JPS6050863B2 - Wear-resistant sintered aluminum alloy - Google Patents

Wear-resistant sintered aluminum alloy

Info

Publication number
JPS6050863B2
JPS6050863B2 JP2122082A JP2122082A JPS6050863B2 JP S6050863 B2 JPS6050863 B2 JP S6050863B2 JP 2122082 A JP2122082 A JP 2122082A JP 2122082 A JP2122082 A JP 2122082A JP S6050863 B2 JPS6050863 B2 JP S6050863B2
Authority
JP
Japan
Prior art keywords
wear
aluminum alloy
powder
ceramic powder
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2122082A
Other languages
Japanese (ja)
Other versions
JPS58141356A (en
Inventor
晃 松山
義弘 馬来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2122082A priority Critical patent/JPS6050863B2/en
Publication of JPS58141356A publication Critical patent/JPS58141356A/en
Publication of JPS6050863B2 publication Critical patent/JPS6050863B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 この発明は、耐摩耗性焼結アルミニウム合金に関し、シ
リンダライナを始め、軸受、オイルポンプサイドプレー
ト、ピン、集電子などの摺動材料として広く適用するこ
とができる耐摩耗性の優れた焼結アルミニウム合金に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wear-resistant sintered aluminum alloy, which can be widely applied as a sliding material for cylinder liners, bearings, oil pump side plates, pins, current collectors, etc. This invention relates to a sintered aluminum alloy with excellent properties.

例えば、従来の一般的なエンジンにおいて使用されるシ
リンダライナは多くの場合鋳鉄製のものであるが、最近
ではエンジンの軽量化という要請からアルミニウム合金
製とすることが考えられてきており、一部すでに実用化
されている。従来、シリンダライナをアルミニウム合金
製とする方法には、1高けい素アルミニウム合金でシリ
ンダライナを製作し、その摺動面に電解エッチングを施
して物品けい素を浮き出させることにより表面の耐摩耗
性を向上させる方法や、2アルミニウム合金製のシリン
ダライナの摺動面に硬質クロムめつき、プラズマ溶射、
線爆被覆等の表面被覆を施すことにより当該摺動面の耐
摩耗性を向上させる方法や、3過共晶ケイ素アルミニウ
ム合金にPbを添加して耐摩耗性を改善する方法や、4
アルミニウム合金にグラファイトや活性炭とセラミック
粉末とを添加して耐摩耗性を改善する方法や、5A39
給金(A1−16〜18%5i−4.0〜5.0%Cu
−0.6〜1.15%Fe−0.45〜0.65%Mg
−O、1%以下Mn−O、1%以下Zn−O、2%以下
Ti−O、O2%以下P)を用いる方法などがある。
For example, the cylinder liners used in conventional general engines are often made of cast iron, but recently, due to the desire to reduce the weight of engines, it has been considered that they may be made of aluminum alloy. It has already been put into practical use. Conventionally, the method of making a cylinder liner made of aluminum alloy involves manufacturing the cylinder liner from a high-silicon aluminum alloy, and applying electrolytic etching to the sliding surface to bring out the silicon, thereby improving the wear resistance of the surface. 2. Hard chrome plating, plasma spraying,
A method of improving the wear resistance of the sliding surface by applying a surface coating such as a wire bomb coating, a method of improving the wear resistance of the sliding surface by adding Pb to a 3-hypereutectic silicon-aluminum alloy,
A method of improving wear resistance by adding graphite, activated carbon, and ceramic powder to aluminum alloy, and 5A39
Salary (A1-16~18%5i-4.0~5.0%Cu
-0.6~1.15%Fe-0.45~0.65%Mg
-O, 1% or less Mn-O, 1% or less Zn-O, 2% or less Ti-O, O2% or less P), and the like.

