JPS6241307B2 - - Google Patents

Info

Publication number
JPS6241307B2
JPS6241307B2 JP3231381A JP3231381A JPS6241307B2 JP S6241307 B2 JPS6241307 B2 JP S6241307B2 JP 3231381 A JP3231381 A JP 3231381A JP 3231381 A JP3231381 A JP 3231381A JP S6241307 B2 JPS6241307 B2 JP S6241307B2
Authority
JP
Japan
Prior art keywords
powder
hardness
solid lubricant
metal
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3231381A
Other languages
Japanese (ja)
Other versions
JPS57145947A (en
Inventor
Katsuzo Okada
Noboru Takahashi
Makoto Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOPATSUKU KK
Original Assignee
OOPATSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOPATSUKU KK filed Critical OOPATSUKU KK
Priority to JP3231381A priority Critical patent/JPS57145947A/en
Publication of JPS57145947A publication Critical patent/JPS57145947A/en
Publication of JPS6241307B2 publication Critical patent/JPS6241307B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】 本発明は潤滑性焼結金属材料、即ち金属粉末と
固体潤滑剤粉末との結合粉末の圧粉成形焼結体に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compacted sintered body of a lubricious sintered metal material, that is, a bonded powder of metal powder and solid lubricant powder.

潤滑性焼結金属材料はアルミニウム・銅・鉄な
どの金属粉末あるいはそれらの合金粉末に二硫化
モリブデン(MoS2)・二硫化タングステン
(WS2)・黒鉛(C)などの固体潤滑剤粉末を配合し、
これに必要に応じて酸化防止剤などの助剤を配合
した均一混合粉末を圧粉成形し、その圧粉成形体
を焼結処理したもので、摩擦を受けると摩擦面に
含有固体潤滑剤の被覆膜が生じて自己潤滑性を発
揮する材料であり、例えば軸受部に潤滑油・グリ
ース等の液体系潤滑剤を使用することができな
い、或は好ましくない場合(食品関係機械、化学
関係機械、高温・低温あるいは真空など特殊雰囲
気中で使用される機器類など)のオイルレス軸受
材料などとして活用されている。
Lubricating sintered metal materials are made by blending solid lubricant powders such as molybdenum disulfide (MoS 2 ), tungsten disulfide (WS 2 ), and graphite (C) with metal powders such as aluminum, copper, and iron, or their alloy powders. death,
A homogeneous mixed powder containing auxiliary agents such as antioxidants as required is compacted, and the compacted compact is sintered. When subjected to friction, the solid lubricant contained in the friction surface is released. It is a material that forms a coating film and exhibits self-lubricating properties. For example, when it is impossible or undesirable to use liquid lubricants such as lubricating oil or grease on the bearing part (food-related machinery, chemical-related machinery). It is used as an oil-less bearing material for equipment used in special atmospheres such as high temperature, low temperature, or vacuum).

この材料の耐久性(耐摩耗性)、機械的強度
(靭性・耐圧性など)は材料のかたさと相関し、
かたさが大きければ耐久性・機械的強度も良好な
ものとなる。
The durability (abrasion resistance) and mechanical strength (toughness, pressure resistance, etc.) of this material are correlated with the material's hardness.
The greater the hardness, the better the durability and mechanical strength.

しかし、該材料のかたさ・その他の特性はベー
ス成分である金属の種別により、又同種金属でも
粉末粒度、固体潤滑剤粉末の配合割合、圧粉成形
密度、焼結条件(温度・時間・雰囲気など)など
の違いにより種々異なるが、該材料は粉末の焼結
肉質であること、固体潤滑剤粉末の配合分だけ金
属成分密度が小さいことなどから各金属種別何れ
の場合も同種金属の通常の充実凝固肉質体との比
較に於てかたさ水準は低い。
However, the hardness and other characteristics of the material depend on the type of metal that is the base component, and even for the same type of metal, the powder particle size, solid lubricant powder blending ratio, compaction density, sintering conditions (temperature, time, atmosphere, etc.) ), etc., but since the material is a sintered powder and the density of the metal component is low due to the proportion of solid lubricant powder, it is common to have the same type of metal in each metal type. The level of hardness is low compared to solidified fleshy bodies.

