JPS6238721Y2 - - Google Patents

Info

Publication number
JPS6238721Y2
JPS6238721Y2 JP6515482U JP6515482U JPS6238721Y2 JP S6238721 Y2 JPS6238721 Y2 JP S6238721Y2 JP 6515482 U JP6515482 U JP 6515482U JP 6515482 U JP6515482 U JP 6515482U JP S6238721 Y2 JPS6238721 Y2 JP S6238721Y2
Authority
JP
Japan
Prior art keywords
gas flow
flow path
degassing
resistance
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6515482U
Other languages
Japanese (ja)
Other versions
JPS58166804U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6515482U priority Critical patent/JPS58166804U/en
Publication of JPS58166804U publication Critical patent/JPS58166804U/en
Application granted granted Critical
Publication of JPS6238721Y2 publication Critical patent/JPS6238721Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Description

【考案の詳細な説明】 この考案は溶媒中にガスを吹込むことによつて
その溶媒の脱気を行なう方式の溶媒脱気装置に関
する。
[Detailed Description of the Invention] This invention relates to a solvent degassing device that degasses a solvent by blowing gas into the solvent.

従来、脱気ガス供給源にガス流量調節手段を接
続し、そのガス流量調節手段に分岐手段を介して
複数の脱気ガス流路を接続し、それら脱気ガス流
路の先端にそれぞれフイルタ手段を取り付けた溶
媒脱気装置が知られている。この装置によつて、
たとえば高速液体クロフトグラフの各移動相溶媒
中にヘリウムなどの脱気ガスを細かな気泡として
送り込み、溶媒中に溶け込んでいる空気を追い出
すことが行われている。
Conventionally, a gas flow rate regulating means is connected to a degassing gas supply source, a plurality of degassing gas passages are connected to the gas flow rate regulating means via a branching means, and a filter means is provided at the tip of each of the degassing gas passages. A solvent degassing device is known. With this device,
For example, a degassing gas such as helium is fed into each mobile phase solvent of a high-speed liquid croft graph as fine bubbles to drive out the air dissolved in the solvent.

しかし、上記従来装置には次のような問題点が
あつた。その第1は、溶媒の種類や量に合わせて
脱気ガスの流量を調節して脱気を行う必要があ
り、かつ脱気完了後その脱気状態を保つために再
度流量を調節して小流量で脱気ガスを送りつづけ
る必要があり、結局、2回も流量調節を行う必要
があることである。第2は、複数の脱気ガス流路
の先端に取り付けられたフイルタ手段にかかる溶
媒の液圧や粘度などの相異によつて各脱気ガス流
路の抵抗値が異なることになり、各脱気ガス流路
のガス流量がアンバランスで不安定になることで
ある。これを防ぐためには各脱気ガス流路に個別
に流量調節手段を設ければよいが、それぞれを調
節する手間がかかることになる。第3の問題点は
次のとおりである。すなわち脱気ガス流路のうち
フイルタに接続している部分は操作しやすいよう
に金属管ではなくて適当な長さのテフロンチユー
ブが用いられている。そして脱気ガス供給を停止
すると、テフロンチユーブの有する微孔を通じて
大気はチユーブ内へ脱気ガスは大気中へ拡散しよ
うとするが、ヘリウムなどの脱気ガスの方が分子
の大きさが小さいため脱気ガスが大気中に拡散し
チユーブ内が減圧になり脱気される移動相がチユ
ーブ内に逆流する傾向がある。このように脱気ガ
ス流路内に残留する移動相は、たとえ少量であつ
ても、続いて他の移動相を脱気する際に使用して
いる抵抗充填剤を種類によつては変性させたり抵
抗変化を起させるなどの現象が起こる。
However, the conventional device described above has the following problems. First, it is necessary to perform deaeration by adjusting the flow rate of the degassing gas according to the type and amount of solvent, and after the degassing is completed, the flow rate must be adjusted again to maintain the degassing state. It is necessary to continue sending deaerated gas at a certain flow rate, and as a result, it is necessary to adjust the flow rate twice. Second, the resistance value of each degassing gas flow path differs due to differences in the liquid pressure and viscosity of the solvent applied to the filter means attached to the tips of the plurality of degassing gas flow paths. This is because the gas flow rate in the degassing gas flow path becomes unbalanced and unstable. In order to prevent this, each degassing gas flow path may be provided with a flow rate adjusting means individually, but it takes time and effort to adjust each of them. The third problem is as follows. That is, for the part of the degassing gas flow path connected to the filter, a Teflon tube of an appropriate length is used instead of a metal tube for ease of operation. When the degassed gas supply is stopped, the atmosphere tries to diffuse into the tube through the micropores of the Teflon tube, but since degassed gases such as helium have smaller molecules, The degassed gas diffuses into the atmosphere, reducing the pressure inside the tube, and the degassed mobile phase tends to flow back into the tube. Depending on the type, the mobile phase remaining in the degassing gas flow path, even in small amounts, may denature the resistance packing used to subsequently degas other mobile phases. Phenomena such as resistance changes occur.