しかしながら、1の場合には、エンジン作動中のオイル
消費量が多く、また耐摩耗係数が高いため、十分な機能
を有しているとはいえず、2の場合には、表面被覆工程
が増大するばかりでなく、被覆層の剥離という問題を有
しているため、十分な機能を有しているとはいえず、3
の場合には摩耗減量が多く、次第にオイル消費量とブロ
ーバイガス量が増大するため、十分な機能を有している
とはいえず、4の場合には、焼結によるものと固液共存
温度範囲を利用した鋳造によるものとがあ・るが、焼結
によるものでは摩擦係数が高く十分な機能を有しておら
ず、また鋳造によるものでは生産性が悪く実際の生産に
用いるには解決すべき問題が残つているなどの欠点を有
し、5の場合には、A39給金の鋳造性が悪く、摩擦係
数が高いフために十分な機能を有しているとはいいがた
いなど、いずれも何んらかの問題点を有していた。
However, in case 1, the amount of oil consumed during engine operation is large and the wear resistance coefficient is high, so it cannot be said that it has sufficient functionality, and in case 2, the surface coating process increases. In addition to this, it also has the problem of peeling of the coating layer, so it cannot be said that it has a sufficient function.
In case 4, there is a large amount of wear loss, and the amount of oil consumption and blow-by gas gradually increase, so it cannot be said that it has a sufficient function. There is a method by casting that utilizes a range, but the method by sintering has a high coefficient of friction and does not have sufficient functionality, and the method by casting has poor productivity and cannot be used in actual production. In the case of 5, the castability of A39 metal feed is poor and the coefficient of friction is high, so it is difficult to say that it has sufficient functionality. , all of them had some problems.

この発明は、上記した従来の問題点を解消するためにな
されたもので、軽量であり、低摩擦係数であつて摩擦損
失が少ないと共に、耐焼付特性に5優れ、強度の低下を
招くことなく焼結のまま使用することが可能であり、押
出しや鍛造などの後加工を特に必要とせず、生産性に優
れ、とくに摺動用部材として適した特性の材料を得るこ
とを目的としている。この発明による耐摩耗性焼結アル
ミニウム合金は、重量%で、Si:6〜20%、Cu:
2〜8%、Mg:0.2〜1.5%、Pb:3〜25%
、セラミック粉末3〜15%を含有し、残部Nよりなる
ことを特徴としている。
This invention was made to solve the above-mentioned conventional problems, and is lightweight, has a low coefficient of friction, has little friction loss, and has excellent seizing resistance (5) without causing a decrease in strength. The objective is to obtain a material that can be used as sintered, does not require post-processing such as extrusion or forging, has excellent productivity, and has characteristics particularly suitable for sliding members. The wear-resistant sintered aluminum alloy according to the present invention has Si: 6-20%, Cu:
2-8%, Mg: 0.2-1.5%, Pb: 3-25%
It is characterized by containing 3 to 15% of ceramic powder, and the balance being N.

次に、この発明による耐摩耗性焼結アルミニウム合金の
成分範囲(重量%)の限定理由について説明する。
Next, the reason for limiting the component range (weight %) of the wear-resistant sintered aluminum alloy according to the present invention will be explained.

Si:6〜20% SjはNと反応し、A1マトリックスを強化するほか、
添加セラミック粉末と共にアルミニウム焼結合金の耐摩
耗性を改善する働きをもつ元素であるが、6%未満では
その効果が小さく、また20%を超えると強度の低下が
著しくなるので好ま−しくない。
Si: 6-20% Sj reacts with N and strengthens the A1 matrix, as well as
This element works together with the added ceramic powder to improve the wear resistance of the aluminum sintered alloy, but if it is less than 6%, the effect is small, and if it exceeds 20%, the strength will drop significantly, so it is not preferable.

この場合、Siは組織内において単独で存在させること
がより望ましい。Siを単独て存在させるには、Siを
に一過共晶Si合金粉として添加する方法があり、これ
によつて多量のSiを強度の低下をきたすことなく添加
することができ、強度がすぐれているため、押出しや鍛
造などの後加工を行なうことなく焼結のままで使用に供
することができる。なお、Si単体で添加すると焼結体
の強度が低下しやすいので、上記のようにN一過共晶S
i合金粉として添加することが望ましい。Cu:2〜8
% CuはA1と相互拡散し、共晶温度(548℃)以上で
液相を生成する。
In this case, it is more desirable for Si to exist alone in the tissue. In order to make Si exist alone, there is a method of adding Si as a transient eutectic Si alloy powder, which allows a large amount of Si to be added without reducing the strength, resulting in excellent strength. Therefore, it can be used as-is without any post-processing such as extrusion or forging. Note that adding Si alone tends to reduce the strength of the sintered body, so as mentioned above, N transient eutectic S
It is desirable to add it as an alloy powder. Cu: 2-8
% Cu interdiffuses with A1 and forms a liquid phase above the eutectic temperature (548° C.).

