JPS6246648B2 - - Google Patents

Info

Publication number
JPS6246648B2
JPS6246648B2 JP6164581A JP6164581A JPS6246648B2 JP S6246648 B2 JPS6246648 B2 JP S6246648B2 JP 6164581 A JP6164581 A JP 6164581A JP 6164581 A JP6164581 A JP 6164581A JP S6246648 B2 JPS6246648 B2 JP S6246648B2
Authority
JP
Japan
Prior art keywords
phosphorus
oxidized
fibers
oxidation treatment
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6164581A
Other languages
Japanese (ja)
Other versions
JPS57176220A (en
Inventor
Shigeru Ikegami
Minoru Hirai
Kenji Shimazaki
Kazuo Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP6164581A priority Critical patent/JPS57176220A/en
Publication of JPS57176220A publication Critical patent/JPS57176220A/en
Publication of JPS6246648B2 publication Critical patent/JPS6246648B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、アクリル系繊維を酞化凊理しお酞化
繊維を埗るに際し、短時間で䞔぀均䞀に酞化凊理
する方法に関するものである。 埓来、アクリル系繊維の酞化性雰囲気䞭、200
〜400℃で凊理するこずによ぀お酞化繊維が埗ら
れ、そしお酞化条件を倉えお曝られた皮々の性質
の酞化繊維が、そのたたで耐炎性を有する繊維ず
しお甚いられ、たた炭玠繊維甚、又は繊維状掻性
炭甚の原料繊維ずしお甚いられるこずが知られお
いる。この酞化繊維を補造するための酞化凊理は
長時間を芁し、短時間で凊理しようずするず、酞
化が䞍均䞀化し、たた、繊維の膠着、燃焌切断等
の問題が生ずる。このため、酞化凊理工皋におけ
る凊理時間を短瞮するずずもに、均䞀に酞化凊理
するこずは、酞化繊維を経枈的に埗る䞊での重芁
な課題ずな぀おいる。 本発明は、このようなアクリル系繊維の酞化凊
理工皋を改良し、短時間で高品質の酞化繊維を埗
る方法を提䟛するものである。 すなわち、本発明はリン又は及びホり玠に
換算しお0.01〜0.3重量のリン又は及
びホり玠の化合物を含むアクリル系繊維を酞化
性雰囲気䞭200〜400℃で酞玠結合量〜たで
酞化凊理し、次いでリン又は及びホり玠に換
算しお0.02〜0.3のリン又は及びホり玠の
化合物を远加添着し、250〜400℃で酞玠結合量15
以䞊、コア率以䞋になるたで酞化凊理する
こずによる酞化繊維の補造法である。 以䞊の劂き方法によ぀おアクリル系繊維を酞化
凊理するず、短時間で内郚たで均䞀に酞化が行わ
れるず共に繊維盞互の膠着のない酞化繊維を埗る
こずができる。 特に本発明方法は、アクリル系繊維のうち、ト
り状のアクリル系繊維の酞化凊理に適しおいる。
これは、このよう構成本数の倚いトりを酞化する
堎合酞化凊理時枩床の調敎が困難であり、酞化凊
理の䞍均䞀化、繊維の膠着、酞化凊理䞭の燃焌を
生じ易いためである。本発明方法で埗られた酞化
繊維は、そのたたで耐炎性繊維ずしお利甚できる
ず共に䞍掻性雰囲気䞭焌成し、炭玠繊維ずするこ
ずもできるが、特にこの酞化繊維は、繊維状掻性
炭の原料ずしお優れ、高枩䞋掻性ガス䞭で賊掻凊
理するこずによ぀お、高収率でしかも取扱い性の
優れた繊維状掻性炭ずするこずができる。ここで
酞玠結合量は、CHNコヌダヌにより枬定し、次
匏により求められる。 酞玠結合量詊料総重量−灰分−合蚈量詊料総重量−灰分×100 CHNコヌダヌ柳本高速CHNコヌダヌMT−
型 たた繊維のコア率は、酞化繊維の断面スキン・
コア顕埮鏡写真倍率400倍の枬定結果より、
次匏にお怜䜓数20の平均倀で瀺されるものを意味
する。 コア率コア郚断面積繊維断面積×100コアの盎埄繊維盎埄×100 本発明で䜿甚されるアクリル系繊維ずしおは、
アクリロニトリルを少なくずも85重量以䞊、奜
たしくは、90〜98重量を含む重合䜓又は共重合
䜓より埗られた繊維である。この堎合コモノマヌ
ずしおは、アクリル酞、メタクリル酞、アリルス
ルホン酞、又はこれらの塩類、゚ステル類、酞ク
ロラむド類、酞アミド類、ビニルアミドの−眮
換誘導䜓、塩化ビニリデン、α−クロロアクリロ
ニトリル、ビニルピリゞン類、ビニルベンれンス
ルホン酞、ビニルスルホン酞及びそのアルカリ土
類金属塩等がある。たたアクリロニトリル重合䜓
の倉成重合䜓、アクリロニトリル重合䜓及び共重
合䜓同志の混合物から埗られる繊維も䜿甚され
る。 アクリル系繊維の繊床は特に制限されないが、
1.0〜15d、特に〜5dのものが奜たしい。1.0dよ
り现くなるず繊維匷力が䜎く繊維の切断が起り易
く、逆に15dより倪くなるず、酞化速床が遅く、
たた炭玠繊維ずした堎合も匷床、匟性が䜎くな
り、繊維状掻性炭ずした堎合賊掻収率も䜎䞋す
る。 リン又は及びホり玠の存圚は本発明の補造
工皋を通じお重芁であるが、酞化工皋においおリ
ン等は特にコア率を枛少させ、繊維の膠着を防止
する効果を有する。 出発原料のアクリル系繊維は酞化凊理に䟛する
前の段階でリン又は及びホり玠を0.01〜0.3
、奜たしくは0.02〜0.1重量含有するこ
ずが必芁である。リン等の含有量が0.01未満の
堎合、コア率の高い酞化繊維しか埗られず、たた
逆に0.3を越える堎合、酞化凊理時に繊維の䞀
郚が膠着し、たた酞化速床が著しく枛少しお工業
的生産が困難ずなる。繊維に察するリン又は及
びホり玠の添加はリン又はホり玠化合物の状態
で行われる。リン化合物ずしおはリン酞、メタリ
ン酞、ピロリン酞、亜リン酞、ホスフむン酞、若
しくはこれらの塩類等の無機リン化合物又はアル
キル若しくはアリヌルホスフオネヌト、同ホスフ
゚ヌト、同ホスフアむト等の有機リン化合物であ
る。ホり玠化合物ずしおはホり酞、メタホり酞あ
るいはこれらの塩類が䜿甚される。 これ等のリン化合物、ホり玠化合物等は、それ
ぞれ皮又は皮以䞊で甚いられ、リン化合物ず
ホり玠化合物ずを䜵甚するこずもできる。リンず
ホり玠は効果䞊特に差異はなく、所芁量が均䞀に
添着しおいれば問題がない。たた、鉄塩等を䜵甚
するこずにより酞化凊理時の膠着が抑制されるた
め奜たしい結果を埗るこずができる。 リン化合物等の添着を均䞀に行うために、アニ
オン系、カチオン系、ノニオン系の分散剀を䜵甚
するず䞀局効果的である。 出発原料のアクリル系繊維に、0.01〜0.3
重量リン等を含有せしめる方法ずしお䞋蚘が
あるが、リン等を均䞀に繊維の芯たで浞透させる
意味で(1)の方法が最も効果的である。 (1) 玡糞工皋䞭の延䌞前のゲル状態におリン化合
物等を济䞭又はスプレヌで含有せしめる方法 (2) 延䌞埌、也燥前の工皋にお济䞭浞挬又はスプ
レヌする方法 (3) 酞化凊理盎前で济䞭浞挬又はスプレヌする方
法 酞化性雰囲気の媒䜓ずしおは空気、酞玠、塩化
氎玠、亜硫酞ガス等の単独ガス若しくは混合ガス
又はこれらのガスず䞍掻性ガスずの混合ガスが甚
いられるが、䞻ずしお空気及び空気ず窒玠ずの混
合ガスが経枈性、工皋の安定性の点から最適であ
る。 酞化凊理における酞化性雰囲気の酞玠濃床は、
0.5〜35容量の範囲の媒䜓、特に〜25の範
囲が最も効果的である。前段の酞化は酞玠濃床20
〜35容量の媒䜓䞭で、埌段の酞化は、酞玠濃床
0.2〜容量の媒䜓䞭で行うのが奜たし
い。酞玠濃床が䜎いず高枩酞化が可胜ずなり、こ
のため酞化時間が短瞮され、コア率も䜎くなる。
酞化凊理は、埗られた酞化繊維の甚途によ぀お、
その皋床が異なり、繊維状掻性炭補造甚ずする堎
合は、酞玠結合量が16.5以䞊ずなるたで凊理す
るのが奜たしい。酞玠結合量は23〜25皋床たで
高めるこずができる。 酞玠凊理枩床は、200〜400℃で行われ、最適枩
床は、酞化媒䜓の皮類及びリンやホり玠の添着状
況により倚少異なるが、225〜350℃の範囲であ
る。 酞化凊理時、繊維に䞎える匵力は、酞化枩床で
の収瞮が、酞化凊理䞭、その枩床における自由収
瞮率の70〜90になるようにするのがよく、70
より䜎いずトりの切断を招き易く90以䞊の堎
合、繊維が脆匱化し易く加工性を有する繊維ずな
り難い。 本発明においお酞化凊理は段階に分けお行わ
れる。第段の酞化凊理は、酞化凊理によ぀お、
アクリル系繊維の酞玠結合量が〜ずなるた
で酞化性雰囲気䞭で行われる。第段の酞化凊理
は、第段の酞化凊理を経た、酞玠結合量〜
の繊維を、酞化性雰囲気䞭、酞玠結合量15以
䞊でコア率以䞋ずなるたで酞化凊理する。こ
の際、第段の酞化凊理ず第段の酞化凊理ずの
間でリン化合物等の远加添着が行われる。 第段の酞化凊理では、所芁量のリン等を含む
アクリル系繊維を酞化性雰囲気䞭200〜400℃で酞
玠結合量〜たで酞化凊理する。このずきの
酞化性雰囲気媒䜓の酞玠濃床は20〜35容量
皋床のものが䜿甚され、特に奜たしくは25〜30
容量の媒䜓が奜たしく、䞀般的には空気を䜿
甚するのがよい。 第段の酞化凊理は、第段の酞化凊理よりも
高い枩床でしかも酞化性雰囲気の媒䜓䞭の酞玠濃
床を䜎くしお行うのが奜たしい。酞化枩床は250
〜400℃、特に奜たしくは300〜350℃で酞玠濃床
0.2〜容量の媒䜓䞭で行うのがよい。䞍
掻性ガスずしおは䟋えば窒玠、炭酞ガス、燃焌ガ
ス、アルゎン、ヘリりムが䜿甚される。 この酞化凊理においお、雰囲気媒䜓ずしお酞玠
濃床20〜25容量の䟋えば空気を䜿甚するこずも
できるが、酞玠濃床0.2〜の䜎濃床酞玠雰囲
気䞭で行うず高枩での酞化凊理が可胜ずなり酞化
時間を短瞮するのに有効である。 第段酞化凊理ず第段酞化凊理の間においお
リン化合物等が、繊維に察し、リン又は及び
ホり玠換算で0.02〜0.3重量远加添着され
る。添着は被凊理繊維をリン化合物等を含む溶液
