JPS6237823B2 - - Google Patents

Info

Publication number
JPS6237823B2
JPS6237823B2 JP57191725A JP19172582A JPS6237823B2 JP S6237823 B2 JPS6237823 B2 JP S6237823B2 JP 57191725 A JP57191725 A JP 57191725A JP 19172582 A JP19172582 A JP 19172582A JP S6237823 B2 JPS6237823 B2 JP S6237823B2
Authority
JP
Japan
Prior art keywords
temperature
liquid
liquid level
liquefied gas
cooling chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57191725A
Other languages
Japanese (ja)
Other versions
JPS5980954A (en
Inventor
Naotake Unno
Tatsuo Fukuda
Yasutaka Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP57191725A priority Critical patent/JPS5980954A/en
Publication of JPS5980954A publication Critical patent/JPS5980954A/en
Publication of JPS6237823B2 publication Critical patent/JPS6237823B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 本発明は、液化ガス浸漬式冷却方法及びその装
置に関し、被冷却部の温度を設定温度以下に確実
に保持することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquefied gas immersion cooling method and its apparatus, and an object of the present invention is to reliably maintain the temperature of a cooled part below a set temperature.

この液化ガス浸漬式冷却方法は、冷却室内に液
化ガス供給装置から液化ガスを供給し、被冷却盤
の伝熱部を冷却室内の液化ガスの液相部に浸漬し
て被冷却盤を冷却するとともに、気相部を減圧装
置で減圧することにより液温を制御する方法であ
る。
In this liquefied gas immersion cooling method, liquefied gas is supplied from a liquefied gas supply device into the cooling chamber, and the heat transfer part of the cooled board is immersed in the liquid phase of the liquefied gas in the cooling chamber to cool the cooled board. This method also controls the liquid temperature by reducing the pressure in the gas phase using a pressure reducing device.

従来方法には、次のような諸欠点があつた。 The conventional method has the following drawbacks.

(イ) 温度制御装置で被冷却盤の温度のみを検出し
て減圧装置により液温を制御していたので、被
冷却盤の温度を高精度に制御することが出来な
い。
(a) Since the temperature control device detects only the temperature of the cooled board and the pressure reducing device controls the liquid temperature, it is not possible to control the temperature of the cooled board with high precision.

即ち、冷却室の圧力上昇により液温が上昇し
始めると、僅かの時間遅れを伴つて被冷却盤も
昇温し始めるので、被冷却盤が設定温度以上に
昇温したことを検出して減圧装置を作動させて
も、その効果は急速には現われず、被冷却部は
設定温度以上に昇温することになる。
In other words, when the liquid temperature begins to rise due to an increase in the pressure in the cooling chamber, the temperature of the cooled board also begins to rise with a slight time delay, so it is detected that the temperature of the cooled board has risen above the set temperature, and the pressure is reduced. Even when the device is activated, its effect is not immediately apparent, and the temperature of the cooled portion rises above the set temperature.

(ロ) 液面制御装置で冷却室の液面低下を検出して
液化ガス供給装置から液化ガスを補充する場合
に、補充される液化ガスの温度・圧力が冷却室
内の液化ガスの温度・圧力よりも高いので、冷
却室の液相部の温度上昇と気相部の圧力上昇を
招く結果、冷却室の温度条件が変動する。
(b) When the liquid level control device detects a drop in the liquid level in the cooling chamber and replenishes liquefied gas from the liquefied gas supply device, the temperature and pressure of the liquefied gas to be replenished will be the temperature and pressure of the liquefied gas in the cooling chamber. , the temperature in the liquid phase portion of the cooling chamber increases and the pressure in the gas phase portion increases, resulting in fluctuations in the temperature conditions of the cooling chamber.