この考案は上記のような問題点を解消すること
を目的としてなされたものである。
This invention was made for the purpose of solving the above-mentioned problems.

以下、図に示す実施例に基いて、この考案を詳
説する。なお、これによりこの考案が限定される
ものではない。
This invention will be explained in detail below based on the embodiment shown in the drawings. Note that this invention is not limited to this.

第1図に示す1は、この考案の溶媒脱気装置の
一実施例である。この装置1は、ヘリウムガスボ
ンベ2にベロー弁3を接続し、そのベロー弁3に
並列ガス流路4を接続し、その並列ガス流路4に
分岐管9を介して3つのヘリウムガス流路10,
11,12を接続し、さらに各ヘリウムガス流路
10,11,12の先端に公称2μm程度の粗さ
の焼結金属のフイルタ13,14,15を取り付
けたものである。
1 shown in FIG. 1 is an embodiment of the solvent degassing device of this invention. This device 1 connects a bellows valve 3 to a helium gas cylinder 2, connects a parallel gas flow path 4 to the bellows valve 3, and connects three helium gas flow paths 10 to the parallel gas flow path 4 via a branch pipe 9. ,
11, 12 are connected to each other, and sintered metal filters 13, 14, 15 having a nominal roughness of approximately 2 μm are attached to the tips of each helium gas flow path 10, 11, 12.

並列ガス流路4は、電磁弁5のみが介設されて
いる主ガス流路4aと、電磁弁6および抵抗管7
が介設されている小流量ガス流路4bとからな
る。これら流路4a,4bの流量比は好ましくは
5:1〜10:1程度である。電磁弁5,6はタイ
マー等を内蔵した制御部8によつて制御され、後
に説明するようにこれらが並列流路4の選択導通
手段を構成している。
The parallel gas flow path 4 includes a main gas flow path 4a in which only a solenoid valve 5 is interposed, and a solenoid valve 6 and a resistance pipe 7.
A small flow rate gas flow path 4b is provided. The flow rate ratio of these channels 4a and 4b is preferably about 5:1 to 10:1. The electromagnetic valves 5 and 6 are controlled by a control section 8 having a built-in timer and the like, and these constitute selective conduction means for the parallel flow path 4, as will be explained later.

ヘリウムガス流路10,11,12は、各々ス
トツプバルブ16,17,18と抵抗管19,2
0,21と一端を開放した抵抗管22,23,2
4とを直列に具備したものである。抵抗管19,
20,21,22,23,24はパイプ中に微細
な粒子を充填したものであり、フイルタ13,1
4,15において生じると考えられる抵抗値より
も例えば5倍程度の大きな抵抗値をもつようにし
てある。またフイルタ13,14,15に接続す
るヘリウムガス流路25,26,27にはテフロ
ンチユーブが用いられている。
Helium gas channels 10, 11, 12 are connected to stop valves 16, 17, 18 and resistance tubes 19, 2, respectively.
0, 21 and resistance tubes 22, 23, 2 with one end open
4 in series. resistance tube 19,
20, 21, 22, 23, 24 are pipes filled with fine particles, and filters 13, 1
It is designed to have a resistance value that is, for example, about five times larger than the resistance value that is thought to occur at the points 4 and 15. Further, Teflon tubes are used for helium gas channels 25, 26, and 27 connected to the filters 13, 14, and 15.