この液相は焼結を進行させるばかりでなく、A1−Cu
系の固溶体を作り、Nマトリックスを強化して機械的性
質を向上させると.共に耐摩耗性を向上させる。しかし
、添加量が少いと添加の効果が小さく、多いと液相量が
多くなりすぎ、焼結時に圧粉体が変化したり、強度が低
下したりする。したがつて、Cu添加量は2〜8%とす
るのが良い。Mg:0.2〜1.5% MgはCuと同様に液相を生成して焼結を進行させるほ
か、耐摩耗性のあるMg2Siを析出して、耐摩耗性な
らびに機械的性質を向上させる。
This liquid phase not only advances sintering but also
By creating a solid solution of the system and strengthening the N matrix to improve mechanical properties. Both improve wear resistance. However, if the amount added is small, the effect of addition will be small, and if the amount is too large, the amount of liquid phase will be too large, resulting in changes in the green compact during sintering or a decrease in strength. Therefore, the amount of Cu added is preferably 2 to 8%. Mg: 0.2-1.5% Mg, like Cu, generates a liquid phase and advances sintering, and also precipitates wear-resistant Mg2Si, improving wear resistance and mechanical properties. .

しかし、添加量が0.2%未満であると添加の効果がな
りく、1.5%を超えて添加しても効果の向上は期待で
きない。Pb:3〜25% PbはA1と反応せず、A1基地を強化することはない
が、Pbは低融点金属であるため、摺動面での摩擦熱に
よる温度上昇に伴つて溶融して摺動面を避覆するため、
良好な潤滑性を示すことにより摩擦係数および焼付特性
とも向上させる。
However, if the amount added is less than 0.2%, the effect of addition will be lost, and even if it is added in excess of 1.5%, no improvement in the effect can be expected. Pb: 3-25% Pb does not react with A1 and does not strengthen the A1 base, but since Pb is a low melting point metal, it melts and slides as the temperature rises due to frictional heat on the sliding surface. To avoid moving surfaces,
By exhibiting good lubricity, it improves both the friction coefficient and seizure characteristics.

しかし、添加量が3%未満では添加の効果が見られず、
25%を超えると摩耗量が多くなるのて好ましくない。
なお、添加する際のPbの粒度は細かい方がより望まし
い。セラミック粉末:3〜15% セラミック粉末は、Pbと同様にN基地を強化すること
はないが、摺動面において相手材との接触点を低減する
ことにより摩擦係数を下げ、耐焼付荷重を上げるのに有
効である。
However, if the amount added is less than 3%, no effect of addition can be seen.
If it exceeds 25%, the amount of wear increases, which is not preferable.
Note that it is more desirable for the particle size of Pb to be fine when added. Ceramic powder: 3-15% Ceramic powder does not strengthen the N base like Pb, but by reducing the contact points with the mating material on the sliding surface, it lowers the coefficient of friction and increases the seizure resistance load. It is effective for

しかし、添加量が少いと添加の効果がなく、多すぎると
強度の低・下が著しいので、3〜15%の範囲とするの
が良い。このセラミック粉末の粒径については、これが
大きすぎると相手材とし接触しやすくなり、焼付を生じ
やすくなるので5μ以下とすることがより・望ましい。
However, if the amount added is too small, there will be no effect, and if it is too large, the strength will be significantly lowered, so it is preferably in the range of 3 to 15%. It is more desirable that the particle size of the ceramic powder be 5 μm or less, since if it is too large, it will easily come into contact with the other material and cause seizure.