本発明の冷却方法は、上記諸欠点に鑑みて、温
度制御装置で液相部の液温をも検出し、液温がそ
の設定温度以上になつたときには、減圧装置を作
動させて液温が設定温度になるまで冷却室を減圧
するようにし、更に液面低下で冷却室に液化ガス
を補充する際には、液面制御装置で減圧装置を作
動させて冷却室を減圧するようにしたものであ
る。
In view of the above-mentioned drawbacks, the cooling method of the present invention uses a temperature control device to detect the liquid temperature in the liquid phase, and when the liquid temperature exceeds the set temperature, a pressure reducing device is activated to lower the liquid temperature. The cooling chamber is depressurized until the set temperature is reached, and when the liquid level drops and the cooling chamber is refilled with liquefied gas, the liquid level control device operates a pressure reducing device to depressurize the cooling chamber. It is.

以下、本発明の液化ガス浸漬式冷却装置及び冷
却方法の実施例を図面に基き説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the liquefied gas immersion type cooling device and cooling method of the present invention will be described below with reference to the drawings.

第1図は超大型コンピユータ等に於いて高電子
移動度トランジスタを冷却して高電導状態を実現
するのに供する液化窒素浸漬式冷却装置の系統図
を示す。符号1は冷却室、2は液化窒素供給装
置、3はステンレス製の被冷却盤、4はその伝熱
部、5は気液分離器、6は液化窒素貯槽、7は減
圧装置、8は真空ポンプ、9は液面制御装置、1
0は温度制御装置、11は圧力制御装置である。
FIG. 1 shows a system diagram of a liquefied nitrogen immersion cooling device used to cool high electron mobility transistors in ultra-large computers and the like to achieve a high conductivity state. 1 is a cooling room, 2 is a liquefied nitrogen supply device, 3 is a stainless steel cooling plate, 4 is a heat transfer part thereof, 5 is a gas-liquid separator, 6 is a liquefied nitrogen storage tank, 7 is a pressure reducing device, and 8 is a vacuum Pump, 9 is liquid level control device, 1
0 is a temperature control device, and 11 is a pressure control device.

冷却室1はパーライト等の断熱壁12で区画さ
れ、その内部に液化窒素容器13が収容され、ま
た天井部断熱壁の開口部にステンレス等の金属製
の被冷却盤3が保密に嵌合され、被冷却盤3のフ
イン状ないし棒状の伝熱部4が液化窒素容器13
内の液相部14に浸漬されている。
The cooling chamber 1 is divided by an insulating wall 12 made of perlite or the like, and a liquefied nitrogen container 13 is housed inside the cooling chamber 1, and a cooling plate 3 made of metal such as stainless steel is tightly fitted into the opening of the ceiling insulating wall. , the fin-like or rod-like heat transfer part 4 of the cooled plate 3 is a liquefied nitrogen container 13.
It is immersed in the liquid phase part 14 inside.

液化窒素供給装置2の液化窒素貯槽6から気液
分離器5へ液化窒素を供給し、そこで気液分離
後、略−195.8℃(略1気圧下)の液化窒素を気
液分離器5の液出口16から液化窒素供給管17
で液化窒素容器13内へ供給する。
The liquefied nitrogen is supplied from the liquefied nitrogen storage tank 6 of the liquefied nitrogen supply device 2 to the gas-liquid separator 5, and after gas-liquid separation there, the liquefied nitrogen at approximately -195.8°C (under approximately 1 atmosphere) is transferred to the liquid of the gas-liquid separator 5. From outlet 16 to liquefied nitrogen supply pipe 17
The liquid nitrogen is then supplied into the liquefied nitrogen container 13.

尚、符号18は供給路を開閉する制御弁であつ
て、液面制御装置9からの指令で遠隔操作され
る。
Note that reference numeral 18 is a control valve that opens and closes the supply path, and is remotely operated by a command from the liquid level control device 9.

減圧装置7は冷却室1の気相部15を減圧して
液化窒素の沸点を下げることにより液温を下げる
ための装置で、真空ポンプ8、加温用熱交換器1
9及び減圧用制御弁20とからなり、その吸引口
21が吸気管22で冷却室1の気相部15に連通
連結される。
The pressure reducing device 7 is a device for lowering the liquid temperature by reducing the pressure in the gas phase portion 15 of the cooling chamber 1 to lower the boiling point of liquefied nitrogen, and includes a vacuum pump 8 and a heating heat exchanger 1.
9 and a pressure reducing control valve 20, the suction port 21 of which is connected to the gas phase portion 15 of the cooling chamber 1 through an intake pipe 22.