次にこの装置1の動作を説明するが、説明の都
合上、第1図に示すように、水WとメタノールM
とをグラジエント溶出装置Gにて混合して、その
混合液を高速液体クロマトグラフLの移動相とす
る場合を例にとる。この場合、水Wおよびメタノ
ールMの各々の単独の空気に対する溶解度とこれ
らの混合液の空気に対する溶解度とが非常に異な
るので、そのまま混合すれば気泡が発生して分析
に悪影響を与える。そこで、この装置1による脱
気が必要となる。
Next, the operation of this apparatus 1 will be explained. For convenience of explanation, as shown in FIG.
Let us take as an example a case in which these are mixed in a gradient elution device G and the mixture is used as the mobile phase of a high performance liquid chromatograph L. In this case, the solubility of each of water W and methanol M in air is very different from the solubility of a mixture thereof in air, so if they are mixed as is, bubbles will be generated, which will adversely affect the analysis. Therefore, deaeration by this device 1 is necessary.

さて、まずフイルタ13をメタノールM中に入
れ、かつフイルタ14を水W中に入れてストツプ
バルブ16および17を開く。使用しないヘリウ
ムガス流路12のストツプバルブ18は閉じてお
く。次に制御部8にスタート指令を与える。そう
すると電磁弁5のみが開く。ここでベロー弁3を
開いて調節し、溶媒1につき例えば100ml/分
ぐらいの流量でヘリウムガスを供給する。溶媒中
に溶解している空気がヘリウムに実用上十分な程
度まで置換されるのに要する時間が制御部8に設
定されているので、その時間が経過したとき制御
部8は自動的に電磁弁5を閉じ電磁弁6を開く。
そこで比較的大流量でヘリウムガスが供給されて
脱気が完了したころ、小流量に自動的に切換えら
れることになる。
First, filter 13 is placed in methanol M, filter 14 is placed in water W, and stop valves 16 and 17 are opened. The stop valve 18 of the helium gas flow path 12 that is not used is kept closed. Next, a start command is given to the control section 8. Then, only the solenoid valve 5 opens. Here, the bellows valve 3 is opened and adjusted to supply helium gas at a flow rate of, for example, about 100 ml/min per solvent. Since the time required for the air dissolved in the solvent to be replaced with helium to a practically sufficient extent is set in the control unit 8, when that time has elapsed, the control unit 8 automatically closes the solenoid valve. 5 and open the solenoid valve 6.
Therefore, helium gas is supplied at a relatively large flow rate, and when deaeration is completed, the flow rate is automatically switched to a small flow rate.

上記によつて、水WおよびメタノールM中の空
気が脱気され、かわりにヘリウムガスが溶解され
ることになるが、水WおよびメタノールMの各々
の単独のヘリウムガスに対する溶解度とこれらの
混合液のヘリウムガスに対する溶解度とは同程度
であるからこれらを混合してもほとんど気泡を生
じず、好適に移動相として使用できる。脱気が完
了したころ自動的に小流量に切換わるので、従来
のような再調節の手間がかからず、かつ動作が確
実になる。また溶媒中のフイルタ13および14
における抵抗値はそれぞれ異なるが、これらに比
べて抵抗管19および20の抵抗値が十分大であ
るから、これらの抵抗管19,20に依存してヘ
リウムガスの流量が決まり、意図に反してアンバ
ランスになるようなことが防がれ、また流量も安
定になる。
As a result of the above, the air in water W and methanol M is deaerated and helium gas is dissolved instead, but the solubility of each of water W and methanol M in helium gas alone and the mixture thereof Since their solubility in helium gas is about the same, almost no bubbles are generated when they are mixed, and they can be suitably used as a mobile phase. Since the flow rate is automatically switched to a small flow rate when deaeration is completed, there is no need for readjustment as in the past, and the operation is reliable. Also filters 13 and 14 in the solvent
Although the resistance values of the resistance tubes 19 and 20 are different from each other, the resistance values of the resistance tubes 19 and 20 are sufficiently large, so the flow rate of helium gas is determined depending on these resistance tubes 19 and 20. This prevents things from becoming unbalanced and also stabilizes the flow rate.