反対に、セラミック粉末の粒径が小さすぎると機械的強
度が低下するおそれがあり、場合によつては焼結後に鍛
造や押出しなどの後加工が必要となる。そのため、粒径
は0.01μ以上とすることがより望ましい。また、セ
ラミック粉末としては、酸化物系、窒化物系、炭化物系
等のものの中から適宜選んで1種または2種以上使用す
ることができるが、セラミック粉末としてアルミナ粉末
を用いる場合にはαアルミナ粉末を使用することがより
望ましい。実施例1 第1表に示す各粉末を使用し、第2表に示した成分割合
となるように(Si粉の添加方法は第2表参照)バイン
ダーと共に混合したのち、各々■型ブレンダにより2紛
間混合した。
On the other hand, if the particle size of the ceramic powder is too small, the mechanical strength may decrease, and in some cases, post-processing such as forging or extrusion may be required after sintering. Therefore, it is more desirable that the particle size is 0.01 μm or more. In addition, as the ceramic powder, one or more types can be appropriately selected from among oxide-based, nitride-based, carbide-based, etc., but when using alumina powder as the ceramic powder, α-alumina It is more desirable to use powder. Example 1 Each powder shown in Table 1 was used, mixed with a binder so that the component ratios shown in Table 2 were obtained (see Table 2 for the method of adding Si powder), and then mixed with a binder using a ■-type blender. It was mixed in between.

次いで、この粉末を引張試験用金型に入れ、圧力3.5
t0n/Cイで成形した。成形後、窒素ガス雰囲気中で
400′Cll時間保持し、混粉時に添加したワックス
を除去した。その後、露点−40℃以下の窒素ガス雰囲
気中で500℃、1時間の条件で焼結した。焼結後、T
6処理として、490℃、1時間保持後80℃温水焼入
れし、その後160℃、1満間の時効を行つた。なお、
比較合金としてのA39OおよびFC25については、
鋳造により引張試片を製作した。このようにして得られ
た各引張試験片に対して従来既知のインストロン引張試
験機により引張試験を行つた。
Next, this powder was placed in a tensile test mold and the pressure was 3.5.
It was molded using t0n/Ci. After molding, the molding was held in a nitrogen gas atmosphere for 400'Cll to remove the wax added at the time of powder mixing. Thereafter, it was sintered at 500°C for 1 hour in a nitrogen gas atmosphere with a dew point of -40°C or less. After sintering, T
As the 6th treatment, the material was held at 490°C for 1 hour, quenched in hot water at 80°C, and then aged at 160°C for 1 hour. In addition,
Regarding A39O and FC25 as comparative alloys,
Tensile specimens were manufactured by casting. A tensile test was conducted on each tensile test piece thus obtained using a conventionally known Instron tensile tester.

また、上記と同じ製造工程により、第1図に示すピン・
ディスク型摩耗試験機用の摩耗試験片(第2図参照)に
対応させた金型を用いて摩耗試験片を作成した。
Also, by using the same manufacturing process as above, the pin shown in Fig.
A wear test piece was prepared using a mold that corresponded to a wear test piece for a disk type abrasion tester (see Figure 2).

なお、第1図に示す摩耗試験機において、1は回転軸、
2はプレート、3はピンホルダ、4は試験片(ピン)、
5は押圧ロッド、6は球面座6aを介して押圧ロッド5
と連結したディスクホルダ、7はディスク(相手材)、
8は潤滑油供給孔であり、試験片4を4本組としてピン
ホルダ3に固定すると共に、試験片4に押圧ロッド5を
介してディスク7を押し付けることによつて面圧を加え
、摩耗試験片4の摩耗量や焼付荷重を調べる。また、試
験片4は、第2図に示すように、一辺a=5T!Rln
l長さb=10TWLのピン形をなすものである。また
、第3表に焼付荷重測定試験O摩耗量の結果を第5表に
示す。このようにして測定した引張試験、焼付荷重、条
件第4表に摩耗試験条件を示す。第5表に示すように、
NO.29(鋳鉄)はいずれもすぐれた値を示している
が、重量が大であるので摺動用材料の軽量化の点で好ま
しくない。
In addition, in the wear tester shown in Fig. 1, 1 is the rotating shaft;
2 is a plate, 3 is a pin holder, 4 is a test piece (pin),
5 is a pressing rod, and 6 is a pressing rod 5 via a spherical seat 6a.
7 is a disk (mate material),
Reference numeral 8 denotes a lubricating oil supply hole, in which a set of four test pieces 4 are fixed to the pin holder 3, and surface pressure is applied by pressing a disk 7 onto the test piece 4 via a pressing rod 5, thereby forming a wear test piece. Check the wear amount and seizure load in step 4. Moreover, as shown in FIG. 2, the test piece 4 has one side a=5T! Rln
It is in the form of a pin with l length b = 10TWL. Further, Table 3 shows the results of the seizure load measurement test O wear amount, and Table 5 shows the results. The tensile test, seizure load, and conditions measured in this way Table 4 shows the wear test conditions. As shown in Table 5,
No. Although No. 29 (cast iron) shows excellent values, it is heavy and therefore not preferable from the viewpoint of reducing the weight of the sliding material.