従つて該材料をオイルレス軸受材料その他とし
て広範囲に有効に活用するためには全般的にその
かたさ水準を高めて耐久性・機械的強度に関しよ
り優れたものを開発することが強く望まれてい
る。
Therefore, in order to effectively utilize this material in a wide range of applications such as oil-less bearing materials, it is strongly desired to improve the overall hardness level and develop a material with superior durability and mechanical strength. .

本発明は上記に鑑みてこの種の潤滑性焼結金属
材料につきそのかたさ水準を高めて上記の要望に
応えることを目的とする。
In view of the above, an object of the present invention is to meet the above-mentioned demands by increasing the level of hardness of this type of lubricious sintered metal material.

即ち本発明は、金属粉末99〜67重量%と固体潤
滑剤粉末1〜33重量%との混合粉末の圧粉成形焼
結体であつて、金属粉末が重量%比でAl:Cu=
(99.4〜94):(0.6〜6)の時効硬化性Al−Cu合
金粉末、Cu:Be=(99.7〜97):(0.3〜3)の
時効硬化性Cu−Be合金粉末、又はAl:Ag=(95
〜50):(5〜50)の時効硬化性Al−Ag合金粉
末である、ことを特徴とする潤滑性焼結金属材料
を要旨とする。
That is, the present invention is a compacted sintered body of a mixed powder of 99 to 67% by weight of metal powder and 1 to 33% by weight of solid lubricant powder, wherein the metal powder has a weight % ratio of Al:Cu=
(99.4~94): (0.6~6) age hardenable Al-Cu alloy powder, Cu:Be=(99.7~97): (0.3~3) age hardenable Cu-Be alloy powder, or Al:Ag =(95
~50): The gist is a lubricious sintered metal material characterized by being an age hardenable Al-Ag alloy powder of (5 to 50).

ここで、時効硬化(age−hardening)とは或
る種の合金につきその合金の過飽和固溶体が時間
の経過によつてかたさ上昇を示す現象で、室温放
置で起こるものを室温時効又は自然時効
(natural ageing)、加熱により起こるものを高温
時効又は人工時効(artifical ageing)とよぶ。
そのような時効硬化性合金としては上記のような
組成のAl−Cu合金、Cu−Be合金、Al−Ag合金
が挙げられ、このような時効硬化性合金自体は公
知のものである。
Here, age-hardening is a phenomenon in which a supersaturated solid solution of a certain type of alloy shows an increase in hardness over time. aging), and that caused by heating is called high-temperature aging or artificial aging.
Examples of such age hardenable alloys include Al-Cu alloys, Cu-Be alloys, and Al-Ag alloys having the compositions described above, and such age hardenable alloys themselves are known.

例えばAl−4%Cu合金(詳しくはCu4%、
Mn0.5%、Mg0.5%、残りAl)は500℃付近から
水中で焼き入れすると時間の経過と共に硬くな
り、強さも数日後には焼き入れ前の2倍位の強さ
になる。
For example, Al-4%Cu alloy (more specifically, Cu4%,
When quenched (Mn0.5%, Mg0.5%, remaining Al) in water at around 500℃, it becomes hard over time, and after a few days it becomes about twice as strong as before quenching.

本発明はこのような時効硬化性合金に着目しベ
ース成分たる金属粉末として該時効硬化性合金粉
末を用いて前述の潤滑性焼結金属材料を構成した
もので、該材料はベースたる金属粉末焼結体の自
然時効又は人工時効による硬化現象に基づき、従
来の非時効性の同系金属粉末を原料とするものよ
りも大幅にかたさの高いものとなる。即ち、各金
属種別系に於て夫々その系の時効硬化性合金粉末
をベース金属として用いて潤滑性焼結金属材料を
構成することによりこの種材料のかたさ水準を全
般的にレベルアツプさせることができるものであ
る。
The present invention focuses on such an age-hardenable alloy, and uses the age-hardenable alloy powder as a base component to construct the above-mentioned lubricious sintered metal material. Based on the hardening phenomenon caused by natural or artificial aging of the compact, the hardness is significantly higher than that made from conventional non-aging metal powders of the same type. In other words, by constructing a lubricious sintered metal material using the age-hardening alloy powder of each metal type as the base metal, it is possible to raise the overall level of hardness of this type of material. It is possible.

