電磁クラッチ22を介在せしめてもよい。
In addition, in the above-mentioned example, the case where the viscous fluid clutch 20 and the electromagnetic clutch 22 were interposed in the rear wheel side torque transmission path R was explained, but the present invention is not limited to this, and the front wheel side torque transmission path F A viscous fluid clutch 20 and an electromagnetic clutch 22 may be interposed therebetween.

(発明の効果) 以上の説明から明らかな如く、本発明に係る4輪駆動車
の伝達トルク制御装置によれば、前輪側もしくは後輪側
トルク伝達経路のいずれか一方に、流体式伝動手段が介
在せしめられるとともに、それに直列にクラッチ機構が
配され、かつ、後輪側トルク伝達経路における最終減速
比が前輪側1−ルク伝達経路における最終減速比より大
とされ、しかも、クラッチ機構が制御手段によって所定
のタイミングで断続制御されるので、車両が直進走行状
態にあるときには、走行抵抗の少ない2輪駆動状態が得
られ、また、走行中の車両の前輪にある程変の滑りが生
じたときには、走破性の大なる4輪駆動状態が得られる
。このため、車両の走行状態等に応じて適切に4輪駆動
状態と2輪駆動状態とが選択されることになり、煩わし
い操作を伴うことなく、駆動効率を向上させることがで
きるとともに、燃費や各部の耐久性の低下を防止するこ
とができることになる。
(Effects of the Invention) As is clear from the above description, according to the transmission torque control device for a four-wheel drive vehicle according to the present invention, a hydraulic transmission means is provided in either the front wheel side or the rear wheel side torque transmission path. A clutch mechanism is arranged in series with the clutch mechanism, and the final reduction ratio in the rear wheel side torque transmission path is larger than the final reduction ratio in the front wheel side 1-lux transmission path, and the clutch mechanism is connected to the control means. Since the intermittent control is performed at predetermined timings, when the vehicle is running straight, a two-wheel drive state with low running resistance can be obtained, and when the front wheels of the vehicle are slipping to a certain extent, , a four-wheel drive state with excellent all-terrain performance can be obtained. Therefore, the four-wheel drive state and the two-wheel drive state are appropriately selected depending on the vehicle's driving conditions, etc., and it is possible to improve driving efficiency and reduce fuel consumption without any troublesome operations. This makes it possible to prevent the durability of each part from decreasing.

また、後輪側トルク伝達経路における最終減速比が、前
輪側トルク伝達経路における最終減速比より大とされる
ため、車両の旋回走行時においてパワープラントが発生
するトルクが低下せしめられても前輪に制動トルクが伝
達されることが防止されるので、車両の旋回半径を可及
的に小となして車両の運転側?ffflを容易にするこ
とができるとともに、駆動効率を向上させることができ
る。
In addition, since the final reduction ratio in the rear wheel torque transmission path is larger than the final reduction ratio in the front wheel torque transmission path, even if the torque generated by the power plant is reduced when the vehicle is turning, the front wheel Since braking torque is prevented from being transmitted, the turning radius of the vehicle is made as small as possible to the driving side of the vehicle. fffl can be made easier, and driving efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る4輪駆動車の伝達トルク制御装置
の一例をそれが適用された車両とともに示す概略構成図
、第2図は第1図に示される例の動作説明に供される特
性図、第3図は第1図に示される例に用いられる制御ユ
ニットの一例におけるマイクロコンピュータの動作プロ
グラムの一例を示すフローチャート、第4図は粘性流体
クラッチの作用の説明に供される特性図である。 図中、10はパワープラント、12は前輪、14は後輪
、18及び24はファイナルギヤユニット、20は粘性
流体クラッチ、22は電磁クラッチ、40は前輪側回転
数センサ、50は後輪側回転数センサ、100は制御ユ
ニットである。
FIG. 1 is a schematic configuration diagram showing an example of the transmission torque control device for a four-wheel drive vehicle according to the present invention together with a vehicle to which the device is applied, and FIG. 2 is provided to explain the operation of the example shown in FIG. 1. FIG. 3 is a flowchart showing an example of an operation program of a microcomputer in an example of the control unit used in the example shown in FIG. 1, and FIG. 4 is a characteristic diagram used to explain the action of the viscous fluid clutch. It is. In the figure, 10 is a power plant, 12 is a front wheel, 14 is a rear wheel, 18 and 24 are final gear units, 20 is a viscous fluid clutch, 22 is an electromagnetic clutch, 40 is a front wheel rotation speed sensor, and 50 is a rear wheel rotation Several sensors, 100 is a control unit.