またNO.28(A39O)では鋳造性が悪いと同時に
、摩擦係数が大であり、摩耗量が多い。さらに、Siを
純Si粉末で添加したNO.2l,Si量の少ないNO
.22、Si量の多いNO.23sCU量の少ないNO
.24、Cu量の多いNO.2\Mg量の少ないNO.
2阪M婦の多いNO,27ではいずれも良好な結果が得
られなかつた。これに対し!て本発明合金であるNO.
l〜7ではいずれも鋳鉄(NO.29)に比べて大きな
そんな色のない良好な結果を得た。
*実施例2第1表に示す各粉末を使
用し、第6表に示した成分割合となるようにバインダー
と共に混合したのち、実施例1と同様にして引張試験片
、摩耗試験片を作成し、実施例1と同じ試験条件で引張
試験、摩耗試験を行つた。
Also NO. 28 (A39O) has poor castability, a high friction coefficient, and a large amount of wear. In addition, NO. 2l, NO with low amount of Si
.. 22, NO. with a large amount of Si. NO with a small amount of 23sCU
.. 24, NO. with a large amount of Cu. 2\NO. with low Mg amount.
Good results were not obtained for No. 27, which had many M women. Against this! The alloy of the present invention, NO.
In all cases, good results were obtained with no large color compared to cast iron (No. 29).
*Example 2 Using each of the powders shown in Table 1, they were mixed with a binder in the proportions shown in Table 6, and then tensile test pieces and abrasion test pieces were prepared in the same manner as in Example 1. A tensile test and an abrasion test were conducted under the same test conditions as in Example 1.

その結果を第7表に実す。第7表に示すように、Pbを
含まないNO.3へセラミック粉末を含まないNO.3
2、セラミック粉末の多いNO.33,NO.34では
焼付荷重が低く、Pb量の多いNO.3lでは摩耗量が
著しく多く、いずれも良好な結果が得られなかつた。
The results are shown in Table 7. As shown in Table 7, NO. To No. 3, which does not contain ceramic powder. 3
2. No. with a lot of ceramic powder. 33, NO. No. 34 has a low seizure load and a large amount of Pb. With 3L, the amount of wear was significantly large, and good results could not be obtained in either case.

これに対して本発明合金であるNO,8〜11ではいず
れも良好な結果を得た。そして、セラミック粉末とPb
粉末の混合比には適切な値があり、それぞれ3〜15%
、3〜25%の添加が望ましいことが明らかとなつた。
また、種々の実験の結果、セラミック粉末とPb粉末の
添加割合が、5%Al。O3−5%および5%Al2O
3゛−20%Pb(NO.U)である場合により優れた
結果が得られた。実施例3 第1表に示す各粉末を使用し、第8表に示した成分割合
となるようにバインダーと共に混合したのち、実施例1
と同様にして引張試験片、摩耗試験片を作成し、実施例
1と同じ試験条件で引張試験、摩耗試験を行なつた。
On the other hand, the alloys of the present invention, NOs 8 to 11, all gave good results. And ceramic powder and Pb
There is an appropriate value for the mixing ratio of powders, each between 3 and 15%.
It has become clear that addition of 3 to 25% is desirable.
Further, as a result of various experiments, the addition ratio of ceramic powder and Pb powder was 5% Al. O3-5% and 5% Al2O
Better results were obtained with 3'-20% Pb (NO.U). Example 3 Using each powder shown in Table 1, the powders shown in Table 8 were mixed together with a binder so that the component ratios shown in Table 8 were obtained.
A tensile test piece and an abrasion test piece were prepared in the same manner as in Example 1, and the tensile test and abrasion test were conducted under the same test conditions as in Example 1.

