JPS6239141B2 - - Google Patents

Info

Publication number
JPS6239141B2
JPS6239141B2 JP56093900A JP9390081A JPS6239141B2 JP S6239141 B2 JPS6239141 B2 JP S6239141B2 JP 56093900 A JP56093900 A JP 56093900A JP 9390081 A JP9390081 A JP 9390081A JP S6239141 B2 JPS6239141 B2 JP S6239141B2
Authority
JP
Japan
Prior art keywords
reaction
oxygen
dbf
general formula
caustic potash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56093900A
Other languages
Japanese (ja)
Other versions
JPS57209241A (en
Inventor
Yasuya Jo
Morihito Yamashita
Takumi Hirayama
Shigenobu Uchida
Takayuki Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKO KAGAKU KK
Original Assignee
SANKO KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKO KAGAKU KK filed Critical SANKO KAGAKU KK
Priority to JP9390081A priority Critical patent/JPS57209241A/en
Publication of JPS57209241A publication Critical patent/JPS57209241A/en
Publication of JPS6239141B2 publication Critical patent/JPS6239141B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はジベンゾフラン(以下DBFと略記す
る)又はその誘導体よりの2・2′−ヒドロキシジ
フエニル(以下2・2′−DODと略記する)又は
その誘導体の製造方法に関する。 2・2′−DOD又はその誘導体(以下2・2′−
DOD類と称す)は農薬、医薬、染料、潤滑油添
加剤、合成高分子及びその添加剤等の原料として
注目されている化合物である。 DBF又はその誘導体(以下DBF類と称す)か
らの2・2′−DOD類の製造方法としては、カル
バゾール等のカリウム置換可能な水素含有の有機
環状化合物の存在で常圧下、苛性カリと溶融反応
を行なう方法(米国特許第2244244号)、又は20〜
30%濃度の苛性ソーダを用い、300゜〜400℃、
100〜350Kg/cm2の高温高圧下、特に好ましくは窒
素雰囲気で反応を行なう方法(米国特許第
3169149号)が知られている。前者の収率はDBF
に対し理論値の約65%、後者では36%で、工業的
には未だ不十分である。 本発明者らはDBF類よりの2・2′−DOD類の
製造方法について詳細に研究を行ない、DBF類
に苛性カリ又は苛性カリと苛性ソーダとの混合物
を加え、撹拌加圧下に250゜〜350℃で反応を行な
うことにより有利に製造し得ることを見出し、さ
らに本反応の触媒として酸素、イオウ酸素酸のア
ルカリ金属塩又はアルカリ土類金属塩、酸化性化
合物が有効であること、特に加圧下で250゜〜350
℃でこれら触媒を使用する場合は一層有効であ
り、90%以上の著しい高収率をもつて経済的に極
めて有利に目的物を得ることに成功し、本発明を
完成した。 本発明は、一般式() 〔一般式()で、X1〜X4及びX6〜X9は同一又は
相異なつて水素原子又はメチル基を示す。〕 で表わされるジベンゾフラン又はその誘導体を苛
性カリと又は苛性カリと苛性ソーダとの混合物
と、密閉又は非密閉された空気又は酸素の雰囲気
下の反応系で250〜350℃で撹拌下反応させること
を特徴とする、一般式() 〔一般式()で、X1〜X4及びX6〜X9は一般式
()における意義と同一である。〕 で表わされる2・2′−ジヒドロキシジフエニル又
はその誘導体の製造方法に関する。 米国特許第2244244号明細書において、DBFの
開裂による2・2′−DODの生成反応は単に苛性
カリのみによる溶融反応によつては困難であり、
アルカリ金属により置換可能な水素を含有する環
状有機化合物例えばカルバゾール、インドール、
フルオレン等の共存下においてはじめて可能であ
ることが報告されている。本発明者らはDBF類
を、苛性カリと、又は苛性カリと苛性ソーダとの
混合物と、撹拌加圧下に加熱反応させると、これ
らの添加物なしの場合でも容易に開裂を起し極め
て好収率で2・2′−DOD類が得られることを見
出した。またこの反応を密閉反応機中で行なう場
合装入量を増加すると、即ち空間率が小さくなる
と収率が減少し、空間を窒素で置換する時は通常
の加熱温度(350℃)程度では殆んど反応は起ら
ないという注目すべき事実を発見し、反応触媒と
して酸素の効果に着目するに到つた。通常使用さ
れる反応機に還流冷却器を付して反応を行なう場
合においては、系内の酸素は発生する水蒸気や
DBFの蒸気により反応系外に殆んど排出される
ので、カルバゾール等の触媒の添加無しでは反応
が進行しないものと推測される。 これに対して密閉反応機中で撹拌下反応を行な
う場合は系内の空気中の酸素が触媒となり、250
゜〜350℃に加熱した場合は2〜5Kg/cm2(ゲー
ジ圧、以下同じ)程度の自己発生圧に基づく加圧
により、カルバゾールなどの公知の触媒の添加無
しに、又DBFの昇華によるトラブル無しに、優
れた収率で2・2′−DODの生成を可能とするも
のである。さらに反応系内に酸素を追加装入する
場合は一層反応を円滑に促進し高収率を維持し、
しかも反応機の容積効率を高め得ることが認めら
れた。公知の触媒の共存も有効であり、この場合
該触媒の添加量を軽減することができる。 以上DBFの苛性アルカリ溶融反応における酸
素の効果について説明したが、酸素の代りに下記
の酸素含有化合物の反応系への添加も同様の効果
が認められる。即ち酸素含有化合物としては、過
酸化水素、過酸化ソーダ、過炭酸ソーダ又はそれ
らのカリ塩、過酢酸、過プロピオン酸、クメンパ
ーオキシド等の無機又は有機過酸化物、亜硫酸ソ
ーダ、硫酸ソーダ、又はそれらのカリ塩、硫酸マ
グネシウム、Na−ジフエニルスルホネート、Na
−アルキルアリールスルホネート又はそれらのカ
リ塩等の無機又は有機イオウ酸素酸塩、次亜塩素
ソーダ、亜塩素酸ソーダ、塩素酸ソーダ、過塩素
酸ソーダ、硝酸ソーダ又はそれらのカリ塩等の酸
化性無機塩等が挙げられる。その添加量はDBF