Claims (1)

【特許請求の範囲】[Claims] パワープラントが発生するトルクを前輪及び後輪に伝達
する前輪側及び後輪側トルク伝達経路のいずれか一方に
介在せしめられ、その入力側回転数と出力側回転数との
差に応じて伝達トルクを変化させる流体式伝動手段と、
該流体式伝動手段が介在せしめられた前輪側もしくは後
輪側トルク伝達経路を断続すべく上記流体式伝動手段に
対して直列に配されたクラッチ機構と、上記前輪側トル
ク伝達経路における最終減速比を設定する前輪側減速機
構と、上記後輪側トルク伝達経路における最終減速比を
上記前輪側トルク伝達経路における最終減速比より大と
して設定する後輪側減速機構と、上記前輪側及び後輪側
減速機構の入力軸回転数を夫々検出する第1及び第2の
回転数検出手段と、該第1及び第2の回転数検出手段か
ら得られる信号に基づいて、上記前輪側減速機構の入力
軸回転数と上記後輪側減速機構の入力軸回転数との差が
正の値側から零もしくはその近傍の値以下となるとき上
記クラッチ機構を接続状態から遮断状態に切換える制御
手段とを具備して構成された4輪駆動車の伝達トルク制
御装置。
It is interposed in either the front wheel side or rear wheel side torque transmission path that transmits the torque generated by the power plant to the front wheels and rear wheels, and the transmitted torque is adjusted according to the difference between the input side rotation speed and the output side rotation speed. a fluid transmission means for changing the
a clutch mechanism disposed in series with the fluid transmission means to connect and disconnect the front wheel or rear wheel torque transmission path in which the fluid transmission means is interposed; and a final reduction ratio in the front wheel torque transmission path. a front wheel side reduction mechanism that sets a final reduction ratio in the rear wheel torque transmission path to be larger than a final reduction ratio in the front wheel torque transmission path; First and second rotation speed detection means for respectively detecting the input shaft rotation speed of the reduction mechanism, and the input shaft of the front wheel side reduction mechanism based on the signals obtained from the first and second rotation speed detection means. control means for switching the clutch mechanism from a connected state to a disconnected state when the difference between the rotation speed and the input shaft rotation speed of the rear wheel side reduction mechanism becomes from a positive value side to zero or a value in the vicinity thereof; A transmission torque control device for a four-wheel drive vehicle.
JP60187097A 1985-08-26 1985-08-26 Transmission torque control device for four-wheel drive vehicle Expired - Lifetime JPH0653467B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60187097A JPH0653467B2 (en) 1985-08-26 1985-08-26 Transmission torque control device for four-wheel drive vehicle
DE8686111762T DE3670051D1 (en) 1985-08-26 1986-08-25 ARRANGEMENTS FOR CONTROLLING THE TORQUE IN FOUR-WHEEL DRIVE VEHICLES.
EP86111762A EP0217124B1 (en) 1985-08-26 1986-08-25 Torque control arrangements for four- wheel-drive vehicles
US06/900,526 US4723624A (en) 1985-08-26 1986-08-26 Torque control arrangements for four-wheel-drive vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60187097A JPH0653467B2 (en) 1985-08-26 1985-08-26 Transmission torque control device for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPS6246718A true JPS6246718A (en) 1987-02-28
JPH0653467B2 JPH0653467B2 (en) 1994-07-20

Family

ID=16200050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60187097A Expired - Lifetime JPH0653467B2 (en) 1985-08-26 1985-08-26 Transmission torque control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPH0653467B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134330A (en) * 1981-02-12 1982-08-19 Hitachi Ltd Automatic changeover device
JPS59188731A (en) * 1983-04-11 1984-10-26 Hitachi Ltd Information processing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134330A (en) * 1981-02-12 1982-08-19 Hitachi Ltd Automatic changeover device
JPS59188731A (en) * 1983-04-11 1984-10-26 Hitachi Ltd Information processing system

Also Published As

Publication number Publication date
JPH0653467B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
JP3275563B2 (en) Vehicle four-wheel drive control device
JP5112890B2 (en) Driving force transmission system for four-wheel drive vehicles
JPS59216766A (en) Four-wheel-drive car
US6907953B2 (en) Driving force distribution control device and driving force distribution method for four-wheel drive vehicle
EP3446912A1 (en) Drive mode switching device of four-wheel-drive vehicle
WO2015129695A1 (en) Clutch control device for 4-wheel drive vehicle
JPS63203422A (en) Four-wheel-drive
US5279384A (en) Front and rear road wheel drive apparatus for motor vehicle
JP2872718B2 (en) Four-wheel drive
JP6379691B2 (en) Clutch control device for four-wheel drive vehicle
JPH03189241A (en) Four-wheel drive device
JPS6246718A (en) Transmission torque controller for four-wheel-drive vehicle
JPS6246719A (en) Transmission torque controller for four-wheel-drive vehicle
JPS6246720A (en) Transmission torque controller for four-wheel-drive vehicle
US7290636B2 (en) Device and method for controlling distribution of drive force of four-wheel drive car
WO2023047587A1 (en) Travel drive control device for four-wheel-drive vehicle
WO2023047586A1 (en) Travel drive control device for four-wheel-drive vehicle
JP2805067B2 (en) Front and rear wheel differential control device for four-wheel drive vehicle
JP2813976B2 (en) Vehicle drive system
JPS62231821A (en) Power transmission for four wheel drive vehicle
JP3017113B2 (en) Vehicle drive system
JPH10148252A (en) Line pressure control device of automatic transmission for four-wheel drive vehicle
JPS6274716A (en) Control device for four-wheel-drive vehicle
JPS6277229A (en) 4-wheel-drive control device
JPH02102824A (en) Control method of differential control clutch for front and rear drive vehicle