次に製造プロセスについて説明する。 Next, the manufacturing process will be explained.

(1) 原料粉末 原料たる時効硬化性合金粉末及び固体潤滑剤
粉末の粒径、相互配合割合、その他の添加助
剤、均一混合方法等は従来プロセスに準じる。
一般に合金粉末の粒径は0.1〜100μm程度、固
体潤滑剤の粒径は0.1〜50μm程度のものが用
いられ、配合割合は求める潤滑性能との関係に
於て合金粉末100部(重量部)に対して一般に
固体潤滑剤粉末1〜50部程度の範囲(重量%換
算では合金粉末:固体潤滑剤粉末≒(99〜
67):(1〜33))で設定される。尚、固体潤
滑剤粉末の配合割合を多くすれば材料の潤滑性
能は向上するが、逆に材料のかたさは低下する
関係がある。少な過ぎると潤滑性能が低下して
潤滑性材料として実用性がとぼしくなる。
(1) Raw material powder The particle size of the age hardenable alloy powder and solid lubricant powder, which are the raw materials, their mutual blending ratio, other additives and auxiliaries, uniform mixing method, etc. are in accordance with the conventional process.
Generally, the particle size of alloy powder is about 0.1 to 100 μm, and the particle size of solid lubricant is about 0.1 to 50 μm, and the blending ratio is adjusted to 100 parts (parts by weight) of alloy powder in relation to the desired lubrication performance. Generally, the solid lubricant powder ranges from 1 to 50 parts (in terms of weight percent, alloy powder: solid lubricant powder ≒ (99 to 50 parts))
67): (1 to 33)). Incidentally, increasing the blending ratio of solid lubricant powder improves the lubricating performance of the material, but conversely the hardness of the material decreases. If the amount is too small, the lubricating performance will deteriorate, making it less practical as a lubricating material.

(2) 圧粉成形 時効硬化性合金粉末及び固体潤滑剤粉末を主
成分とする均一混合原料粉末を押型の中に充填
して圧迫圧縮して高密度の圧粉成形体とする工
程で、この工程も従来プロセスに準じて行なえ
ばよい。
(2) Powder compacting A process in which a homogeneous mixed raw material powder mainly composed of age-hardening alloy powder and solid lubricant powder is filled into a mold and compressed into a high-density compact. The steps may also be carried out in accordance with conventional processes.

(3) 焼 結 焼き締めにより圧粉成形体の粉末粒子相互を
強固に結合させて全体密な固まりにさせる工程
で、焼結温度・焼結時間は圧粉成形体の構成金
属粉末・固体潤滑剤粉末の種類、相互配合割
合、圧縮密度、大きさや形状等の違いにより
夫々その適正値は種々異なるので、ケースバイ
ケースで予備試験等により適正な焼結温度・時
間を設定する。焼結雰囲気はAr等の不活性雰
囲気、水素等の還元性雰囲気、或は真空など非
酸化雰囲気にする。
(3) Sintering This is a process in which the powder particles of the compact are firmly bonded to each other to form a dense mass by sintering. Since the appropriate values vary depending on the type of agent powder, mutual blending ratio, compressed density, size, shape, etc., appropriate sintering temperature and time are determined on a case-by-case basis through preliminary tests. The sintering atmosphere is an inert atmosphere such as Ar, a reducing atmosphere such as hydrogen, or a non-oxidizing atmosphere such as vacuum.