に浞挬するか、繊維にスプレヌするなどの方法に
よ぀お行われる。 添加されるリン化合物等の量がリン等の換算量
で0.3を越えるず酞化繊維の膠着を招き繊維が
脆匱化する。 䞀方0.02より少ないず、繊維が燃焌し易く、
酞化凊理の安定性に欠け、䞍均䞀酞化され易くな
りコア率も高くなる。奜たしい範囲は0.04〜0.1
である。 本発明方法ずリン等を䞀時に加える方法等ずの
効果に぀いお瀺すず次の通りである。 すなわち、アクリロニトリル92.0、アクリル
酞メチル4.5、アクリルアミド3.5のアクリル
系繊維からなる䞇デニヌルのトり単糞繊維
3dにリン〔〕及び又はホり玠〔〕を
含たせるこずにより酞化凊理工皋前に第回の添
着を行い曎に酞化凊理工皋䞭に第回の添着を行
぀お酞化凊理を続行する本発明方法No.〜
、䞊びに、比范䟋ずしお同䞀トりに぀いお酞
化凊理前及び酞化凊理工皋䞭を通じリン又はホり
玠を党く添着しない堎合No.、酞化凊理前に
のみリン又は及びホり玠を加えるが酞化凊理
工皋䞭には远加添着しない堎合No.〜13及び
酞化凊理工皋前に過量のリンを添加し酞化凊理し
酞化凊理工皋䞭にもリンを远加添着した堎合No.
14に぀いお、倫々酞化速床、酞化繊維のコア率
及び酞玠結合量を枬定した結果を次衚に瀺す。た
た、第段埌段の酞化凊理の酞玠濃床の
窒玠雰囲気䞭で行う本発明方法No.、及び酞
玠濃床の窒玠雰囲気䞭で行う本発明方法No.
に぀いおも次衚に瀺す。
The present invention relates to a method for uniformly oxidizing acrylic fibers in a short time to obtain oxidized fibers. Conventionally, acrylic fibers were oxidized at 200
Oxidized fibers are obtained by processing at ~400°C, and oxidized fibers with various properties exposed to different oxidation conditions can be used as they are as flame-resistant fibers, and can also be used for carbon fibers, or It is known to be used as a raw material fiber for fibrous activated carbon. The oxidation treatment for producing oxidized fibers takes a long time, and if the treatment is attempted in a short time, the oxidation becomes uneven and problems such as fiber sticking and combustion breakage occur. Therefore, shortening the treatment time in the oxidation treatment step and performing the oxidation treatment uniformly are important issues in obtaining oxidized fibers economically. The present invention improves the oxidation treatment process for acrylic fibers and provides a method for obtaining high-quality oxidized fibers in a short time. That is, the present invention provides an acrylic fiber containing a phosphorus or (and) boron compound of 0.01 to 0.3% (weight) in terms of phosphorus or (and) boron at 200 to 400°C in an oxidizing atmosphere with an oxygen bond amount of 5. Oxidation treatment is carried out to ~8%, then additionally impregnated with 0.02~0.3% of phosphorus or (and) boron compound in terms of phosphorus or (and) boron, and the amount of oxygen bonded is 15 at 250~400℃.
This is a method for producing oxidized fibers by performing oxidation treatment until the core ratio is 8% or higher. When acrylic fibers are oxidized by the method described above, oxidation is uniformly carried out to the inside in a short time, and oxidized fibers can be obtained in which the fibers do not stick to each other. In particular, the method of the present invention is suitable for oxidizing tow-like acrylic fibers among acrylic fibers.
This is because when oxidizing a tow with such a large number of fibers, it is difficult to adjust the temperature during the oxidation treatment, which tends to cause unevenness of the oxidation treatment, fiber sticking, and combustion during the oxidation treatment. The oxidized fibers obtained by the method of the present invention can be used as flame-resistant fibers as they are, and can also be made into carbon fibers by firing in an inert atmosphere, but these oxidized fibers are particularly excellent as raw materials for fibrous activated carbon. By performing the activation treatment in an activated gas at high temperatures, fibrous activated carbon with high yield and excellent handling properties can be obtained. Here, the amount of oxygen bonding is measured using a CHN coder and calculated using the following formula. Oxygen binding amount (%) = Sample total weight - Ash content - CHN total amount / Sample total weight - Ash content x 100 CHN coder: Yanagimoto High Speed CHN Coder MT-2
Also, the core ratio of the fiber is the cross-sectional skin of the oxidized fiber.
From the measurement results of the core micrograph (400x magnification),
It means the average value of 20 samples in the following formula. Core ratio (%) = (core section cross-sectional area) / (fiber cross-sectional area) × 100 = (core diameter / fiber diameter) 2 × 100 The acrylic fiber used in the present invention is
The fiber is obtained from a polymer or copolymer containing at least 85% by weight of acrylonitrile, preferably 90 to 98% by weight. In this case, comonomers include acrylic acid, methacrylic acid, allylsulfonic acid, or their salts, esters, acid chlorides, acid amides, n-substituted derivatives of vinylamide, vinylidene chloride, α-chloroacrylonitrile, vinylpyridine. , vinylbenzenesulfonic acid, vinylsulfonic acid and its alkaline earth metal salts. Also used are fibers obtained from modified polymers of acrylonitrile polymers and mixtures of acrylonitrile polymers and copolymers. The fineness of the acrylic fiber is not particularly limited, but
