JPS6244849Y2 - - Google Patents

Info

Publication number
JPS6244849Y2
JPS6244849Y2 JP1981012285U JP1228581U JPS6244849Y2 JP S6244849 Y2 JPS6244849 Y2 JP S6244849Y2 JP 1981012285 U JP1981012285 U JP 1981012285U JP 1228581 U JP1228581 U JP 1228581U JP S6244849 Y2 JPS6244849 Y2 JP S6244849Y2
Authority
JP
Japan
Prior art keywords
pressure
valve
hydraulic transmission
pilot
variable displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981012285U
Other languages
Japanese (ja)
Other versions
JPS57127059U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981012285U priority Critical patent/JPS6244849Y2/ja
Publication of JPS57127059U publication Critical patent/JPS57127059U/ja
Application granted granted Critical
Publication of JPS6244849Y2 publication Critical patent/JPS6244849Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Gearings (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)

Description

【考案の詳細な説明】 本考案は、油圧ポンプと油圧モータとを閉回路
接続した油圧伝動装置(油圧トランスミツシヨ
ン)を、左右独立に備えた油圧駆動装置に関する
ものである。
[Detailed Description of the Invention] The present invention relates to a hydraulic drive device that is equipped with left and right independent hydraulic transmissions in which a hydraulic pump and a hydraulic motor are connected in a closed circuit.

従来、この種の油圧駆動装置にあつては低負荷
直進走行時に、左右の油圧伝動装置の効率の相違
等によつて曲つてしまうことがある。
Conventionally, in this type of hydraulic drive system, during low-load straight-ahead running, the steering wheel may bend due to differences in efficiency between the left and right hydraulic transmission devices.

そこで、特開昭51−50132号公報に示す如く左
右の油圧伝動装置を油圧伝動装置の圧力が低い時
には連通し圧力が高い時には遮断する同調バルブ
を介して短絡し、低負荷直進時には左右の油圧伝
動装置が短絡して効率の相違等があつても直進で
きるようにしたものが提案されている。
Therefore, as shown in Japanese Patent Application Laid-Open No. 51-50132, the left and right hydraulic transmission devices are short-circuited via a synchronized valve that communicates when the pressure of the hydraulic transmission device is low and shuts off when the pressure is high. A vehicle has been proposed that allows the vehicle to travel straight even if there is a difference in efficiency due to a short circuit in the transmission device.

しかし、前述の同調バルブは、バネ力でスプー
ルを連通位置に保持しかつ左右の油圧伝動装置の
圧力によつてスプールをバネ力に抗して遮断位置
に切換える構造であるから、次の不具合を有す
る。
However, the above-mentioned synchronized valve has a structure in which the spring force holds the spool in the communicating position, and the pressure of the left and right hydraulic transmission devices switches the spool to the shut-off position against the spring force, which causes the following problems. have

同調バルブが連通位置の時にステアリング操
作、例えば左操向操作すると(つまり、右油圧
伝動装置を高速回転状態とすると)同調バルブ
のスプールが連通位置であるから、右油圧伝動
装置の高圧側管路から作動油が左油圧伝動装置
の高圧側管路に流れ込んでしまうから、左油圧
伝動装置が高速回転となつてしまい左操向しな
くなつてしまう。
When the tuning valve is in the communicating position, if you perform a steering operation, for example, to the left (that is, if the right hydraulic transmission is in a high-speed rotation state), the spool of the tuning valve is in the communicating position, so the high-pressure side pipe of the right hydraulic transmission is Since the hydraulic oil flows into the high-pressure side conduit of the left hydraulic transmission, the left hydraulic transmission rotates at high speed, making it impossible to steer to the left.

また、右油圧伝動装置の高圧側管路の作動油
が左油圧伝動装置の高圧側管路に流れ込むこと
によつて右油圧伝動装置の低圧側管路への右モ
ータからの戻り流量が減少しチヤージポンプの
チヤージ流量でこの減少分を補なえなくなつた
場合にはキヤビテーシヨンが発生してしまう。
Additionally, as the hydraulic fluid in the high-pressure side pipe of the right hydraulic transmission device flows into the high-pressure side pipe line of the left hydraulic transmission device, the return flow rate from the right motor to the low-pressure side pipe of the right hydraulic transmission device is reduced. Cavitation occurs when the charge flow rate of the charge pump cannot compensate for this decrease.