(4) 溶体化・急冷 上記焼結物を、原料として使用した合金粉末
個有の固溶体化温度に加熱してベースたる焼結
合金粉末を過飽和固溶体化する。そして十分な
固溶体化が行なわれたら水中投入等で急冷す
る。この急冷により固溶体の過飽和状態が維持
される。
(4) Solution treatment/quenching The above-mentioned sintered product is heated to a solid solution temperature specific to the alloy powder used as a raw material to transform the base sintered alloy powder into a supersaturated solid solution. After sufficient solid solution formation, the solution is rapidly cooled by immersion in water, etc. This rapid cooling maintains the supersaturated state of the solid solution.

(5) 時効硬化 上記溶体化・急冷処理した焼結物を室温に放
置するか、焼きもどし(加熱)すると、焼結合
金粉末中の余分の溶質原子は所謂G−P集合体
をつくつて析出の態勢をとり結晶格子にひずみ
を生じて材料に硬化現象を生じる(自然時
効)、又微細な析出物による分散硬化が起きる
(人工時効)。この時効硬化によりこの種の潤滑
性焼結金属材料のかたさ水準を全般的にレベル
アツプさせることができるものである。
(5) Age hardening When the solution-treated and rapidly cooled sintered material is left at room temperature or tempered (heated), excess solute atoms in the sintered alloy powder form so-called G-P aggregates and precipitate out. This creates strain in the crystal lattice, causing a hardening phenomenon in the material (natural aging), and dispersion hardening due to fine precipitates (artificial aging). This age hardening makes it possible to raise the overall level of hardness of this type of lubricious sintered metal material.

尚上記一連の製造プロセスに於て、(2)の圧粉成
形を高温加熱しながら行なう、即ち所謂高温圧縮
方式で行なうことにより該圧粉成形工程と次工程
である焼結工程を同時工程で行なうようにしても
よい。高温圧縮方式の利点としては圧粉成形と焼
結が同時に行なえる、冷間圧縮法では成形困難な
粉末でも容易に成形できる、冷間圧縮法よりも一
般に物理的性質に優れたものが得られるなどが挙
げられる。
In the above series of manufacturing processes, the powder compacting step (2) is performed while heating at high temperature, that is, by performing the so-called high-temperature compression method, so that the powder compacting step and the next step, the sintering step, can be performed simultaneously. You may do so. The advantages of the hot compression method are that powder compaction and sintering can be performed at the same time, powders that are difficult to mold with cold compression can be easily molded, and products with generally better physical properties than cold compression can be obtained. Examples include.

又(3)の焼結工程に於て、焼結温度が合金の溶融
温度をこえる場合には溶融状態に短時間保持後急
冷させる工程により溶体化処理用材料の作成を行
なう。
In the sintering step (3), if the sintering temperature exceeds the melting temperature of the alloy, a material for solution treatment is prepared by holding the alloy in a molten state for a short time and then rapidly cooling it.

(3)の焼結処理温度と(4)の溶体化処理温度がたま
たま同じような場合には一工程で焼結と溶体化を
行なわせ、次いで急冷処理すればよい(後述実施
例2・3はこの例)。
If the sintering temperature in (3) and the solution treatment temperature in (4) happen to be similar, sintering and solution treatment may be performed in one step, followed by rapid cooling (Examples 2 and 3 described later). is this example).