類に対して0.5〜20重量%が適当である。また常
圧反応においても酸素又は上記酸素化合物の添加
は有効であり、酸素の場合は反応系にDBF類1
モルに対して0.1〜1モル相当量の酸素をガス状
で少量ずつ導入すればよい。 次にDBFを原料とし2・2′−DODを製造する
場合の本発明の実施態様について説明する。 (1) 加圧状態で行なう反応においては、オートク
レーブにDBFと固型の苛性カリ又は苛性カリ
と苛性ソーダとを装入しそのまま密閉する。か
くして空気又は酸素の存在下常圧で密閉された
反応系を用いることにより本発明の目的は充分
に達成することができるが、更に空気又は酸素
の存在下加圧下で密閉された反応系を用いれば
有利に反応を進めることができる。酸素の存在
下で加圧する場合は昇温前即ち反応前で5Kg/
cm2程度までが適当であり反応は昇温後約10Kg/
cm2(自己発生圧を含めて)を上限とする圧力下
で行われる。それ以上加圧しても効果の増加は
ない。 またさらに、アルカリ金属により置換可能な
水素を含有する環状有機化合物例えばカルバゾ
ール、インドール、フルオレンなどを溶媒とし
DBFと固型の苛性カリ又は苛性カリと苛性ソ
ーダとを装入して、そのまま、或いはさらに空
気を圧入した後密閉して加熱し、撹拌下に250
゜〜350℃に昇温し所定温度に保つ。苛性カリ
の使用量はDBF1モルに対し2〜4モル比相当
量が適当であり、苛性ソーダを混合使用する場
合はそのほぼ1/2モル相当量まで置き換え得
る。昇温前の反応機内空気圧は0〜10Kg/cm2
適当であり、反応温度は250゜〜350℃好ましく
は260゜〜340℃である。反応時間は上記の各条
件により異なるが1〜12時間程度である。 反応終了後反応混合物を水に排出して必要な
らば過して液を酸性とし水と混合しない溶
剤で抽出し、溶剤回収後減圧蒸留して2・2′−
DODを得る。 (2) 反応系内に酸素を添加する場合は、原料装入
後オートクレーブ内の空間を酸素で置換して常
圧で密閉するか、さらに5Kg/cm2程度まで酸素
を圧入したのち、上記(1)に記載したと同様に操
作して2・2′−DODを得る。これを前記(1)の
ように空気のまま反応させた場合に比較すると
反応が促進され、かつ収率が向上することが認
められる。 (3) 前記の酸素含有化合物を触媒として使用する
場合はDBFに対して0.5〜20重量%を添加す
る。この場合は常圧下又は窒素雰囲気での反応
も可能であるが、好ましくは前記(1)又は(2)に記
載の方法に併用したがよい。その場合の酸素含
有化合物の添加量はDBFに対して1〜10重量
%程度が適当である。 苛性アルカリに対して本発明方法の反応条件
で不活性な核置換基を有するDBFについても
同様の反応を行ない、対応する2・2′−DOD
誘導体を得ることができる。 次に本発明方法の実施例について説明する。 実施例 1 300ml容オートクレーブにDBF(純度99.2%)
50gと固型苛性カリ(純度96.0%)53.1gを装入
し、そのまま密閉して撹拌加熱し、270゜〜290℃
で3.3時間反応を行なつた。反応中の圧力は最高
3Kg/cm2を示した。冷却後反応混合物を水300ml
に排出して溶解し、僅かの不純物を別した液
を稀硫酸で酸性とし、毎回150mlのメチルイソブ
チルケトンで3回抽出する。抽出溶媒を留出させ
た後5mmHgで真空蒸留して2・2′−DOD49.8g
を得た。融点109℃。純度99.6%。収率90.3%
(対DBF、以下同じ)。 一方、原料装入後オートクレーブ内空間を窒素
で置換した以外は実施例1と同様に操作した結
果、2・2′−DODの生成は殆んど認められなか
つた。 実施例 2〜5 300ml容オートクレーブにDBF(純度99.2%)
100g、固型苛性カリ(純度96.0%)106.3gを装
入し、そのまま或いはさらに空気を圧入して密閉
し、撹拌下表1に示す条件でそれぞれ反応を行つ
たのち、実施例1におけると同様にメチルイソブ
チルケトンで抽出し、抽出溶液中の2・2′−
DODをガスクロマトグラフにより分析した。そ
の結果を表1に示す。
The present invention relates to a method for producing 2,2'-hydroxydiphenyl (hereinafter abbreviated as 2,2'-DOD) or a derivative thereof from dibenzofuran (hereinafter abbreviated as DBF) or a derivative thereof. 2,2'-DOD or its derivatives (hereinafter referred to as 2,2'-
DOD (DOD) is a compound that is attracting attention as a raw material for agricultural chemicals, medicines, dyes, lubricating oil additives, synthetic polymers and their additives, etc. The method for producing 2,2'-DOD from DBF or its derivatives (hereinafter referred to as DBFs) involves a melt reaction with caustic potash under normal pressure in the presence of a hydrogen-containing organic cyclic compound such as carbazole that can replace potassium. (U.S. Patent No. 2,244,244), or 20-
Using 30% concentration of caustic soda, 300° to 400°C,
A method in which the reaction is carried out at a high temperature and pressure of 100 to 350 Kg/ cm2 , particularly preferably in a nitrogen atmosphere (as described in US Patent No.
No. 3169149) is known. The yield of the former is DBF