したがつて、チヤージポンプの流量を大きく
しなければならず馬力損失が増大してしまう。
Therefore, the flow rate of the charge pump must be increased, resulting in increased horsepower loss.

前述のの状態からさらに左操向操作する
と、右油圧駆動装置の高圧側管路の圧力が左油
圧伝動装置の抵抗により上昇して同調バルブの
スプールをバネ力に抗して急激に遮断位置とす
るので、車両は急激に左旋回し非常に危険であ
る。
When the left steering operation is performed from the above-mentioned state, the pressure in the high-pressure side pipe of the right hydraulic drive device increases due to the resistance of the left hydraulic transmission device, and the spool of the synchronized valve suddenly moves to the shutoff position against the spring force. This causes the vehicle to turn sharply to the left, which is extremely dangerous.

以上のことを要約すると、ステアリング操作開
始段階では車両が旋回せずにある程度ステアリン
グ操作した時に車両が急激に旋回するので非常に
危険であると共に、ステアリング操作した時にキ
ヤビテーシヨンが発生して油圧駆動装置の寿命な
どに悪影響を与えるとの不具合を有する。
To summarize the above, the vehicle does not turn at the beginning of the steering operation, but when the steering wheel is operated to a certain extent, the vehicle suddenly turns, which is extremely dangerous, and cavitation occurs when the steering wheel is operated, causing damage to the hydraulic drive system. It has a problem that has a negative impact on its lifespan.

なお、特開昭54−71260号公報や特開昭54−
71262号公報に記載されたように、右油圧伝動装
置の第1、第2主管路と左油圧伝動装置の第1、
第2主管路を直進補償弁で断通すると共に、この
直進補償弁を車両が直進する時には連通位置とな
り、かつ操向する時には遮断位置となるようにし
た油圧駆動装置が知られているが、この油圧駆動
装置であると重負荷で直進している時に右左油圧
伝動装置に加わる負荷が大きく異なると高負荷側
の油圧伝動装置の高圧油が直進補償弁を通つて低
負荷側の油圧伝動装置に流入し、高負荷側のモー
タ回転数が減少すると共に、低負荷側のモータの
回転数が増加して左右のモータ回転数差が拡大し
て、直進補償弁によつて左右の油圧伝動装置の第
1、第2主管路を短絡したことによつて、かえつ
て車両が大きく曲進して直進できなくなつてしま
う。
In addition, JP-A-54-71260 and JP-A-54-
As described in Publication No. 71262, the first and second main pipes of the right hydraulic transmission and the first and second main pipes of the left hydraulic transmission
A hydraulic drive device is known in which the second main pipe is disconnected by a straight-line compensation valve, and the straight-line compensation valve is set in a communicating position when the vehicle is traveling straight, and in a blocking position when the vehicle is steering. With this hydraulic drive system, when the load applied to the right and left hydraulic transmission devices differs greatly when traveling straight under heavy load, high pressure oil from the hydraulic transmission device on the high load side passes through the straight travel compensation valve to the hydraulic transmission device on the low load side. The rotational speed of the motor on the high-load side decreases, and the rotational speed of the motor on the low-load side increases, increasing the difference in the rotational speed of the left and right motors. By short-circuiting the first and second main pipes, the vehicle ends up making a large turn and is unable to go straight.

本考案は上記の事情に鑑みなされたものであ
り、その目的は低負荷時の直進を補償できると共
に、ステアリング操作すると直ちに滑らかに旋回
操向し、さらには小容量のチヤージポンプを用い
てキヤビテーシヨンが発生し難くできると共に、
重負荷直進時に右左油圧伝動装置に加わる負荷の
差が大であつても車両が大きく曲進することがな
いようにした油圧駆動装置を提供することであ
る。
This invention was developed in view of the above circumstances, and its purpose is to compensate for straight-line driving under low load, to smoothly turn the steering wheel immediately after steering operation, and to prevent cavitation by using a small-capacity charge pump. It can be difficult to do, and
To provide a hydraulic drive device which prevents a vehicle from making a large turn even if there is a large difference in loads applied to right and left hydraulic transmission devices when moving straight with a heavy load.

以下図面を参照して本考案の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

Aは右油圧伝動装置、Bは左油圧伝動装置であ
り、Cはチヤージポンプ、Dはパイロツトポンプ
である。
A is a right hydraulic transmission, B is a left hydraulic transmission, C is a charge pump, and D is a pilot pump.