(2)の圧粉成形は真空雰囲気で行なうと後述実施
例に例示するように最終的に潤滑性能に優れた材
料が得られる。これは圧粉成形を空気雰囲気で行
なうと圧粉成形体内に空気が必ず含有される。こ
の含有空気は高密度圧粉成形体の粉末粒子間の極
めて微細な空隙内に存在し爾後真空除去処理した
としてもほとんど除去されずに残存する。このよ
うに空気を含んでいる圧粉成形体を焼結処理する
と固体潤滑剤粉末に酸化を生じて変性しその結果
材料の潤滑性能が劣化したものとなる。これに対
して圧粉成形を真空雰囲気で行なえば空気含有の
ない圧粉成形体が容易に得られ次工程の焼結に於
て固体潤滑剤粉末に酸化を生ぜず該粉末本来の潤
滑性がそのまま保持されて潤滑性能に優れた材料
を得ることができるものである。
When powder compaction (2) is carried out in a vacuum atmosphere, a material with excellent lubrication performance can be finally obtained, as exemplified in the Examples below. This is because when compacting is carried out in an air atmosphere, air is always contained within the compact. This contained air exists in the extremely fine voids between the powder particles of the high-density green compact, and remains without being substantially removed even if vacuum removal treatment is subsequently performed. When a powder compact containing air is sintered in this manner, the solid lubricant powder is oxidized and denatured, resulting in a deterioration in the lubricating performance of the material. On the other hand, if compaction is carried out in a vacuum atmosphere, a compacted compact containing no air can be easily obtained, and the solid lubricant powder will not be oxidized in the next step of sintering, and the original lubricity of the powder will be maintained. It is possible to obtain a material that is retained as it is and has excellent lubrication performance.

実施例 1 原 料 a 金属粉末 Al−3%Cu合金粉末(平均粒径50μm)
95%(重量) b 固体潤滑剤粉末 MoS2(平均粒径0.5μm) 5% 上記a・bの両粉末を均一に混合処理し、その
混合粉末を油圧押型装置で高密度(約2.5g/
cm3)に圧粉成形した。
Example 1 Raw material a Metal powder Al-3% Cu alloy powder (average particle size 50 μm)
95% (weight) b Solid lubricant powder MoS 2 (average particle size 0.5 μm) 5% Both powders a and b above are mixed uniformly, and the mixed powder is pressed to a high density (approximately 2.5 g/b) using a hydraulic press machine.
cm 3 ).

該圧粉成形体をAr雰囲気中で700℃・10分間焼
結処理した後急冷し、次いで540℃で2時間溶体
化処理し、該処理後炉から取り出したものを直ち
に水中に投入して急冷処理した。次いで150℃の
炉内に入れて人工時効処理を行なつた。
The compact was sintered in an Ar atmosphere at 700°C for 10 minutes, then rapidly cooled, and then solution-treated at 540°C for 2 hours. After the treatment, the compact was taken out of the furnace and immediately put into water to be rapidly cooled. Processed. Then, it was placed in a furnace at 150°C and subjected to artificial aging treatment.

第1図は該材料について測定した時効日数とか
たさの関係グラフである。グラフからわかるよう
に、該材料の時効処理前のかたさHVは約53であ
つた。このかたさは従来の同系材料、即ち原料の
金属粉末として通常の非時効硬化性のAl粉末を
用い、固体潤滑剤粉末の配合量、圧粉成形体密
度、焼結条件は本例の場合と同じにして得た材料
のかたさと実質同じとみなすことができる。
FIG. 1 is a graph showing the relationship between the number of aging days and hardness measured for the material. As can be seen from the graph, the hardness H V of the material before aging treatment was approximately 53. This hardness was obtained by using a conventional similar material, that is, normal non-age hardening Al powder as the raw metal powder, and the blending amount of solid lubricant powder, compacted compact density, and sintering conditions were the same as in this example. It can be considered that the hardness is essentially the same as that of the material obtained by

而して時効日数と共にそのかたさは増大し、日
数14日目あたりでかたさHV約92とピークにな
り、その後はかたさの漸減現象がみられる。
The hardness increases with the number of prescription days, peaking at about 92 H V around the 14th day, and thereafter a gradual decrease in hardness is observed.

従つて時効処理を14日あたりで終了させること
により時効処理前(=従来の同系材料)の約1.73
倍の高いかたさを有する材料即ち耐久性・機械的
強度に優れた材料を得ることができる。
Therefore, by finishing the aging treatment after about 14 days, the amount of the material before aging (= conventional similar material) is approximately 1.73%.
A material with double the hardness, that is, a material with excellent durability and mechanical strength, can be obtained.