The latter is about 65% of the theoretical value, and 36% of the latter, which is still insufficient for industrial use. The present inventors conducted detailed research on a method for producing 2,2'-DOD from DBFs, and added caustic potash or a mixture of caustic potash and caustic soda to DBFs, and heated the mixture at 250° to 350°C under pressure with stirring. It has been found that oxygen, alkali metal salts or alkaline earth metal salts of sulfur oxygen acids, and oxidizing compounds are effective as catalysts for this reaction, especially when 250゜〜350
When these catalysts are used at .degree. C., they are more effective, and the present invention has been completed by successfully obtaining the desired product in an economically extremely advantageous manner with a significantly high yield of 90% or more. The present invention is based on the general formula () [In the general formula (), X 1 to X 4 and X 6 to X 9 are the same or different and represent a hydrogen atom or a methyl group. ] Dibenzofuran or its derivative represented by is reacted with caustic potash or a mixture of caustic potash and caustic soda in a sealed or non-sealed reaction system in an air or oxygen atmosphere at 250 to 350°C with stirring. , general expression () [In the general formula (), X 1 to X 4 and X 6 to X 9 have the same meaning as in the general formula (). ] This invention relates to a method for producing 2,2'-dihydroxydiphenyl or a derivative thereof. In U.S. Patent No. 2,244,244, it is difficult to generate 2,2'-DOD by cleavage of DBF by simply performing a melt reaction using only caustic potash.
Cyclic organic compounds containing hydrogen that can be replaced by alkali metals, such as carbazole, indole,
It has been reported that this is only possible in the coexistence of fluorene, etc. The present inventors have found that when DBFs are heated and reacted with caustic potash or a mixture of caustic potash and caustic soda under stirring and pressure, cleavage occurs easily even without these additives, and 2・We found that 2′-DODs can be obtained. In addition, when this reaction is carried out in a closed reactor, the yield decreases as the amount charged increases, that is, the space ratio decreases, and when the space is replaced with nitrogen, the normal heating temperature (350°C) is almost impossible. He discovered the remarkable fact that no reaction occurs, and began to focus on the effect of oxygen as a reaction catalyst. When a reaction is carried out using a commonly used reactor equipped with a reflux condenser, the oxygen in the system is absorbed by the generated water vapor and
Since most of the DBF vapor is discharged out of the reaction system, it is assumed that the reaction will not proceed without the addition of a catalyst such as carbazole. On the other hand, when the reaction is carried out under stirring in a closed reactor, the oxygen in the air in the system becomes the catalyst, and the
When heated to between ゜ and 350℃, pressure is applied based on self-generated pressure of about 2 to 5 kg/cm 2 (gauge pressure, the same applies hereinafter), without the addition of known catalysts such as carbazole, and troubles caused by sublimation of DBF can be avoided. This makes it possible to produce 2.2'-DOD in excellent yields without the use of 2.2'-DOD. Furthermore, when additionally charging oxygen into the reaction system, the reaction is further promoted smoothly and a high yield is maintained.