1.0 to 15 d, especially 2 to 5 d are preferred. If it is thinner than 1.0d, the fiber strength will be low and fiber breakage will occur easily, and if it is thicker than 15d, the oxidation rate will be slow.
Further, when carbon fibers are used, the strength and elasticity are lowered, and when fibrous activated carbon is used, the activation yield is also lowered. The presence of phosphorus and/or boron is important throughout the manufacturing process of the present invention, and phosphorus and the like particularly have the effect of reducing the core ratio and preventing fiber sticking during the oxidation process. The starting material, acrylic fiber, is treated with 0.01 to 0.3 phosphorus or (and) boron before being subjected to oxidation treatment.
%, preferably 0.02 to 0.1% (by weight). If the content of phosphorus, etc. is less than 0.01%, only oxidized fibers with a high core ratio can be obtained, and conversely, if it exceeds 0.3%, some of the fibers will stick together during the oxidation treatment, and the oxidation rate will decrease significantly. This makes industrial production difficult. The addition of phosphorus and/or boron to the fibers is carried out in the form of phosphorus or boron compounds. Examples of the phosphorus compound include inorganic phosphorus compounds such as phosphoric acid, metaphosphoric acid, pyrophosphoric acid, phosphorous acid, phosphinic acid, or salts thereof, or organic phosphorus compounds such as alkyl or aryl phosphonates, phosphates, and phosphites. As the boron compound, boric acid, metaboric acid, or salts thereof are used. These phosphorus compounds, boron compounds, etc. can be used alone or in combination of two or more, and the phosphorus compound and boron compound can also be used in combination. There is no particular difference in effectiveness between phosphorus and boron, and there is no problem as long as the required amounts are uniformly attached. Further, by using iron salt or the like in combination, agglutination during oxidation treatment can be suppressed, so that favorable results can be obtained. In order to uniformly impregnate the phosphorus compound, etc., it is more effective to use an anionic, cationic, or nonionic dispersant in combination. 0.01-0.3% to the starting material acrylic fiber
(Weight) There are the following methods for incorporating phosphorus, etc., but method (1) is the most effective in terms of uniformly penetrating the phosphorus to the core of the fiber. (1) A method in which a phosphorus compound, etc. is contained in a bath or sprayed in a gel state before stretching during the spinning process. (2) A method in which phosphorus compounds are immersed in a bath or sprayed in a process after stretching and before drying. (3) Oxidation treatment. Method of immersing or spraying in a bath immediately before use Air, oxygen, hydrogen chloride, sulfur dioxide, or other gases or mixtures, or mixtures of these gases and inert gases are used as the medium for the oxidizing atmosphere, but mainly Air and a mixed gas of air and nitrogen are optimal in terms of economy and process stability. The oxygen concentration in the oxidizing atmosphere during oxidation treatment is
Media in the range 0.5-35% by volume are most effective, especially in the range 2-25%. Oxidation in the first stage has an oxygen concentration of 20
In a medium of ~35% by volume, the subsequent oxidation is carried out at an oxygen concentration of
Preferably it is carried out in a medium of 0.2-9% (by volume). Lower oxygen concentrations allow higher temperature oxidation, which reduces oxidation time and lowers core fraction.
The oxidation treatment depends on the use of the obtained oxidized fiber.
The extent of this differs, and when used for producing fibrous activated carbon, it is preferable to process until the amount of oxygen bonding reaches 16.5% or more. The amount of oxygen binding can be increased to about 23-25%. The oxygen treatment temperature is 200 to 400°C, and the optimum temperature is in the range of 225 to 350°C, although it varies somewhat depending on the type of oxidizing medium and the state of impregnation of phosphorus and boron. During oxidation treatment, the tension applied to the fibers is preferably such that the shrinkage at the oxidation temperature is 70 to 90% of the free shrinkage rate at that temperature, and 70%.