前記油圧伝動装置Aは次のように構成してあ
る。
The hydraulic transmission device A is constructed as follows.

つまり、右可変容量形ポンプ1と右可変容量形
モータ2とを第1.第2主管路3,4で閉回路接続
すると共に、第1.第2主管路3,4間にシヤツト
ルバルブ5が設けてある。
That is, the right variable displacement pump 1 and the right variable displacement motor 2 are connected in a closed circuit through the first and second main lines 3 and 4, and the shuttle valve 5 is connected between the first and second main lines 3 and 4. is provided.

該シヤツトルバルブ5は第1.第2主管路3,4
の圧力が等しい時には第1.第2主管路3,4を遮
断する中立位置Nとなり、第1主管路3の圧力が
高い時には第2主管路4をリリーフ弁7を備えた
ドレーン路8に接続する第1位置となり、第2
主管路4へ圧力が高い時には第1主管路3をドレ
ーン路8に接続する第2位置となる構造であ
る。
The shuttle valve 5 is connected to the first and second main pipes 3 and 4.
When the pressures are equal, the first and second main pipes 3 and 4 are cut off at the neutral position N, and when the pressure of the first main pipe 3 is high, the second main pipe 4 is connected to the drain pipe 8 equipped with the relief valve 7. the first position, and the second
The structure is such that when the pressure in the main pipe line 4 is high, the first main pipe line 3 is connected to the drain line 8 in a second position.

前記チヤージポンプCの吐出路C1は逆止弁
9,10を介して第1.第2主管路3,4に接続し
ていると共に、第1.第2主管路3,4はリリーフ
弁11,12を介して前記吐出路C1に接続して
ある。
The discharge passage C 1 of the charge pump C is connected to the first and second main pipes 3 and 4 via check valves 9 and 10, and the first and second main pipes 3 and 4 are connected to relief valves 11 and 10, respectively. It is connected to the discharge passage C1 via 12.

前記左油圧伝動装置Bは次のように構成してあ
る。
The left hydraulic transmission device B is constructed as follows.

つまり、左可変容量形ポンプ21と右可変容量
形モータ22とを第1.第2主管路23,24で閉
回路接続すると共に、第1.第2主管路23,24
間にシヤツトルバルブ25が設けてある。
That is, the left variable displacement pump 21 and the right variable displacement motor 22 are connected in a closed circuit through the first and second main conduits 23 and 24, and the first and second main conduits 23 and 24 are connected in a closed circuit.
A shuttle valve 25 is provided between them.

該シヤツトルバルブ25は第1.第2主管路2
3,24の圧力が等しい時には第1.第2主管路2
3,24を遮断する中立位置Nとなり、第1主管
路23の圧力が高い時には第2主管路24をリリ
ーフ弁27を備えたドレーン路28に接続する第
1位置となり、第2主管路24の圧力が高い時
には第1主管路23をドレーン路28に接続する
第2位置となる構造である。
The shuttle valve 25 is connected to the first and second main pipes 2.
When the pressures of 3 and 24 are equal, the first and second main pipes 2
3 and 24, and when the pressure in the first main line 23 is high, it becomes the first position where the second main line 24 is connected to the drain line 28 equipped with the relief valve 27, and the second main line 24 is in the first position. When the pressure is high, the first main pipe line 23 is connected to the drain line 28 in a second position.

前記チヤージポンプCの吐出路C1は逆止弁2
9,30を介して第1.第2主管路23,24に接
続していると共に、第1、第2主管路23,24
はリリーフ弁31,32を介して前記吐出路C1
に接続してある。
The discharge passage C1 of the charge pump C is a check valve 2.
9, 30 to the first and second main pipes 23, 24, and the first and second main pipes 23, 24.
is the discharge passage C 1 via the relief valves 31 and 32.
It is connected to.

前記各第1主管路3,23は第1連通路6で短
絡され、第2主管路4,24は第2連通路26で
短絡されていると共に、第1.第2連通路6,26
には開閉弁20が設けてある。
The first main pipes 3 and 23 are short-circuited by a first communication path 6, and the second main pipes 4 and 24 are short-circuited by a second communication path 26, and the first and second communication paths 6, 26 are short-circuited.
is provided with an on-off valve 20.