Moreover, it has been recognized that the volumetric efficiency of the reactor can be increased. The coexistence of a known catalyst is also effective, and in this case, the amount of the catalyst added can be reduced. The effect of oxygen in the DBF caustic melting reaction has been explained above, but the same effect can be observed by adding the following oxygen-containing compound to the reaction system instead of oxygen. That is, oxygen-containing compounds include hydrogen peroxide, sodium peroxide, sodium percarbonate, or potassium salts thereof, inorganic or organic peroxides such as peracetic acid, perpropionic acid, cumene peroxide, sodium sulfite, sodium sulfate, or Their potassium salts, magnesium sulfate, Na-diphenyl sulfonate, Na
- Inorganic or organic sulfur oxyacids such as alkylaryl sulfonates or their potassium salts, oxidizing inorganics such as sodium hypochlorite, sodium chlorite, sodium chlorate, sodium perchlorate, sodium nitrate or their potassium salts Examples include salt. The amount added is DBF
A suitable amount is 0.5 to 20% by weight based on the class. In addition, addition of oxygen or the above oxygen compounds is also effective in normal pressure reactions, and in the case of oxygen, DBFs 1
Oxygen in gaseous form may be introduced little by little in an amount equivalent to 0.1 to 1 mole per mole. Next, an embodiment of the present invention in which 2,2'-DOD is produced using DBF as a raw material will be described. (1) For reactions conducted under pressure, DBF and solid caustic potash or caustic potash and caustic soda are charged into an autoclave and the autoclave is sealed. Thus, the object of the present invention can be fully achieved by using a reaction system that is sealed under normal pressure in the presence of air or oxygen; The reaction can proceed advantageously. When pressurizing in the presence of oxygen, the pressure is 5Kg/before heating up, that is, before reaction.
cm 2 is appropriate, and the reaction is approximately 10 kg/cm2 after heating up.
It is carried out under pressures up to cm 2 (including self-generated pressure). Even if the pressure is increased further, the effect will not increase. Furthermore, a cyclic organic compound containing hydrogen that can be replaced by an alkali metal, such as carbazole, indole, fluorene, etc., can be used as a solvent.
DBF and solid caustic potash or caustic potash and caustic soda are charged, either as they are, or after further air is introduced, the mixture is sealed and heated, and heated to 250 ml while stirring.