第2図は本実施例に於て固体潤滑剤粉末の配合
量を種々異ならせて製造した各材料の時効処理前
のかたさ(鎖線グラフ)と時効処理後(150℃・
14日間)のかたさ(実線グラフ)の測定グラフで
ある。時効処理前の材料、時効処理後の材料何れ
の場合も固体潤滑剤粉末の配合量が大きくなるに
つれて材料かたさHVは低下していくが、時効処
理後のもののかたさは処理前のものより各場合と
も高くかたさレベルが格段に上昇することがわか
る。
Figure 2 shows the hardness before aging treatment (dashed line graph) and the hardness after aging treatment (150℃・
This is a measurement graph of hardness (solid line graph) for 14 days. The material hardness H V decreases as the amount of solid lubricant powder increases in both the materials before and after the aging treatment, but the hardness of the material after the aging treatment is lower than that before the treatment. It can be seen that the hardness level increases markedly in both cases.

又本実施例に於て原料たる前記a・b両混合粉
末の圧粉成形を真空中で行なつて得た材料と、空
気中で行なつて得た材料の摩擦係数の具合を測定
した(ピン・オン・デイスク型摩擦試験機、摩擦
ピン=炭素鋼、すべり速度=10cm/sec、荷重=
1Kg、摩擦時間=1時間)。その結果真空中圧粉
成形のものは焼結温度に関係なく摩擦係数0.18で
あるに対して、空気中圧粉成形のものは焼結温度
600℃で同係数0.58で潤滑性能がかなり悪いもの
であつた。その理由は前述したように空気中圧粉
成形のものはその成形体中に含まれる空気で固体
潤滑剤分が焼結過程で酸化を受けて劣化を生じた
ためである。従つて圧粉成形は真空中(或は不活
性気体雰囲気)で行なうことを可とする。
In addition, in this example, the friction coefficients of the material obtained by compacting the mixed powders a and b, which are the raw materials, in vacuum and the material obtained by compacting in air were measured ( Pin-on-disk friction tester, friction pin = carbon steel, sliding speed = 10cm/sec, load =
1Kg, friction time = 1 hour). As a result, powder compacting in vacuum has a friction coefficient of 0.18 regardless of the sintering temperature, whereas powder compacting in air has a friction coefficient of 0.18 regardless of the sintering temperature.
At 600°C, the coefficient was 0.58, indicating that the lubrication performance was quite poor. The reason for this is that, as mentioned above, in the case of powder compacting in air, the air contained in the compact causes the solid lubricant to be oxidized during the sintering process, resulting in deterioration. Therefore, compaction can be performed in vacuum (or in an inert gas atmosphere).

実施例 2 原 料 a 金属粉末 Cu−2.2%Be合金粉末(平均粒径50μm) 95% b 固体潤滑剤粉末 黒鉛(平均粒径5μm) 5% 製造条件 圧粉成形密度約7.2g/cm3、焼結兼溶体化処理
温度800℃・同時間60分・同雰囲気Ar、急冷は水
中投入、時効処理温度350℃。
Example 2 Raw materials a Metal powder Cu-2.2%Be alloy powder (average particle size 50 μm) 95% b Solid lubricant powder Graphite (average particle size 5 μm) 5% Manufacturing conditions Powder compaction density approximately 7.2 g/cm 3 , Sintering and solution treatment temperature 800℃, same time 60 minutes, same atmosphere Ar, quenching in water, aging treatment temperature 350℃.

この焼結体の時効時間とかたさとの関係の測定
グラフを第3図に示す。即ち350℃・1時間の時
効処理でかたさ上昇がピークに達し、この時点で
処理を終了させることにより時効前のかたさHV
約100よりも約3.5倍のかたさHV約350の高いかた
さのこの種の焼結材料が得られる。
A measurement graph of the relationship between the aging time and hardness of this sintered body is shown in FIG. In other words, the increase in hardness reaches its peak after aging treatment at 350°C for 1 hour, and by terminating the treatment at this point, the hardness before aging is increased .
A sintered material of this kind is obtained with a hardness H V of about 350, which is about 3.5 times higher than about 100.