該開閉弁20はバネ20aで遮断位置に保持
され、受圧部20bのパイロツト圧力で連通位置
に切換る構造となつている。
The on-off valve 20 is held in a closed position by a spring 20a, and is switched to a communicating position by pilot pressure from a pressure receiving portion 20b.

そして、パイロツト路40は前記パイロツトポ
ンプDの吐出路D1に接続してあり、パイロツト
路40には第1.第2切換弁41,42が設けてあ
る。
The pilot passage 40 is connected to the discharge passage D1 of the pilot pump D, and the pilot passage 40 is provided with first and second switching valves 41 and 42.

該第1切換弁41はバネ41aでドレーン位置
イに保持され、受圧部41bの圧力で連通位置ロ
に切換るものであり、第2切換弁42は連通位置
ハとドレーン位置ニとを備え、バネ42aで連通
位置ハに保持してある。
The first switching valve 41 is held in a drain position A by a spring 41a, and is switched to a communicating position B by the pressure of a pressure receiving part 41b, and the second switching valve 42 has a communicating position C and a drain position D, It is held in the communicating position C by a spring 42a.

前記パイロツトポンプDの吐出路D1は圧力補
償式の操作弁43を介して第1.第2パイロツト管
路44,45のどちらか一方に供給制御され、第
1.第2パイロツト管路44,45は右.左操向弁
46,47を介して右.右可変容量形ポンプ1,
21の容量制御用サーボ機構1a,21a及び
右.左可変容量形モータ2,22の容量制御用サ
ーボ機構2a,22aにパイロツト圧として供給
制御され、パイロツトポンプDの吐出圧油を容量
制御シリンダ1b,2b,21b,22bに圧送
制御するようにしてある。
The discharge path D1 of the pilot pump D is controlled to be supplied to either the first or second pilot pipe 44, 45 via a pressure-compensated operation valve 43, and the
1. The second pilot pipes 44 and 45 are on the right. right via left steering valves 46 and 47. Right variable displacement pump 1,
21 capacity control servo mechanisms 1a, 21a and the right. The pilot pressure is controlled to be supplied to the displacement control servomechanisms 2a and 22a of the left variable displacement motors 2 and 22, and the pressure oil discharged from the pilot pump D is controlled to be pumped to the displacement control cylinders 1b, 2b, 21b and 22b. be.

前記操作弁43は吐出路D1を遮断する中立位
置N、第1パイロツト管路44に接続する第1位
置、第2パイロツト管路45に接続する第2位
置とを備え、レバ43aで切換えられると共
に、レバ43aの操作ストロークに応じた圧油が
第1あるいは第2パイロツト管路44,45に生
じるように構成してある。
The operation valve 43 has a neutral position N that blocks the discharge passage D1 , a first position that connects to the first pilot line 44, and a second position that connects to the second pilot line 45, and is switched by a lever 43a. At the same time, pressure oil is generated in the first or second pilot pipes 44, 45 in accordance with the operating stroke of the lever 43a.

そして、第1.第2パイロツト管路44,45は
シヤツトル弁48を介して前記第1切換弁41の
受圧部41bに接続され、その圧力が所定圧力P1
以上となると連通位置ロに切換るようにしてあ
る。
The first and second pilot pipes 44 and 45 are connected to the pressure receiving part 41b of the first switching valve 41 via a shuttle valve 48, and the pressure thereof is set to a predetermined pressure P1.
When this happens, the communication position is switched to the communication position B.

前記右.左操向弁46,47はポンプモータの
容量を零とする中立位置N、正転方向とする正転
位置ホ、逆転方向とする逆転位置ヘとを備え、レ
バ46a,47aで切換えられると共に、レバ4
6a,47aはリンク機構49,50を介して前
記第2切換弁42に、右.左操向弁46,47と
逆方向位置に操作するとドレーン位置ニに切換る
ように連結してある。
Said right. The left steering valves 46 and 47 have a neutral position N where the capacity of the pump motor is zero, a normal rotation position H where the pump motor rotates in the forward direction, and a reverse position where the pump motor rotates in the reverse direction, and are switched by levers 46a and 47a. lever 4
6a and 47a are connected to the second switching valve 42 via link mechanisms 49 and 50, respectively. It is connected to the left steering valves 46 and 47 so that when the valve is operated in the opposite direction, the drain position is switched to the drain position N.