その結果を第9表に示*す。なお、Siの添加にはN−
20%Si合金粉末を使用し、セラミック粉末の粒度を
変えて添加した。第9表に示すように、Al2O3の粒
径が小さいNO.l4では引張強さの低下が見られ、鍛
造や押出しなどの後加工が必要となるので好ましくない
ことが明らかとなつたが、上記の後加工を行う場合には
.粒径の小さいAl2O3粉末を使用しても問題はない
。他方、.Al2O3の粒径が大きいと摩擦係数が大と
なるので、より望ましくは0.01〜5μの範囲とする
のが良いことが明らかとなつた。また、セラミック粉末
としてAl2O3粉末を用いる場合にはαi※−A]2
03の方がγ−Al2O3の方がγ−AI2O3、0一
.Al2O3に比べてより良好な特性が得られた。実施
例4第1表に示す金属粉末および第1咳に示すセラミッ
ク粉末を使用し、同じく第1咳に示す成分割合となるよ
うに混合したのち、実施例1と同様にして引張試験片、
摩耗試験片を作成し、実施例1と同じ試験条件で引張試
験、摩耗試験を行つた。
The results are shown in Table 9*. Note that when adding Si, N-
A 20% Si alloy powder was used, and the particle size of the ceramic powder was varied and added. As shown in Table 9, NO. It has become clear that 14 is not preferable because it shows a decrease in tensile strength and requires post-processing such as forging and extrusion. There is no problem even if Al2O3 powder with a small particle size is used. On the other hand... As the particle size of Al2O3 is large, the coefficient of friction becomes large, so it has become clear that the particle size is preferably in the range of 0.01 to 5 .mu.m. In addition, when using Al2O3 powder as the ceramic powder, αi*-A]2
03 is better than γ-Al2O3, 01. Better properties were obtained compared to Al2O3. Example 4 The metal powder shown in Table 1 and the ceramic powder shown in No. 1 were mixed to have the component ratios shown in No. 1. Tensile test pieces were prepared in the same manner as in Example 1.
A wear test piece was prepared, and a tensile test and an abrasion test were conducted under the same test conditions as in Example 1.

その結果を第11表に示す。第11表に示すように、セ
ラミック粉末としてSj3N4やS】02を使用したと
きにも良好な結果を得ることができた。
The results are shown in Table 11. As shown in Table 11, good results were also obtained when Sj3N4 and S]02 were used as the ceramic powder.

以上説明してきたように、この発明の焼結アルミニウム
合金によれば、その成分割合を重量%で、Sj:6〜2
0%、CU:2〜8%、Mg:0.2〜1.5%、Pb
:3〜25%、セラミック粉末:3〜15%、残部A1
となるようにしたから、軽量であつても従来の鋳鉄に匹
敵する耐摩耗性ならびに耐焼付性を有し、低摩擦係数で
あつて摩擦損失が少なく、とくにエンジンのシリンダラ
イナに使用した場合にその軽量化に大きく貢献し、焼結
のままでの強度が高いため押出しや鋳造などの後加工を
必ずしも施さなくとも使用可能であり、必要に応じて後
加工を施したり、含油させたりすればよく、軸受などに
使用する場合にはバックアップメタルを用いることなく
使用することも可能であり、従来と同じ焼結設備によつ
て製造することができるため生産性に優れているなどの
著大なる効果を有する。
As explained above, according to the sintered aluminum alloy of the present invention, the component ratio in weight percent is Sj: 6 to 2.
0%, CU: 2-8%, Mg: 0.2-1.5%, Pb
: 3-25%, ceramic powder: 3-15%, balance A1
Therefore, even though it is lightweight, it has wear resistance and seizure resistance comparable to conventional cast iron, and has a low friction coefficient and low friction loss, making it especially suitable for use in engine cylinder liners. It greatly contributes to weight reduction, and because it has high strength as it is sintered, it can be used without necessarily undergoing post-processing such as extrusion or casting. When used in bearings, etc., it can be used without using a backup metal, and it can be manufactured using the same sintering equipment as conventional equipment, resulting in excellent productivity. have an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例において使用したピン・ディ
スク型摩耗試験機の断面説明図、第2図A,bは摩耗試
験片の正面図および側面図であノ る。
FIG. 1 is a cross-sectional explanatory view of a pin-disk type abrasion tester used in an example of the present invention, and FIGS. 2A and 2B are a front view and a side view of a wear test piece.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%で、Si:6〜20%、Cu:2〜8%、M
g:0.2〜1.5%、Pb:3〜25%、セラミック
粉末:3〜15%を含有し、残部Alよりなることを特
徴とする耐摩耗性焼結アルミニウム合金。
1% by weight, Si: 6-20%, Cu: 2-8%, M
A wear-resistant sintered aluminum alloy characterized by containing g: 0.2 to 1.5%, Pb: 3 to 25%, ceramic powder: 3 to 15%, and the balance being Al.
JP2122082A 1982-02-15 1982-02-15 Wear-resistant sintered aluminum alloy Expired JPS6050863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2122082A JPS6050863B2 (en) 1982-02-15 1982-02-15 Wear-resistant sintered aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2122082A JPS6050863B2 (en) 1982-02-15 1982-02-15 Wear-resistant sintered aluminum alloy