第4図は、本実施例に於て固体潤滑剤たる黒鉛
粉末の金属粉末に対する配合量を種々異ならせ、
製造条件は上記と同様(但し圧粉成形は各場合同
一押圧力、時効処理時間は各場合1時間)にして
得た各材料の摩耗率測定グラフである(相手材炭
素鋼、すべり速度10cm/sec、荷重1Kg)。即ち固
体潤滑剤たる黒鉛の配合量を多くするにつれて耐
摩耗性が低下する。
FIG. 4 shows that in this example, the amount of graphite powder, which is a solid lubricant, mixed with the metal powder was varied,
This is a wear rate measurement graph of each material obtained under the same manufacturing conditions as above (with the same pressing force in each case for powder compacting, and 1 hour for aging treatment in each case) (Mating material carbon steel, sliding speed 10cm/ sec, load 1Kg). That is, as the blending amount of graphite, which is a solid lubricant, increases, the wear resistance decreases.

実施例 3 原 料 a 金属粉末 Al−20%Ag合金粉末(平均粒径50μm) 95% b 固体潤滑剤粉末 MoS2とWS2の重量比1:1混合粉末(平均粒
径1μm) 5% 製造条件 圧粉成形体密度約3.4g/cm3、焼結兼溶体化処
理温度550℃・同時間60分・同雰囲気Ar、急冷は
水中投入、時効処理温度250℃。
Example 3 Raw materials a Metal powder Al-20%Ag alloy powder (average particle size 50 μm) 95% b Mixed powder of solid lubricant powder MoS 2 and WS 2 at a weight ratio of 1:1 (average particle size 1 μm) 5% Manufacturing Conditions: Density of compacted compact is approximately 3.4 g/cm 3 , sintering and solution treatment temperature is 550°C, same time is 60 minutes, same atmosphere is Ar, quenching is in water, aging treatment temperature is 250°C.

この焼結体の時効温度とかたさとの関係の測定
グラフを第5図に示す。
A measurement graph of the relationship between the aging temperature and hardness of this sintered body is shown in FIG.

第6図は本実施例に於て固体潤滑剤たるMoS2
+WS2の混合粉末(重量比1:1)の金属粉末に
対する配合量を種々異ならせ、製造条件は上記と
同様(但し圧粉成形は各場合同一押圧力、時効処
理時間は各場合6時間)にして得た各材料の摩耗
率測定グラフである(相手材炭素鋼、すべり速度
10cm/sec、荷重1Kg)。
Figure 6 shows MoS 2 which is a solid lubricant in this example.
The amount of +WS 2 mixed powder (weight ratio 1:1) to the metal powder was varied, and the manufacturing conditions were the same as above (however, the pressing force was the same in each case, and the aging treatment time was 6 hours in each case). This is a measurement graph of the wear rate of each material obtained by
10cm/sec, load 1Kg).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々実施例1の材料につい
ての時効硬化進行グラフと、固体潤滑剤粉末の配
合量と材料のかたさとの関係グラフ、第3図及び
第4図は夫々実施例2の材料についての時効硬化
進行グラフと、固体潤滑剤粉末の配合量と材料の
摩耗率との関係グラフ、第5図及び第6図は夫々
実施例3の材料についての時効硬化進行グラフ
と、固体潤滑剤粉末の配合量と材料の摩耗率との
関係グラフである。
Figures 1 and 2 are age hardening progress graphs for the material of Example 1 and graphs of the relationship between the amount of solid lubricant powder blended and the hardness of the material, and Figures 3 and 4 are graphs of the relationship between the material of Example 1 and the hardness of the material, respectively. Figures 5 and 6 are age hardening progress graphs for the material of Example 3 and graphs of the relationship between the amount of solid lubricant powder blended and the wear rate of the material. It is a graph showing the relationship between the amount of lubricant powder mixed and the wear rate of the material.