If it is lower than this, the tow tends to break, and if it is more than 90%, the fiber tends to become brittle and difficult to form into a fiber with workability. In the present invention, the oxidation treatment is performed in two stages. In the first stage oxidation treatment, by oxidation treatment,
The process is carried out in an oxidizing atmosphere until the amount of oxygen bonding in the acrylic fibers reaches 5 to 8%. The second stage oxidation treatment is performed using the oxygen bond amount 5 to 8, which has undergone the first stage oxidation treatment.
% fibers are oxidized in an oxidizing atmosphere until the amount of oxygen bonding is 15% or more and the core ratio is 8% or less. At this time, additional impregnation of a phosphorus compound or the like is performed between the first stage oxidation treatment and the second stage oxidation treatment. In the first stage of oxidation treatment, acrylic fibers containing a required amount of phosphorus, etc. are oxidized at 200 to 400° C. in an oxidizing atmosphere until the amount of oxygen binding is 5 to 8%. At this time, the oxygen concentration of the oxidizing atmosphere medium is 20 to 35% (by volume)
A certain amount is used, particularly preferably 25 to 30%.
(volume) of medium is preferred, and air is generally preferred. The second stage oxidation treatment is preferably performed at a higher temperature than the first stage oxidation treatment and at a lower oxygen concentration in the oxidizing atmosphere medium. Oxidation temperature is 250
Oxygen concentration at ~400℃, especially preferably 300-350℃
It is better to carry out in a medium of 0.2 to 9% (by volume). Examples of inert gases used include nitrogen, carbon dioxide, combustion gas, argon, and helium. In this oxidation treatment, for example, air with an oxygen concentration of 20 to 25% by volume can be used as the atmospheric medium, but if carried out in a low concentration oxygen atmosphere with an oxygen concentration of 0.2 to 9%, oxidation treatment at high temperatures becomes possible. This is effective in reducing time. Between the first stage oxidation treatment and the second stage oxidation treatment, phosphorus compounds etc.
An additional 0.02 to 0.3% (weight) of boron is attached. The impregnation is carried out by immersing the fibers to be treated in a solution containing a phosphorus compound or the like, or by spraying the fibers with the solution. If the amount of added phosphorus compounds exceeds 0.3% in terms of phosphorus, etc., the oxidized fibers will stick together and the fibers will become brittle. On the other hand, if it is less than 0.02%, the fibers will easily burn,
It lacks stability in oxidation treatment, tends to be unevenly oxidized, and has a high core ratio. The preferred range is 0.04-0.1
%. The effects of the method of the present invention and the method of adding phosphorus etc. all at once are as follows. That is, a 90,000 denier tow (single fiber) made of acrylic fibers containing 92.0% acrylonitrile, 4.5% methyl acrylate, and 3.5% acrylamide.
By incorporating phosphorus [P] and/or boron [B] into 3d), the first impregnation is performed before the oxidation treatment process, and the second impregnation is performed during the oxidation treatment process to continue the oxidation treatment. The method of the present invention (No. 1 to
4), and as a comparative example, when the same tow is not impregnated with phosphorus or boron at all before and during the oxidation treatment (No. 5), phosphorus or (and) boron is added only before the oxidation treatment, but the oxidation treatment Cases in which no additional impregnation is done during the process (Nos. 8 to 13) and cases in which an excess amount of phosphorus is added before the oxidation treatment process and phosphorus is additionally impregnated during the oxidation treatment process (No.
14), the results of measuring the oxidation rate, core ratio of oxidized fibers, and amount of oxygen bonding are shown in the following table. In addition, the method of the present invention (No. 6) in which the second stage (latter stage) oxidation treatment is performed in a nitrogen atmosphere with an oxygen concentration of 5%, and the method of the present invention (No. 6) in which the second stage (second stage) oxidation treatment is performed in a nitrogen atmosphere with an oxygen concentration of 2%.
7) is also shown in the table below.