また、ヘリウムガスの供給を停止した場合、外
気圧よりも高圧のヘリウムガスは、高い抵抗値の
抵抗管22,23,24からはごくわずかしか放
出されず、大部分は抵抗値の低いフイルタ13,
14,15から放出され、この放出は内圧と外気
圧とが等しくなるまで続いて停止する。次いでヘ
リウムガス流路に残留するヘリウムガスが移動相
に溶解する場合があり、このときは、該流路内が
減圧になり、一見、移動相がヘリウムガス流路に
逆流するようにも考えられるがそのようなことは
ない。つまり、ヘリウムガス流路には一端を開放
した抵抗管22,23,24が設置されており、
かつ、この抵抗管の抵抗値は前記フイルタ13,
14,15の抵抗値の、例えば5倍程度のものな
ので、気体と液体の粘性差に着目すれば、この程
度の抵抗差では、液体である移動相が前記フイル
ター13,14,15を介してヘリウムガス流路
に逆流するより前記抵抗管から大気が流入する方
がはるかに容易であり、前述のように移動相がヘ
リウムガス流路に逆流することはない。またこれ
らの抵抗管の代りに電磁弁5と6のいずれか一方
か又はストツプバルブ16,17,18を、切換
えによつて大気側とヘリウムガス流路とを導通さ
せうる3方コツクに変換した溶媒脱気装置もこの
考案に含まれる。ヘリウムガスの供給を停止した
際これらの3方コツクによつて大気をヘリウムガ
ス流路に導入することによつて移動相の逆流を防
止することができる。
Furthermore, when the supply of helium gas is stopped, only a small amount of helium gas having a pressure higher than the outside pressure is released from the resistance tubes 22, 23, and 24 having a high resistance value, and most of the helium gas is released from the filter 13 having a low resistance value. ,
14, 15, and this discharge continues until the internal pressure and the external pressure become equal, and then stops. Next, the helium gas remaining in the helium gas flow path may be dissolved in the mobile phase, and in this case, the pressure inside the flow path becomes reduced, and at first glance it may be thought that the mobile phase flows back into the helium gas flow path. But that's not the case. In other words, resistance tubes 22, 23, and 24 with one end open are installed in the helium gas flow path.
And the resistance value of this resistance tube is the same as that of the filter 13,
For example, it is about 5 times the resistance value of 14 and 15, so if we focus on the viscosity difference between gas and liquid, with this level of resistance difference, the liquid mobile phase will not pass through the filters 13, 14, 15. It is much easier for air to flow through the resistance tube than to flow back into the helium gas flow path, and the mobile phase will not flow back into the helium gas flow path as described above. In addition, instead of these resistance tubes, one of the solenoid valves 5 and 6 or the stop valves 16, 17, and 18 may be converted into a three-way valve that can conduct the atmosphere side and the helium gas flow path by switching. A deaerator is also included in this idea. When the supply of helium gas is stopped, the atmosphere can be introduced into the helium gas flow path using these three-way valves, thereby preventing backflow of the mobile phase.

変形実施例としては、脱気ガスとして窒素ガス
やアルゴンガスなどを使用するもの、ベロー弁3
に代えてニードル弁などを使用するもの、最初の
脱気の際に電磁弁5,6を共に開とするもの、電
磁弁5,6に代えて三方電磁弁などを用いるも
の、小流量ガス流路4bをヘリウムガスボンベ2
と分岐管9の間に跨設するものなどが挙げられ
る。
Modified embodiments include those using nitrogen gas, argon gas, etc. as deaeration gas, and bellows valve 3.
Those that use a needle valve instead of the gas flow, those that open both solenoid valves 5 and 6 during the first degassing, those that use a three-way solenoid valve instead of the solenoid valves 5 and 6, and those that use a small flow rate gas flow. Route 4b to helium gas cylinder 2
For example, the pipe may be installed across the branch pipe 9 and the branch pipe 9.