次に作動を説明する。 Next, the operation will be explained.

車両が直進.前進する時。 The vehicle goes straight. Time to move forward.

操作弁43を第1位置、右.左操向弁4
6,47を正転位置ホとして各ポンプ・モータ
を正転駆動させる。
Set the operating valve 43 to the first position, right. Left steering valve 4
6 and 47 are set as normal rotation position E, and each pump motor is driven in normal rotation.

これにより、右.左油圧伝動装置A.Bの第1
主管路3,23は第2主管路4,24よりも高
圧となる。つまり、差圧△Pが生じる。
With this, the right. 1st of left hydraulic transmission AB
The main lines 3 and 23 have a higher pressure than the second main lines 4 and 24. In other words, a differential pressure ΔP is generated.

ここで、前記差圧△Pは可変容量ポンプ1,
21の入力軸馬力が一定のとき可変容量モータ
2,22の回転数に関して第2図に示す表図の
ごとくになる。
Here, the differential pressure ΔP is the variable displacement pump 1,
When the input shaft horsepower of the motor 21 is constant, the rotational speed of the variable displacement motors 2 and 22 is as shown in the table shown in FIG.

つまり、所定の回転数N1で容量が最大とな
り、それよりも低速回転或N′(高負荷状態)
では差圧が順次高くなつてある回転数N2で最
高となりそれ以後は差圧が同じとなると共に、
所定の回転数N1よりも高速回転或N″(軽負荷
状態)では差圧が等圧となる。
In other words, the capacity is maximum at a predetermined rotation speed N 1 , and at lower speeds or N′ (high load state)
Then, the differential pressure gradually increases until it reaches a maximum at a certain rotation speed N 2 , and thereafter the differential pressure remains the same, and
At a rotation speed higher than the predetermined rotation speed N1 (a light load state), the differential pressure becomes equal.

一方、第1.第2パイロツト管路44,45の
差圧△P′はレバ43aの操作ストロークに比例
しストローク大(負荷小)ならば大きく、スト
ローク小(負荷大)ならば小さくなる。
On the other hand, the differential pressure ΔP' between the first and second pilot pipes 44 and 45 is proportional to the operating stroke of the lever 43a, and increases if the stroke is large (small load) and becomes small if the stroke is small (large load).

ここで、所定回転数N1のときの差圧△P1
前記差圧△P′とが△P′>△P1の時(軽負荷時)
にはバネ41aの力に抗して第1切換弁41が
連通位置ロとなり、△P′<△P1の時(重負荷
時)にはバネ41aの力で第1切換弁41がド
レーン位置イとなるように設定する。
Here, when the differential pressure △P 1 at the predetermined rotation speed N 1 and the differential pressure △P′ are △P′>△P 1 (during light load)
, the first switching valve 41 moves to the communication position B against the force of the spring 41a, and when △P'<△P 1 (during heavy load), the first switching valve 41 moves to the drain position due to the force of the spring 41a. Set it so that

したがつて、前述の直進.前進状態におい
て、軽負荷であればパイロツトポンプDの吐出
圧油がパイロツト路40を介して開閉弁20の
受圧部20bに供給されて連通位置となるか
ら、右左の第1主管路3,23及び第2主管路
4,24がそれぞれ短絡連通し右油圧伝動装置
Aの効率と左油圧伝動装置Bの効率とが相違し
ても第1主管路3,23は等圧となつて車両は
直進する。
Therefore, go straight as mentioned above. In the forward movement state, if the load is light, the discharge pressure oil of the pilot pump D is supplied to the pressure receiving part 20b of the on-off valve 20 through the pilot passage 40, and the opening/closing valve 20 is in a communicating position. Even if the second main pipes 4 and 24 are short-circuited and the efficiency of the right hydraulic transmission device A and the efficiency of the left hydraulic transmission device B are different, the pressure in the first main pipes 3 and 23 becomes equal, and the vehicle moves straight. .

また、前述の状態で重負荷となると△P1>△
P′となつて第1切換弁41はドレーン位置イと
なるから開閉弁20はバネ力で遮断位置とな
り、第1主管路3,23及び第2主管路4,2
4は遮断される。
Also, if the load becomes heavy under the above conditions, △P 1 > △
P' and the first switching valve 41 is in the drain position A, so the on-off valve 20 is in the cutoff position due to the spring force, and the first main pipes 3, 23 and the second main pipes 4, 2
4 is blocked.