Raise the temperature to ゜~350℃ and keep it at the specified temperature. The appropriate amount of caustic potash to be used is 2 to 4 molar equivalent to 1 mol of DBF, and when caustic soda is used in combination, it can be replaced up to approximately 1/2 molar equivalent. The air pressure in the reactor before heating is suitably 0 to 10 kg/cm 2 , and the reaction temperature is 250° to 350°C, preferably 260° to 340°C. The reaction time varies depending on the above conditions, but is about 1 to 12 hours. After the completion of the reaction, the reaction mixture is drained into water, and if necessary, it is filtered to make the liquid acidic and extracted with a solvent that is immiscible with water. After recovering the solvent, it is distilled under reduced pressure to obtain 2.2'-
Get D.O.D. (2) When adding oxygen to the reaction system, after charging the raw materials, replace the space inside the autoclave with oxygen and seal it at normal pressure, or further pressurize oxygen to about 5 kg/cm 2 and then add the above ( Obtain 2.2'-DOD by the same procedure as described in 1). Comparing this to the case where the reaction is carried out in the air as in (1) above, it is recognized that the reaction is accelerated and the yield is improved. (3) When using the above oxygen-containing compound as a catalyst, it is added in an amount of 0.5 to 20% by weight based on DBF. In this case, the reaction can be carried out under normal pressure or in a nitrogen atmosphere, but it is preferable to carry out the reaction in combination with the method described in (1) or (2) above. In this case, the appropriate amount of the oxygen-containing compound added is about 1 to 10% by weight based on DBF. A similar reaction was carried out with DBF having a nuclear substituent that is inactive under the reaction conditions of the method of the present invention against caustic alkali, and the corresponding 2,2'-DOD
derivatives can be obtained. Next, examples of the method of the present invention will be described. Example 1 DBF (purity 99.2%) in a 300ml autoclave
50g and 53.1g of solid caustic potash (purity 96.0%) were charged, the container was sealed, stirred, and heated to 270° to 290°C.
The reaction was carried out for 3.3 hours. The pressure during the reaction reached a maximum of 3 Kg/cm 2 . After cooling, add 300ml of water to the reaction mixture.
Dissolve and remove a few impurities, acidify the solution with dilute sulfuric acid and extract three times with 150 ml of methyl isobutyl ketone each time. After distilling the extraction solvent, vacuum distillation was performed at 5 mmHg to obtain 49.8 g of 2・2′-DOD.
I got it. Melting point: 109℃. Purity 99.6%. Yield 90.3%
(vs. DBF, same hereafter). On the other hand, when the autoclave was operated in the same manner as in Example 1 except that the space inside the autoclave was replaced with nitrogen after charging the raw materials, almost no production of 2,2'-DOD was observed. Examples 2 to 5 DBF (purity 99.2%) in a 300ml autoclave
100g of solid caustic potash (purity 96.0%) was charged, and the mixture was sealed as it was or by further pressurizing air, and the reaction was carried out under the conditions shown in Table 1 under stirring. Extract with methyl isobutyl ketone and extract 2・2'-
DOD was analyzed by gas chromatography. The results are shown in Table 1.