Publications (2)

Publication Number Publication Date
JPS58141356A JPS58141356A (en) 1983-08-22
JPS6050863B2 true JPS6050863B2 (en) 1985-11-11

Family

ID=12048926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2122082A Expired JPS6050863B2 (en) 1982-02-15 1982-02-15 Wear-resistant sintered aluminum alloy

Country Status (1)

Country Link
JP (1) JPS6050863B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311868U (en) * 1989-06-22 1991-02-06

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616243A (en) * 1984-06-19 1986-01-11 Mitsubishi Metal Corp Sliding member of sintered al alloy with superior wear resistance
JPS6210236A (en) * 1985-07-09 1987-01-19 Teikoku Piston Ring Co Ltd Aluminum alloy cylinder
JPS6240339A (en) * 1985-08-13 1987-02-21 Showa Alum Corp Aluminum-base composite material excellent in cutting tool life
US5106702A (en) * 1988-08-04 1992-04-21 Advanced Composite Materials Corporation Reinforced aluminum matrix composite
JPH02163570A (en) * 1988-12-15 1990-06-22 Mitsubishi Alum Co Ltd Cylinder tube material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311868U (en) * 1989-06-22 1991-02-06

Also Published As

Publication number Publication date
JPS58141356A (en) 1983-08-22

Similar Documents

Publication Publication Date Title
US4650644A (en) Engine liners having a base of aluminum alloys and of silicon grains graded in size and processes for obtaining them
JPS6050863B2 (en) Wear-resistant sintered aluminum alloy
JP4648559B2 (en) Heat-resistant aluminum die-cast product
JPH029099B2 (en)
EP0053301A2 (en) Method of producing aluminium base sintered body containing graphite
US20040022663A1 (en) Production method of aluminum alloy for sliding bearing
JPS6210236A (en) Aluminum alloy cylinder
EP0424109A2 (en) Aluminium alloy matrix composite for internal combustion engines
JP2745699B2 (en) Copper-based sintered alloy with excellent wear resistance at high temperatures
JP4240761B2 (en) Al-based oxide-dispersed Fe-based sintered alloy with excellent wear resistance and method for producing the same
JPH04131352A (en) Al-si-mg sintered alloy having excellent wear resistance
JPS5941432A (en) Sintered al alloy useful as sliding member
JPH09111365A (en) Sliding material, piston, and their production
JPS61295301A (en) Heat-resistant high-power aluminum alloy powder and its molding
JPH04131337A (en) Sintered copper-base alloy excellent in wear resistance
JP2787703B2 (en) A-l-Si alloy powder forged member with extremely low coefficient of thermal expansion
JPS616243A (en) Sliding member of sintered al alloy with superior wear resistance
JPH041055B2 (en)
JPS5871352A (en) Wear-resistant sintered aluminum alloy
JPS6241307B2 (en)
JPH0688156A (en) Wear resistant cu series sintered alloy
JPH04131346A (en) Sintered al-si based alloy excellent in wear resistance
JPH01176051A (en) Wear-resistant iron-based sintered piston ring material
JPS6217162A (en) Sliding contact member
JPH04341A (en) Copper-base sintered alloy excellent in wear resistance at high temperature