【衚】 以䞊の結果より明らかな通り、本発明の劂く被
凊理繊維䞭に適正量のリン、ホり玠等を含たせ、
曎に远加添着しお段階の酞化凊理をするこずに
よ぀お、他の堎合ず比范し、コア率を所定量以䞋
に枛少させるこずができ、たた酞化凊理速床をは
やめお凊理時間を短瞮するこずができる。 本発明により酞化凊理しお埗られた酞化繊維
は、そのたたで耐炎性繊維ずしお有効に利甚する
こずができる。曎に、このものは、均䞀に芯たで
酞化されおいるため、高枩短時間で氎蒞気、二酞
化炭玠、窒玠等にお賊掻するこずにより高収率で
繊維状掻性炭にするこずができ、繊維が䞭空化す
るこずもない。たた、この繊維状掻性炭は、糞、
織物、プルト、䞍織垃等ぞの加工性にも富んで
いる。 次に本発明を実斜䟋によ぀お説明する。䟋䞭
ずあるはリンをずあるはホり玠を意味する。 実斜䟋  アクリロニトリル94.0重量、アクリル酞メチ
ル6.0重量の共重合組成の繊維からなる54䞇デ
ニヌルのトり単糞繊床3dをリン酞二アンモ
ニりム氎溶液で凊理し、ずしお0.07重量含有
せしめた埌、空気䞭で240℃、時間、収瞮率が
自由収瞮率の75〜80になるような匵力で、酞化
し、酞玠結合量6.8重量の酞化繊維を埗た。曎
にこの酞化途䞭の繊維をリン酞二アンモニりム氎
溶液にお凊理し、ずしお0.24重量添着せしめ
た埌、曎に空気䞭で270℃、0.5時間、収瞮率が自
由収瞮率の75〜80になるような匵力で、酞化凊
理したずころ、酞玠結合量16.8重量、コア率
0.5の酞化繊維を埗た。この酞化繊維は匷床32
Kgmm2、䌞床18であ぀た。 実斜䟋  実斜䟋ず同じ組成の重合䜓を玡糞工皋䞭、ゲ
ルトりの状態の時に、−ブチル−ビス−−
クロロ゚チルホスプヌトにお凊理し、ずし
お0.12重量含有せしめ、54䞇デニヌルのトり
単糞繊床3dずした。このトりを空気䞭で240
℃、時間、自由収瞮率が75〜80になるような
匵力で酞化凊理したずころ、この時の酞化繊維の
酞玠結合量は7.4重量であ぀た。曎にこの酞化
凊理途䞭の繊維をホり酞氎で凊理し、ずしお
0.28重量添着せしめた埌、曎に270℃にお空気
䞭で、収瞮率が自由収瞮率の75〜80になるよう
な匵力で0.5時間酞化凊理したずころ、酞玠結合
量17.0重量、コア率1.1の酞化繊維を埗た。
この繊維は匷床34Kgmm2、䌞床19であ぀た。 実斜䟋  アクリロニトリル92.4重量、メタクリル酞メ
チル7.6の共重合組成からなる45䞇デニヌル
単糞繊床1.5dのトりをホり酞氎溶液にお凊理
し、ずしお0.2重量含有せしめた埌、空気䞭
で250℃、時間、収瞮率が自由収瞮率の75〜80
になるような匵力のもず酞化凊理したずころ、
酞玠結合量が7.9重量であ぀た。曎にこの酞化
途䞭の繊維をホり酞氎溶液にお凊理し、ずしお
0.21重量添着した埌、270℃、0.5時間空気䞭
で、収瞮率が自由収瞮率の75〜80になるような
匵力のもず酞化凊理したずころ、酞玠結合量18.4
重量、コア率1.5の酞化繊維匷床35Kg
mm2、䌞床20を埗た。 なお、この繊維を賊掻枩床1100℃にお、内圧
0.015Kgcm2、賊掻ガスH2OCO2
にお3.5分間凊理したずころ、比衚面積980m2
、匷床48.2Kgmm2、ベンれン吞着量51.0の繊
維状掻性炭を収率30.4で埗た。 実斜䟋  実斜䟋ず同じ組成の繊維を、ずが
の組成比のリン酞アンモニりムずホり酞の混合氎
溶液にお凊理し、P0.2、B0.1重量含有せしめた
埌、空気䞭で250℃、15時間、収瞮率が自由収瞮
率の75〜80になるような匵力のもず、酞化凊理
したずころ、酞玠結合量7.1重量の酞化繊維を
埗た。曎にこの繊維をホり酞氎溶液にお凊理し、
ずしお0.18重量添着した埌、曎に空気䞭で
270℃、30分間、収瞮率が自由収瞮率の75〜80
になるような匵力のもず、酞化凊理し、酞玠結合
量が18.9重量、コア率が0.9の酞化繊維を埗
た。 なお、この繊維をリン酞二アンモニりム氎溶液
にお凊理し、及びの含有量をそれぞれ0.30、
0.28重量に調敎した埌、賊掻枩床1200℃にお、
内圧0.015Kgcm2、賊掻ガスH2ON2Val
のもず、分30秒間凊理したずころ、比
衚面積1250m2、匷床39.7Kgmm2、ベンれン吞
着量58.7の繊維状掻性炭を収率28.4で埗た。 実斜䟋  アクリロニトリル90.0重量、塩化ビニリデン
10重量の共重合䜓組成よりなる䞇デニヌル
単糞繊床3dを、ピロリン酞氎溶液にお凊理
し、を0.11重量含有せしめた埌、曎に塩化第
二鉄氎溶液にお凊理し、鉄ずしお0.02重量含有
せしめた埌、空気䞭255℃で、時間、収瞮率が
自由収瞮率の75〜80になるような匵力のもず
で、酞化凊理した。この時酞化凊理糞の酞玠結合
量は7.5重量であ぀た。曎にこの繊維を、ピロ
リン酞氎溶液にお凊理しの含有量を、0.14重量
添着した埌、酞玠濃床が5.5重量よりなる空
気ず窒玠の混合ガス䞭で、290℃、20分間、収瞮
率が自由収瞮率の75〜80になるような匵力のも
ず酞化凊理した。この時の酞玠結合量は19.5重量
、コア率0.1であ぀た。 なお、この繊維を賊掻枩床1150℃、内圧0.11
Kgcm2で、賊掻ガスH2ON2Val
の混合ガス䞭で、凊理したずころ、比衚面積
1250m2、匷床41.9Kgmm2、ベンれン吞着量
57.4の繊維状掻性炭を収率29.9で埗た。
[Table] As is clear from the above results, by incorporating appropriate amounts of phosphorus, boron, etc. into the fibers to be treated as in the present invention,
Furthermore, by additionally impregnating and performing two-stage oxidation treatment, the core ratio can be reduced to a predetermined amount or less compared to other cases, and the oxidation treatment speed can be reduced to shorten the treatment time. Can be done. The oxidized fibers obtained by the oxidation treatment according to the present invention can be effectively used as flame-resistant fibers as they are. Furthermore, since this product is uniformly oxidized to the core, it can be made into fibrous activated carbon at a high yield by activating it with steam, carbon dioxide, nitrogen, etc. at high temperatures and in a short time, and the fibers become hollow. There's nothing to do. In addition, this fibrous activated carbon can be used as yarn,
It is also highly processable into fabrics, felts, non-woven fabrics, etc. Next, the present invention will be explained with reference to examples. P in example
"B" means phosphorus and "B" means boron. Example 1 A 540,000 denier tow (single yarn fineness 3d) made of fibers with a copolymerization composition of 94.0% by weight of acrylonitrile and 6.0% by weight of methyl acrylate was treated with a diammonium phosphate aqueous solution to contain 0.07% by weight of P. After that, the fibers were oxidized in air at 240° C. for 2 hours under a tension such that the shrinkage rate was 75 to 80% of the free shrinkage rate to obtain oxidized fibers with an oxygen bond amount of 6.8% by weight. Furthermore, the fibers in the middle of oxidation are treated with a diammonium phosphate aqueous solution to impregnate 0.24% by weight of P, and the shrinkage rate becomes 75-80% of the free shrinkage rate in air at 270°C for 0.5 hours. When subjected to oxidation treatment under the same tension, the amount of oxygen bonded was 16.8% by weight, and the core ratio was
0.5% oxidized fiber was obtained. This oxidized fiber has a strength of 32
Kg/mm 2 and elongation was 18%. Example 2 A polymer having the same composition as in Example 1 was mixed with n-butyl-bis-(2-