【表】 実施例 6〜9 300ml容オートクレーブにDBF(純度99.2%)
100g、固型苛性カリ(純度96.0%)106.3gを装
入し、さらにそれぞれの添加物を加えてそのまま
密閉し、撹拌下反応を行なつた後実施例2〜5に
おけると同様にして抽出溶液中の2・2′−DOD
を測定した。その結果を表2に示す。
[Table] Examples 6 to 9 DBF (purity 99.2%) in a 300ml autoclave
100 g of solid caustic potash (purity 96.0%), 106.3 g of solid caustic potash were charged, each additive was added, the mixture was sealed as it was, and the reaction was carried out with stirring. 2・2′−DOD
was measured. The results are shown in Table 2.

【表】 実施例 10 300ml容オートクレーブにDBF(純度99.2%)
100g、固型苛性カリ(純度96.0%)106.3gを装
入し、オートクレーブ内空間を酸素で置換しさら
に酸素で1Kg/cm2に加圧して密閉し、撹拌下270
゜〜290℃で3.6時間反応を行なつた。反応中の圧
力は4Kg/cm2であつた。その後実施例1における
と同様に処理して2・2′−DOD102.5gを得た。
融点109℃。純度99.7%。収率93.0%。 実施例 11 300mlオートクレーブにDBF(純度99.2%)100
g、固型苛性カリ(純度96.0%)53.1g、固型苛
性ソーダ(純度98.0%)40.8gを装入し、オート
クレーブ内空間を酸素で置換して密閉し、撹拌下
280゜±1℃で10.2時間反応を行なつた。反応中
の最高圧力は2Kg/cm2であつた。その後実施例1
におけると同様に処理して2・2′−DOD84.5gを
得た。融点109℃。純度99.7%。収率76.7%。 実施例 12 300ml容オートクレーブに3・7−ジメチル−
DBF(純度98%)50.1gと固型苛性カリ(純度
96.0%)52.4gを装入し、オートクレーブ内空間
を酸素で置換して密閉し、撹拌下280゜±1℃で
5時間反応を行なつた。反応中の圧力は最高1.8
Kg/cm2を示した。その後実施例1におけると同様
に収理して2・2′−ジヒドロキシ−4・4′−ジメ
チルビフエニル45.3gを得た。融点119℃。純度
98.0%。収率83%。 実施例 13 撹拌機、ガス導入管、還流冷却器を付したステ
ンレス製反応機(300ml容)に、DBF(純度99.2
%)100g、固型苛性カリ(純度96.0%)106.3g
を装入して内部を酸素で置換する。撹拌下、酸素
を少量ずつ導入しながら常圧で昇温し280゜±1
℃で2.25時間反応させた。その後実施例2〜5に
おけると同様に処理し抽出溶液を分析した。
DBFの反応率22.4%、2・2′−DODの収率20.2%
であつた。 一方、酸素置換、酸素導入を行なわない以外は
実施例12と同様に操作した場合には、2・2′−
DODの生成は殆んど認められなかつた。
[Table] Example 10 DBF (purity 99.2%) in a 300ml autoclave
100g of solid caustic potash (purity 96.0%) was charged, the interior space of the autoclave was replaced with oxygen, and the autoclave was further pressurized to 1Kg/cm 2 and sealed, with stirring at 270g.
The reaction was carried out at ˜290° C. for 3.6 hours. The pressure during the reaction was 4 Kg/cm 2 . Thereafter, it was treated in the same manner as in Example 1 to obtain 102.5 g of 2.2'-DOD.
Melting point: 109℃. 99.7% purity. Yield 93.0%. Example 11 DBF (purity 99.2%) 100 in a 300ml autoclave
g, 53.1 g of solid caustic potash (purity 96.0%), and 40.8 g of solid caustic soda (purity 98.0%) were charged, the interior space of the autoclave was replaced with oxygen, the autoclave was sealed, and the autoclave was heated under stirring.
The reaction was carried out at 280°±1°C for 10.2 hours. The maximum pressure during the reaction was 2 Kg/cm 2 . Then Example 1
84.5 g of 2.2'-DOD was obtained by the same treatment as in . Melting point: 109℃. 99.7% purity. Yield 76.7%. Example 12 3,7-dimethyl- in a 300ml autoclave
DBF (98% purity) 50.1g and solid caustic potash (purity
96.0%) was charged, the interior space of the autoclave was replaced with oxygen, the autoclave was sealed, and the reaction was carried out at 280°±1°C for 5 hours with stirring. Pressure during reaction up to 1.8
Kg/cm 2 was shown. Thereafter, the mixture was collected in the same manner as in Example 1 to obtain 45.3 g of 2,2'-dihydroxy-4,4'-dimethylbiphenyl. Melting point: 119℃. purity
98.0%. Yield 83%. Example 13 DBF (purity 99.2
%) 100g, solid caustic potash (purity 96.0%) 106.3g
The inside of the tank is replaced with oxygen. While stirring, introduce oxygen little by little and raise the temperature at normal pressure to 280°±1.
The reaction was carried out at ℃ for 2.25 hours. The extract solution was then analyzed in the same manner as in Examples 2-5.
Reaction rate of DBF 22.4%, yield of 2・2'-DOD 20.2%
It was hot. On the other hand, when operating in the same manner as in Example 12 except that oxygen substitution and oxygen introduction were not performed, 2.2'-
Almost no DOD formation was observed.