したがつて、重負荷状態で車両を稼動させる
場合には左右の油圧伝動装置A.Bが独立とな
り、負荷によつて車両が大きく曲がることはな
い。
Therefore, when the vehicle is operated under a heavy load, the left and right hydraulic transmission devices AB become independent, and the vehicle does not bend significantly due to the load.

車両を左右に操向させる場合。 When steering the vehicle left or right.

第1.第2操向弁46,47を異なる位置ホ.
ヘに切換えて車両を操向するので、第2切換弁
42はドレーン位置ニに切換り負荷に関係なく
開閉弁20は遮断位置となるから左右の油圧
伝動装置A.Bは独立し車両を滑らかに旋回操向
できる。
The first and second steering valves 46 and 47 are moved to different positions.
Since the vehicle is steered by switching to F, the second switching valve 42 switches to drain position N, and the on-off valve 20 is in the cutoff position regardless of the load, so the left and right hydraulic transmission devices AB are independent and the vehicle can be turned smoothly. Can be steered.

本考案は以上の様になり、右油圧伝動装置Aの
第1、第2主管路3,4と左油圧伝動装置Bの第
1、第2主管路3,4は開閉弁20で断通される
と共に、その開閉弁20はバネ力で遮断位置に
保持され、かつ受圧部20bのパイロツト圧で連
通位置となり、しかも受圧部20bにパイロツ
ト圧を供給する第1切換弁41は、操作弁43の
操作ストロークが小さく第1、第2パイロツト管
路44,45の差圧が所定圧力以下の時、つまり
油圧伝動装置の負荷が小さく高速回転している時
には連通位置となり、かつ差圧が所定圧力以上の
時、つまり油圧伝動装置の負荷が大きく低速回転
している時にドレーン位置となり、第2切換弁4
1はステアリング操作操向する時にはドレーン位
置となる。
The present invention is as described above, and the first and second main pipes 3 and 4 of the right hydraulic transmission device A and the first and second main pipes 3 and 4 of the left hydraulic transmission device B are disconnected by the on-off valve 20. At the same time, the opening/closing valve 20 is held in the shutoff position by the spring force and is brought into the communicating position by the pilot pressure of the pressure receiving part 20b. When the operating stroke is small and the differential pressure between the first and second pilot pipes 44 and 45 is below a predetermined pressure, that is, when the load on the hydraulic transmission is small and it is rotating at high speed, the communication position is reached, and the differential pressure is above the predetermined pressure. , that is, when the load on the hydraulic transmission device is large and it is rotating at a low speed, it is in the drain position, and the second switching valve 4 is in the drain position.
1 becomes the drain position when performing steering operation.

したがつて、低負荷で直進する時には第1切換
弁41が連通位置で、第2切換弁42が連通位置
となるから開閉弁20の受圧部20bにパイロツ
ト圧が供給されて開閉弁20は連通位置となつ
て左右油圧伝動装置A,Bの第1主管路3,23
及び第2主管路4,24がそれぞれ短絡連通して
右油圧伝動装置Aの効率と左油圧伝動装置Bの効
率が相違しても車両を直進できる。
Therefore, when traveling straight under low load, the first switching valve 41 is in the communicating position and the second switching valve 42 is in the communicating position, so pilot pressure is supplied to the pressure receiving part 20b of the on-off valve 20, and the on-off valve 20 is in the communicating position. The first main pipes 3, 23 of the left and right hydraulic transmission devices A, B
The second main pipes 4 and 24 are short-circuited, allowing the vehicle to travel straight even if the efficiency of the right hydraulic transmission device A and the efficiency of the left hydraulic transmission device B are different.

また、重負荷で直進すると時には第1切換弁4
1がドレーン位置となつて第2切換弁42が連通
位置であつても開閉弁20の受圧部20bにパイ
ロツト圧が供給されずに開閉弁20は遮断位置
となり、右左油圧伝動装置A,Bは独立となつて
右左油圧伝動装置A,Bに加わる負荷の差により
車両が大きく曲進することがない。
In addition, when traveling straight with a heavy load, sometimes the first switching valve 4
1 is in the drain position and the second switching valve 42 is in the communication position, pilot pressure is not supplied to the pressure receiving part 20b of the on-off valve 20, and the on-off valve 20 is in the cutoff position, and the right and left hydraulic transmission devices A and B are The vehicle does not move significantly due to the difference in the loads applied to the right and left hydraulic transmission devices A and B independently.