It was treated with (chloroethyl) phosphate to contain 0.12% by weight of P, resulting in a tow of 540,000 denier (single yarn fineness 3d). 240 this tow in the air
When the fibers were oxidized for 2 hours at a temperature of 75% to 80% under tension, the amount of oxygen bonded in the oxidized fibers was 7.4% by weight. Furthermore, the fibers in the middle of the oxidation treatment were treated with boric acid water to obtain B.
After impregnating 0.28% by weight, oxidation treatment was performed for 0.5 hours in air at 270°C under tension such that the shrinkage rate was 75 to 80% of the free shrinkage rate, resulting in an oxygen bond amount of 17.0% by weight and a core percentage. 1.1% oxidized fiber was obtained.
This fiber had a strength of 34 kg/mm 2 and an elongation of 19%. Example 3 A tow of 450,000 denier (single yarn fineness 1.5 d) consisting of a copolymer composition of 92.4% by weight of acrylonitrile and 7.6% of methyl methacrylate was treated with an aqueous boric acid solution to contain 0.2% by weight of B. In air at 250℃ for 2 hours, the shrinkage rate is 75 to 80 of the free shrinkage rate.
When oxidized under tension such that
The amount of oxygen bonded was 7.9% by weight. Furthermore, this oxidized fiber was treated with a boric acid aqueous solution to obtain B.
After impregnating 0.21% by weight, oxidation treatment was performed in air at 270°C for 0.5 hours under tension such that the shrinkage rate was 75 to 80% of the free shrinkage rate, and the amount of oxygen bonded was 18.4%.
Weight%, core rate 1.5% oxidized fiber (strength 35Kg/
mm 2 , elongation 20%). In addition, this fiber was activated at an activation temperature of 1100℃ and an internal pressure
0.015Kg/cm 2 , activating gas (H 2 O/CO 2 = 4/1)
When treated for 3.5 minutes, the specific surface area was 980m 2 /
Fibrous activated carbon having a strength of 48.2 kg/mm 2 and a benzene adsorption amount of 51.0% was obtained in a yield of 30.4%. Example 4 Fibers with the same composition as Example 3 were used with P and B ratios of 2:1.
After treatment with a mixed aqueous solution of ammonium phosphate and boric acid with a composition ratio of 0.2% and 0.1% by weight of B, the shrinkage rate was 75 to 75% of the free shrinkage rate in air at 250℃ for 15 hours. When the fibers were oxidized under a tension of 80%, an oxidized fiber with an oxygen bond content of 7.1% by weight was obtained. Furthermore, this fiber is treated with a boric acid aqueous solution,
After impregnating 0.18% by weight as B, further in air.
270℃, 30 minutes, shrinkage rate is 75-80% of free shrinkage rate
The fibers were oxidized under a tension such that the amount of oxygen bonded was 18.9% by weight and the core percentage was 0.9%. In addition, this fiber was treated with diammonium phosphate aqueous solution to reduce the P and B contents to 0.30 and 0.30, respectively.
After adjusting to 0.28% by weight, at an activation temperature of 1200℃,
Internal pressure 0.015Kg/cm 2 , activation gas (H 2 O/N 2 (Val) =
4/1) for 1 minute and 30 seconds, fibrous activated carbon with a specific surface area of 1250 m 2 /g, strength of 39.7 Kg/mm 2 and benzene adsorption amount of 58.7% was obtained in a yield of 28.4%. Example 5 Acrylonitrile 90.0% by weight, vinylidene chloride
90,000 denier (single yarn fineness 3d) consisting of a copolymer composition of 10% by weight was treated with an aqueous pyrophosphoric acid solution to contain 0.11% by weight of P, and then further treated with an aqueous ferric chloride solution, After containing 0.02% by weight of iron, it was oxidized in air at 255°C for 1 hour under tension such that the shrinkage rate was 75 to 80% of the free shrinkage rate. At this time, the amount of oxygen bonded in the oxidized yarn was 7.5% by weight. Furthermore, this fiber was treated with a pyrophosphoric acid aqueous solution to impregnate the P content to 0.14% by weight, and then the shrinkage rate was increased at 290°C for 20 minutes in a mixed gas of air and nitrogen with an oxygen concentration of 5.5% by weight. The material was oxidized under tension such that the shrinkage rate was 75 to 80% of the free shrinkage rate. At this time, the amount of oxygen bonded was 19.5% by weight, and the core ratio was 0.1%. In addition, this fiber was activated at a temperature of 1150℃ and an internal pressure of 0.11.
Kg/cm 2 , activating gas (H 2 O/N 2 (Val) = 4/
When treated in the mixed gas of 1), the specific surface area
1250m 2 /g, strength 41.9Kg/mm 2 , benzene adsorption amount
57.4% fibrous activated carbon was obtained with a yield of 29.9%.