Claims (1)

【特許請求の範囲】[Claims] 1 金属粉末99〜67重量%と固体潤滑剤粉末1〜
33重量%との混合粉末の圧粉成形焼結体であつ
て、金属粉末が重量%比でAl:Cu=(99.4〜
94):(0.6〜6)の時効硬化性Al−Cu合金粉
末、Cu:Be=(99.7〜97):(0.3〜3)の時効
硬化性Cu−Be合金粉末、又はAl:Ag=(95〜
50):(5〜50)の時効硬化性Al−Ag合金粉末
である、ことを特徴とする潤滑性焼結金属材料。
1 Metal powder 99-67% by weight and solid lubricant powder 1-
It is a compacted sintered body of mixed powder with 33% by weight, and the metal powder has a weight% ratio of Al:Cu=(99.4~
94): Age hardenable Al-Cu alloy powder of (0.6-6), Cu:Be=(99.7-97): Age-hardenable Cu-Be alloy powder of (0.3-3), or Al:Ag=(95) ~
50): A lubricious sintered metal material characterized by being an age hardenable Al-Ag alloy powder of (5 to 50).
JP3231381A 1981-03-06 1981-03-06 Lubricative sintered metallic material and its manufacture Granted JPS57145947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3231381A JPS57145947A (en) 1981-03-06 1981-03-06 Lubricative sintered metallic material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3231381A JPS57145947A (en) 1981-03-06 1981-03-06 Lubricative sintered metallic material and its manufacture

Publications (2)

Publication Number Publication Date
JPS57145947A JPS57145947A (en) 1982-09-09
JPS6241307B2 true JPS6241307B2 (en) 1987-09-02

Family

ID=12355443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3231381A Granted JPS57145947A (en) 1981-03-06 1981-03-06 Lubricative sintered metallic material and its manufacture

Country Status (1)

Country Link
JP (1) JPS57145947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110172617A (en) * 2019-05-30 2019-08-27 同济大学 Add the aluminum matrix composite and preparation method thereof of tungsten disulfide self-lubricating nano particle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961944B (en) * 2020-09-02 2021-11-30 宁波康强微电子技术有限公司 Wide-temperature-range self-lubricating VN-AgMoS2Composite material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110172617A (en) * 2019-05-30 2019-08-27 同济大学 Add the aluminum matrix composite and preparation method thereof of tungsten disulfide self-lubricating nano particle

Also Published As

Publication number Publication date
JPS57145947A (en) 1982-09-09

Similar Documents

Publication Publication Date Title
JP4215285B2 (en) Self-lubricating sintered sliding material and manufacturing method thereof
JP3782446B2 (en) High-strength, high-temperature, self-lubricating composite material and manufacturing method thereof
US2372202A (en) Bearing
EP0669404A2 (en) Wear-resistant sintered aluminum alloy and method for producing the same
WO2007080824A1 (en) Copper base sintered slide member
JPH0120215B2 (en)
US4000981A (en) Sintered self-lubricating article
US3983615A (en) Sliding seal member for an internal combustion engine
JP3778860B2 (en) Aluminum alloy and plain bearing
US6706126B2 (en) Aluminum alloy for sliding bearing and its production method
JP3784858B2 (en) Method for producing aluminum wear-resistant sintered alloy
JPS5937339B2 (en) Method for manufacturing high silicon aluminum alloy sintered body
JPH07166278A (en) Coppery sliding material and production thereof
JPS6241307B2 (en)
JPH029099B2 (en)
US6899844B2 (en) Production method of aluminum alloy for sliding bearing
US5561832A (en) Method for manufacturing vanadium carbide powder added tool steel powder by milling process, and method for manufacturing parts therewith
WO2014051136A1 (en) Sliding bearing assembly
JP2009007433A (en) Copper-based oil-containing sintered sliding member and method for producing the same
US3142894A (en) Sintered metal article and method of making same
JP3399972B2 (en) Sintered high-speed steel with excellent seizure resistance and method for producing the same
JPS6050863B2 (en) Wear-resistant sintered aluminum alloy
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JP2004018940A (en) Method for manufacturing ferrous sintered sliding member, and ferrous sintered sliding member
JP3336949B2 (en) Synchronizer ring made of iron-based sintered alloy