以上の説明から理解されるように、この考案
は、脱気ガス供給源にガス流量調節手段を接続
し、そのガス流量調節手段に分岐手段を介して複
数の脱気ガス流路を接続し、それら脱気ガス流路
の先端にそれぞれフイルタ手段を取り付けた溶媒
脱気装置において、脱気ガス供給源と分岐手段と
の間もしくはガス流量調節手段と分岐手段との間
のガス流路に並列に小流量ガス流路を設置して並
列ガス流路とすると共にその並列ガス流路の選択
導通手段を設け、また脱気ガス流路中にそれぞれ
フイルタ手段より抵抗の大なる抵抗手段を介設
し、さらにこの抵抗手段のそれぞれに続いて一端
が開放された抵抗管を連結するか又は並列ガス流
路のいずれか一方の流路もしくは脱気ガス流路の
それぞれに切換えによつて大気側と脱気ガス流路
とを導通させうる3方コツク弁を介設して脱気ガ
ス供給停止時において脱気ガス流路に大気を導入
できるよう構成してなる溶媒脱気装置を提供する
ものであり、脱気完了時の流量の再調節が不要に
なりかつ作動が確実になる。また種々の異なる溶
媒を同時に脱気するときに各脱気ガス流路がアン
バランスになることが防がれ、流量も安定にな
る。さらに脱気ガスの供給を停止した際に脱気さ
れる移動相溶媒が脱気ガス流路に逆流することが
ない。
As can be understood from the above description, this invention connects a gas flow rate regulating means to a deaerated gas supply source, connects a plurality of deaerated gas flow paths to the gas flow rate regulating means via branching means, In a solvent deaerator in which a filter means is attached to the tip of each of the deaerated gas flow paths, the filter means is connected in parallel to the gas flow path between the deaerated gas supply source and the branching means or between the gas flow rate adjustment means and the branching means. A small flow rate gas flow path is installed to form a parallel gas flow path, a selective conduction means is provided for the parallel gas flow path, and a resistance means having a higher resistance than the filter means is interposed in each degassing gas flow path. Furthermore, following each of these resistance means, a resistance pipe with one end open is connected, or one of the parallel gas flow paths or the degassing gas flow path is switched to connect the atmospheric side and the degassing gas flow path. The present invention provides a solvent degassing device which is configured to include a three-way cock valve that can communicate with the gas flow path so that the atmosphere can be introduced into the degassing gas flow path when the degassing gas supply is stopped. This eliminates the need to readjust the flow rate upon completion of deaeration and ensures reliable operation. Furthermore, when various different solvents are simultaneously degassed, each degassed gas flow path is prevented from becoming unbalanced, and the flow rate becomes stable. Furthermore, the mobile phase solvent that is degassed when the supply of degassed gas is stopped does not flow back into the degassed gas flow path.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の溶媒脱気装置の一実施例の
構成説明図である。 1……溶媒脱気装置、2……ヘリウムガスボン
ベ、3……ベロー弁、4……並列ガス流路、4a
……主ガス流路、4b……小流量ガス流路、5,
6……電磁弁、7……抵抗管、8……制御部、9
……分岐管、10,11,12……脱気ガス流
路、13,14,15……フイルタ、16,1
7,18……ストツプバルブ、19,20,2
1,22,23,24……抵抗管、25,26,
27……脱気ガス流路のフイルタに接続する部
分、28……圧力計。
FIG. 1 is an explanatory diagram of the configuration of one embodiment of the solvent degassing device of this invention. 1... Solvent deaerator, 2... Helium gas cylinder, 3... Bellows valve, 4... Parallel gas flow path, 4a
...Main gas flow path, 4b...Small flow rate gas flow path, 5,
6...Solenoid valve, 7...Resistance tube, 8...Control unit, 9
... Branch pipe, 10, 11, 12 ... Degassing gas flow path, 13, 14, 15 ... Filter, 16, 1
7, 18...Stop valve, 19, 20, 2
1, 22, 23, 24...resistance tube, 25, 26,
27... Portion connected to the filter of the degassing gas flow path, 28... Pressure gauge.