Claims (1)

【特蚱請求の範囲】  リン又は及びホり玠に換算しお0.01〜
0.3重量のリン又は及びホり玠の化合
物を含むアクリル系繊維を200〜400℃の酞化性雰
囲気䞭、酞玠結合量〜たで酞化凊理し、次
いでリン又は及びホり玠に換算しお0.02〜
0.3のリン又は及びホり玠の化合物を远加
添着し、曎に250〜400℃で酞玠結合量15以䞊、
コア率以䞋になるたで酞化凊理するこずを特
城ずするアクリル系繊維の酞化方法。  リン又は及びホり玠に換算しお0.01〜
0.3重量のリン又は及びホり玠の化合
物を含むアクリル系繊維を200〜400℃の酞化性雰
囲気䞭、酞玠結合量〜たで酞化凊理し、次
いでリン又は及びホり玠に換算しお0.02〜
0.3のリン又は及びホり玠の化合物を远加
添着し、曎に酞玠含有量0.2〜容量の䞍
掻性ガス䞭250〜400℃で酞玠結合量15以䞊、コ
ア率以䞋になるたで酞化凊理するこずを特城
ずする特蚱請求の範囲の酞化方法。
[Claims] 1 0.01 to 0.01 in terms of phosphorus or (and) boron
Acrylic fibers containing 0.3% (by weight) of phosphorus or (and) boron compounds are oxidized in an oxidizing atmosphere at 200 to 400°C to an oxygen bond content of 5 to 8%, and then oxidized to phosphorus or (and) boron. Converted to 0.02~
Add 0.3% of phosphorus or (and) boron compound, and further increase the oxygen binding amount to 15% or more at 250 to 400℃.
A method for oxidizing acrylic fibers, characterized by oxidizing the fibers until the core ratio is 8% or less. 2 0.01~ in terms of phosphorus or (and) boron
Acrylic fibers containing 0.3% (by weight) of phosphorus or (and) boron compounds are oxidized in an oxidizing atmosphere at 200 to 400°C to an oxygen bond content of 5 to 8%, and then oxidized to phosphorus or (and) boron. Converted to 0.02~
Addition of 0.3% phosphorus or (and) boron compound, and further increase the oxygen bond amount to 15% or more and the core ratio to 8% or less at 250 to 400℃ in an inert gas with an oxygen content of 0.2 to 9% (by volume). The oxidation method according to claim 1, characterized in that the oxidation treatment is performed until the oxidation treatment becomes oxidized.
JP6164581A 1981-04-23 1981-04-23 Oxidizing method of acrylic fiber Granted JPS57176220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6164581A JPS57176220A (en) 1981-04-23 1981-04-23 Oxidizing method of acrylic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6164581A JPS57176220A (en) 1981-04-23 1981-04-23 Oxidizing method of acrylic fiber