Claims (1)

【特許請求の範囲】 1 一般式() 〔一般式()で、X1〜X4及びX6〜X9は同一又は
相異なつて、水素原子又はメチル基を示す。〕 で表わされるジベンゾフラン又はその誘導体を苛
性カリと又は苛性カリと苛性ソーダとの混合物
と、密閉又は非密閉された空気又は酸素の雰囲気
下の反応系で250゜〜350℃で撹拌下反応させるこ
とを特徴とする一般式() 〔一般式()で、X1〜X4及びX5〜X9は一般式
()における意義と同一である。〕 で表わされる2・2′−ジヒドロキシジフエニル類
の製造方法。 2 前記反応系が加圧下にある特許請求の範囲第
1項記載の2・2′−ジヒドロキシジフエニル類の
製造方法。 3 前記反応系に酸素の代りに又は酸素とともに
無機又は有機過酸化物、無機又は有機イオウ酸素
酸塩及び酸化性無機塩から選ばれる酸素含有化合
物を少くとも1種存在させる特許請求の範囲第1
項記載の2・2′−ジヒドロキシジフエニル類の製
造方法。
[Claims] 1 General formula () [In the general formula (), X 1 to X 4 and X 6 to X 9 are the same or different and represent a hydrogen atom or a methyl group. ] Dibenzofuran or its derivative represented by is reacted with caustic potash or a mixture of caustic potash and caustic soda in a sealed or non-sealed reaction system in an air or oxygen atmosphere at 250° to 350°C with stirring. General formula () [In the general formula (), X 1 to X 4 and X 5 to X 9 have the same meaning as in the general formula (). ] A method for producing 2,2'-dihydroxydiphenyls represented by: 2. The method for producing 2,2'-dihydroxydiphenyls according to claim 1, wherein the reaction system is under pressure. 3. Claim 1 in which at least one oxygen-containing compound selected from inorganic or organic peroxides, inorganic or organic sulfur oxylates, and oxidizing inorganic salts is present in the reaction system instead of or together with oxygen.
A method for producing 2,2'-dihydroxydiphenyls as described in .
JP9390081A 1981-06-19 1981-06-19 Preparation of 2,2'-dihydroxydiphenyl Granted JPS57209241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9390081A JPS57209241A (en) 1981-06-19 1981-06-19 Preparation of 2,2'-dihydroxydiphenyl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9390081A JPS57209241A (en) 1981-06-19 1981-06-19 Preparation of 2,2'-dihydroxydiphenyl