また、車両を左右に操向する時には第2切換弁
42がドレーン位置となつて第1切換弁41が連
通位置であつても開閉弁20の受圧部20bにパ
イロツト圧が供給されずに開閉弁20は遮断位置
となるので、右左油圧伝動装置A,Bは独立し、
従来のように一方の油圧伝動装置の高圧側主管路
から他方の油圧伝動装置の高圧側主管路に作動油
が流入することがなく車両を滑らかに旋回操向で
きると共に、一方の油圧伝動装置の低圧側主管路
へ戻り流量が減少するこがなく小容量のチヤージ
ポンプを用いてキヤビテーシヨン発生を防止でき
る。
Furthermore, when steering the vehicle left and right, even if the second switching valve 42 is in the drain position and the first switching valve 41 is in the communicating position, pilot pressure is not supplied to the pressure receiving part 20b of the on-off valve 20, and the on-off valve is closed. 20 is the cutoff position, so the right and left hydraulic transmission devices A and B are independent.
Unlike in the past, hydraulic fluid does not flow from the high-pressure side main line of one hydraulic transmission to the high-pressure side main line of the other hydraulic transmission, allowing the vehicle to turn and steer smoothly. Cavitation can be prevented by using a small-capacity charge pump without reducing the flow rate returning to the low-pressure side main pipe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す線図的構成説明
図で、第2図は差圧とモータ回転数との関係を示
す表図である。 Aは右油圧伝動装置、Bは左油圧伝動装置、C
はチヤージポンプ、1は右ポンプ、2は右モー
タ、3,4は第1.第2主管路、6は連通路、20
は開閉弁、21は左ポンプ、22は左モータ、2
3,24は第1.第2主管路、26は連通路、40
はパイロツト路、41,42は第1.第2切換弁。
FIG. 1 is a diagrammatic configuration explanatory diagram showing an embodiment of the present invention, and FIG. 2 is a table diagram showing the relationship between differential pressure and motor rotation speed. A is the right hydraulic transmission, B is the left hydraulic transmission, C
1 is the charge pump, 1 is the right pump, 2 is the right motor, 3 and 4 are the 1st and 2nd main pipes, 6 is the communication path, 20
is the on-off valve, 21 is the left pump, 22 is the left motor, 2
3 and 24 are first and second main pipes, 26 is a communication path, 40
is the pilot path, and 41 and 42 are the first and second switching valves.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 右可変容量形ポンプ1と右可変容量形モータ2
とを第1、第2主管路3,4で閉回路接続した右
油圧伝動装置A及び左可変容量形ポンプ21と左
可変容量形モータ22とを第1、第2主管路2
3,24で閉回路接続した左油圧駆動装置Bを備
えた油圧駆動装置において、前記右油圧伝動装置
Aの第1、第2主管路3,4と前記左油圧伝動装
置Bの第1、第2連通路6,26を介してそれぞ
れ短絡連通し、該第1、第2連通路6,26に、
バネ力で遮断位置となり受圧部20bのパイロ
ツト圧で連通位置となる開閉弁20を設けると
共に、該開閉弁20の受圧部20bに接続したパ
イロツト路40に第1、第2切換弁41,42を
直列に設け、さらに前記各可変容量形ポンプ、モ
ータの容量制御用サーボ機構に接続した第1、第
2パイロツト管路44,45のどちらか一方に操
作ストロークに応じた圧油を選択的に供給する操
作弁43を設けると共に、前記第1切換弁41を
第1、第2パイロツト管路44,45の差圧が所
定圧力以上となるドレーン位置イとなり、かつ所
定圧力以下となると連通位置ロとなる構成とする
と共に、前記第2切換弁42を、ステアリング操
作すると連通位置ヘからドレーン位置ニに切換る
構成としたことを特徴とする油圧駆動装置。
Right variable displacement pump 1 and right variable displacement motor 2
The right hydraulic transmission device A, which is connected in a closed circuit with the first and second main pipes 3 and 4, and the left variable displacement pump 21 and the left variable displacement motor 22 are connected to the first and second main pipes 2.
In a hydraulic drive device including a left hydraulic drive device B connected in a closed circuit at 3 and 24, the first and second main pipes 3 and 4 of the right hydraulic transmission device A and the first and first main pipes of the left hydraulic transmission device B are connected to each other in a closed circuit. Short-circuit communication is provided through the two communication passages 6 and 26, respectively, and the first and second communication passages 6 and 26 are
An on-off valve 20 is provided which is placed in a cutoff position by a spring force and placed in a communication position by a pilot pressure of a pressure receiving part 20b, and first and second switching valves 41 and 42 are provided in a pilot path 40 connected to the pressure receiving part 20b of the on-off valve 20. Pressure oil is selectively supplied according to the operating stroke to either one of the first and second pilot pipes 44 and 45 which are arranged in series and further connected to the servo mechanism for controlling the displacement of each of the variable displacement pumps and motors. At the same time, the first switching valve 41 is set to the drain position A when the pressure difference between the first and second pilot pipes 44 and 45 is above a predetermined pressure, and to the communication position B when the pressure is below a predetermined pressure. A hydraulic drive device characterized in that the second switching valve 42 is switched from a communication position to a drain position N when a steering wheel is operated.
JP1981012285U 1981-02-02 1981-02-02 Expired JPS6244849Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981012285U JPS6244849Y2 (en) 1981-02-02 1981-02-02