Publications (2)

Publication Number Publication Date
JPS57176220A JPS57176220A (en) 1982-10-29
JPS6246648B2 true JPS6246648B2 (en) 1987-10-03

Family

ID=13177158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6164581A Granted JPS57176220A (en) 1981-04-23 1981-04-23 Oxidizing method of acrylic fiber

Country Status (1)

Country Link
JP (1) JPS57176220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191328A (en) * 1981-05-13 1982-11-25 Toho Rayon Co Ltd Preparation of fibrous active carbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191328A (en) * 1981-05-13 1982-11-25 Toho Rayon Co Ltd Preparation of fibrous active carbon

Also Published As

Publication number Publication date
JPS57176220A (en) 1982-10-29

Similar Documents

Publication Publication Date Title
US4412937A (en) Method for manufacture of activated carbon fiber
CA1095206A (en) Process for producing carbon fibers
CA1159810A (en) Process for the production of fibrous activated carbon
US4520623A (en) Activated carbon fiber spun yarn
US5292822A (en) High moisture-absorbing and releasing fibers and process for producing the same
US4284615A (en) Process for the production of carbon fibers
US4080417A (en) Process for producing carbon fibers having excellent properties
US4349523A (en) Process for producing carbon fiber of improved oxidation resistance
GB2168966A (en) High-strength carbonaceous fiber
FR2522697A1 (en) ACRYLONITRILE FIBERS, METHOD FOR MANUFACTURING ACRYLONITRILE FIBER, AND MANUFACTURE OF PREOXIDIZED FIBER, FIBROUS ACTIVE CARBON, OR CARBON FIBER THEREFROM
US4024227A (en) Process for producing carbon fibers having excellent properties
US4661336A (en) Pretreatment of pan fiber
JPS6246648B2 (en)
FR2471427A1 (en) PROCESS FOR PRODUCING POLYACRYLONITRILE PREOXIDE FIBER YARNS
US4830845A (en) Precursor for production of preoxidized fibers or carbon fibers
US3972984A (en) Process for the preparation of carbon fiber
CA1109616A (en) Carbon fiber having improved thermal oxidation resistance and process for producing same
JPS61282430A (en) Production of activated carbon fiber
JPS6242048B2 (en)
US4869856A (en) Method for producing carbon fibers from acrylonitrile fiber strands
US3776994A (en) Method of manufacturing polyvinyl alcohol fiber of improved property
JPH0376869A (en) Method for treating surface of carbon fiber in vapor phase
US2897102A (en) Oxidation resistant graphite and method for making the same
JPS6347808B2 (en)
JPS6250574B2 (en)