Publications (2)

Publication Number Publication Date
JPS57209241A JPS57209241A (en) 1982-12-22
JPS6239141B2 true JPS6239141B2 (en) 1987-08-21

Family

ID=14095351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9390081A Granted JPS57209241A (en) 1981-06-19 1981-06-19 Preparation of 2,2'-dihydroxydiphenyl

Country Status (1)

Country Link
JP (1) JPS57209241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341316A (en) * 2020-10-23 2021-02-09 河北中化鑫宝化工科技有限公司 Method for preparing 2, 2' -dihydroxybiphenyl by using dibenzofuran fraction as raw material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105111049B (en) * 2015-09-24 2017-04-12 中国中化股份有限公司 Preparation method of 2, 2'-dihydroxybiphenyl

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115160U (en) * 1974-07-23 1976-02-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115160U (en) * 1974-07-23 1976-02-03

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341316A (en) * 2020-10-23 2021-02-09 河北中化鑫宝化工科技有限公司 Method for preparing 2, 2' -dihydroxybiphenyl by using dibenzofuran fraction as raw material

Also Published As

Publication number Publication date
JPS57209241A (en) 1982-12-22

Similar Documents

Publication Publication Date Title
JPS5844752B2 (en) Waste brine purification method
JPS58172387A (en) Manufacture of 2,2-dicyclohexenylpropane diepoxide
JPS6239141B2 (en)
JP2004217625A (en) Method for producing adipic acid
EP0037588B1 (en) Method of preparing furfuryl alcohols
US2438485A (en) Fluorinated dibasic acids and method of preparing same
EP0298289B1 (en) A process for the preparation of hydroxybenzoic acid
CN106631750A (en) Method for preparing C11 perfluoroketone
CN113651684B (en) Preparation method of 4-hydroxy-2-butynoic acid
JPH0753677B2 (en) Method for purifying 2-perfluoroalkylethanol
JPS60243063A (en) Methyl 2-(2-hydroperoxy-2-propyl)naphthalene-6-carboxylate and preparation thereof
JPH01294650A (en) Production of ester compound
US4013685A (en) Process for the manufacture of n(mercaptomethyl) phthalimide s-(o,o-dimethyl phosphorodithioate
JP3367549B2 (en) Method for producing 3-chloromethyl-3-alkyloxetane
JP3222941B2 (en) Method for producing carboxylic acid
WO2016065576A1 (en) Process for preparation of high purity guaiacol glycidyl ether
US4296251A (en) Synthesis of (+)-cis-homocaronic acid
JPH0327338A (en) Production of bis(2-hydroxyhexafluoro-2-propyl)-benzene derivative
JPH0215063A (en) Production of 2-methoxy-6-methylaminopyridine
JPH026340B2 (en)
JPS6121554B2 (en)
JPH07116096B2 (en) Method for producing high-purity 0-toluic acid
SU1066982A1 (en) Process for preparing halogenebenzoic acids
JPS5821898B2 (en) Method for producing 3,4-dialkoxyphenylacetaldehyde
JPH0730015B2 (en) Method for producing perpropionic acid