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981012285U JPS6244849Y2 (en) 1981-02-02 1981-02-02

Publications (2)

Publication Number Publication Date
JPS57127059U JPS57127059U (en) 1982-08-07
JPS6244849Y2 true JPS6244849Y2 (en) 1987-11-28

Family

ID=29810399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981012285U Expired JPS6244849Y2 (en) 1981-02-02 1981-02-02

Country Status (1)

Country Link
JP (1) JPS6244849Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1274748A (en) * 1987-02-19 1990-10-02 Steven Harold Johnson Balanced hydraulic propulsion system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471260A (en) * 1977-11-18 1979-06-07 Komatsu Ltd Controlling device in oil pressure driving device
JPS5471262A (en) * 1977-11-18 1979-06-07 Komatsu Ltd Controlling device in oil pressure device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471260A (en) * 1977-11-18 1979-06-07 Komatsu Ltd Controlling device in oil pressure driving device
JPS5471262A (en) * 1977-11-18 1979-06-07 Komatsu Ltd Controlling device in oil pressure device

Also Published As

Publication number Publication date
JPS57127059U (en) 1982-08-07

Similar Documents

Publication Publication Date Title
US4075841A (en) Control system for hydrostatic transmission
US4324098A (en) Hydraulic circuit for a hydraulically driven vehicle
US3803841A (en) Steering actuated motor displacement control valve
GB2320314A (en) Hydrostatic transmission control system
JP2004027706A (en) Hydraulic circuit device for construction machinery
JPS6244849Y2 (en)
US4583371A (en) Hydrostatic drive arrangement
JPS6313979Y2 (en)
JPS5854305B2 (en) Seiatsukudo Souchi
JP2716607B2 (en) Hydraulic circuit of construction machinery
JPH03282063A (en) Hydraulic circuit for closed circuit hydraulic transmission
DE102010048891A1 (en) Drive system for mobile machine, particularly ground conveyor, has hydraulic fan drive for producing cooling air flow at heat exchanger unit
JP2749611B2 (en) Hydraulic drive using load sensing system
JPH0618820Y2 (en) Running hydraulic circuit of wheel type construction machine
SU1611778A1 (en) Integrated hydraulic system for steering gear and additional user for vehicle
EP0028448A2 (en) Fluid motor control system
JP2594686Y2 (en) Traveling hydraulic circuit
JPH0674054B2 (en) Straight traveling control circuit device for hydraulic traveling vehicle
JPH04173478A (en) Hydraulic drive unit for working vehicle
SU1085860A1 (en) Hydraulic system of vehicle with positive-displacement hydraulic transmission
JP2919120B2 (en) Tractor transmission
JP4076436B2 (en) Flow rate support circuit to HST circuit
JP3218299B2 (en) Travel speed control circuit for construction machinery
SU1255467A1 (en) Hydraulic torque converter for vehicle
JPH0370684A (en) Hydraulic steering device with variable displacement oil hydraulic motor