Claims (1)

【実用新案登録請求の範囲】 脱気ガス供給源にガス流量調節手段を接続し、
そのガス流量調節手段に分岐手段を介して複数の
脱気ガス流路を接続し、それら脱気ガス流路の先
端にそれぞれフイルタ手段を取り付けた溶媒脱気
装置において、 脱気ガス供給源と分岐手段との間もしくはガス
流量調節手段と分岐手段との間のガス流路に並列
に小流量ガス流路を設置して並列ガス流路とする
と共にその並列ガス流路の選択導通手段を設け、
また脱気ガス流路中にそれぞれフイルタ手段より
抵抗の大なる抵抗手段を介設し、さらにこの抵抗
手段のそれぞれに続いて一端が開放された抵抗管
を連結するか又は並列ガス流路のいずれか一方の
流路もしくは脱気ガス流路のそれぞれに切換えに
よつて大気側と脱気ガス流路とを導通させうる3
方コツク弁を介設して脱気ガス供給停止時におい
て脱気ガス流路に大気を導入できるよう構成して
なる溶媒脱気装置。
[Scope of claim for utility model registration] Connecting a gas flow rate adjustment means to a degassing gas supply source,
In a solvent deaerator, a plurality of degassed gas flow paths are connected to the gas flow rate adjusting means via a branching means, and a filter means is attached to the tip of each of the degassed gas flow paths. A small flow rate gas flow path is installed in parallel in the gas flow path between the means or between the gas flow rate adjustment means and the branching means to form a parallel gas flow path, and selective conduction means for the parallel gas flow path is provided;
In addition, a resistance means having a higher resistance than the filter means is interposed in each deaerated gas flow path, and a resistance pipe with one end open is connected to each of the resistance means, or a parallel gas flow path is provided. 3. The atmosphere side and the degassed gas flow path can be brought into communication by switching one of the flow paths or each of the degassed gas flow paths.
A solvent degassing device constructed by interposing a directional valve so that air can be introduced into a degassing gas flow path when the degassing gas supply is stopped.
JP6515482U 1982-05-04 1982-05-04 Solvent deaerator Granted JPS58166804U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6515482U JPS58166804U (en) 1982-05-04 1982-05-04 Solvent deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6515482U JPS58166804U (en) 1982-05-04 1982-05-04 Solvent deaerator

Publications (2)

Publication Number Publication Date
JPS58166804U JPS58166804U (en) 1983-11-07
JPS6238721Y2 true JPS6238721Y2 (en) 1987-10-02

Family

ID=30075144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6515482U Granted JPS58166804U (en) 1982-05-04 1982-05-04 Solvent deaerator

Country Status (1)

Country Link
JP (1) JPS58166804U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5482191B2 (en) * 2009-12-24 2014-04-23 東ソー株式会社 Deaerator
JP6391524B2 (en) * 2015-03-31 2018-09-19 株式会社Screenホールディングス Deoxygenation apparatus and substrate processing apparatus

Also Published As

Publication number Publication date
JPS58166804U (en) 1983-11-07

Similar Documents

Publication Publication Date Title
US3528449A (en) Fluid flow control apparatus
DE2208868A1 (en) Device for enriching blood with oxygen
JPS6238721Y2 (en)
JP2824443B2 (en) Preparative liquid chromatography equipment
WO2020155577A1 (en) Full-two-dimensional gas chromatograph and modulation method
DE2041944C3 (en) Dynamic fluid booster
US4374656A (en) Apparatus for solvent degassing and solvent supply in liquid chromatographs
US20010052360A1 (en) Device for storing and mixing two gases
JPS5925446Y2 (en) Solvent deaerator
JPH05256834A (en) Liquid chromatograph
JP2008014788A (en) Liquid chromatograph mass spectrometer
JP2010101875A (en) Device and method for injecting sample in supercritical fluid chromatography
DE2647913C2 (en) Method and device for dissolving a gas in a liquid
JPS61115884A (en) Mixer for drink
JP4403638B2 (en) Liquid chromatograph
JPS58174846A (en) Specimen feeder for gas chromatograph
JPH09127079A (en) Liquid chromatograph
JPS5918454A (en) Carrier gas controlling apparatus for on-column capillary chromatograph
JP2573671B2 (en) Mobile phase feeder for supercritical fluid chromatography
JP3346260B2 (en) Degassing device
JPH1043552A (en) Membrane separation device and control method of operation pressure
JP4258107B2 (en) Liquid chromatograph
JPS58200161A (en) Liquid chromatograph
JPH0316168B2 (en)
JPH0599354A (en) Fixed quantity flow valve