減圧用制御弁20は吸気管22を開閉する制御
弁であつて温度制御装置10、液面制御装置9又
は圧力制御装置11からの指令で遠隔操作され
る。
The pressure reducing control valve 20 is a control valve that opens and closes the intake pipe 22, and is remotely operated by commands from the temperature control device 10, the liquid level control device 9, or the pressure control device 11.

加温用熱交換器19は、真空ポンプ8に吸引す
る窒素ガスを加温して真空ポンプ8への悪影響を
防ぐ為、吸気管22を外気と熱交換するように形
成したものである。
The heating heat exchanger 19 is formed to heat the nitrogen gas sucked into the vacuum pump 8 and to exchange heat between the intake pipe 22 and the outside air in order to prevent an adverse effect on the vacuum pump 8.

冷却室1の液化窒素容器13内に液化窒素を貯
溜し、その液面制御装置9で所定範囲に制御す
る。液面制御装置9の下限液面検出センサー23
と上限液面検出センサー24とで各々下限液面と
上限液面とを検出可能にし、液相部14の液面が
下限液面以下に下つたときには、液化窒素供給管
17の制御弁18を自動的に開弁させて上限液面
になるまで液化窒素を補充し、液面低下による冷
却能力の低下を防ぐことが出来るようになつてい
る。
Liquefied nitrogen is stored in a liquefied nitrogen container 13 in a cooling chamber 1, and is controlled within a predetermined range by a liquid level control device 9. Lower limit liquid level detection sensor 23 of liquid level control device 9
The lower limit liquid level and the upper limit liquid level can be detected by the upper limit liquid level detection sensor 24 and the lower limit liquid level, respectively, and when the liquid level in the liquid phase section 14 falls below the lower limit liquid level, the control valve 18 of the liquefied nitrogen supply pipe 17 is turned off. The valve is automatically opened to replenish liquefied nitrogen until the upper limit liquid level is reached, thereby preventing the cooling capacity from decreasing due to a drop in the liquid level.

温度制御装置10は被冷却盤3の表面温度Ts
を例えば−195±2℃の範囲に制御する装置であ
つて、その温度検出センサー25で該表面温度
Tsを検出し、この温度Tsが設定温度(例えば−
195℃)以上に上つたときには、減圧用制御弁2
0を自動的に開弁させ、冷却室1の気相部15を
減圧し、該表面温度Tsが設定温度以下になるま
で液温を下げるようになつている。
The temperature control device 10 controls the surface temperature Ts of the cooled board 3
For example, it is a device that controls the surface temperature within a range of -195±2°C, and uses its temperature detection sensor 25 to detect the surface temperature.
Ts is detected, and this temperature Ts is the set temperature (for example -
(195℃) or higher, the pressure reducing control valve 2
0 is automatically opened, the gas phase section 15 of the cooling chamber 1 is depressurized, and the liquid temperature is lowered until the surface temperature Ts becomes equal to or lower than the set temperature.

ここで、被冷却盤3の表面からの入熱が伝熱部
4から液相部14に伝わり、液化窒素が徐々に気
化し、気相部15の圧力が次第に上昇していくの
で、圧力制御装置11で気相部15の圧力上昇を
防ぐ。即ち、前記温度制御装置10で減圧用制御
弁20を作動させて気相部15を減圧したときの
気相部15の圧力を圧力検出センサー26で検出
し、この圧力を圧力制御装置11で記憶し、該圧
力から一定圧力だけ圧力上昇する都度、減圧用制
御弁20を開弁作動させて該圧力になるまで気相
部15を減圧する。
Here, the heat input from the surface of the cooled platen 3 is transmitted from the heat transfer part 4 to the liquid phase part 14, and the liquefied nitrogen is gradually vaporized, and the pressure in the gas phase part 15 is gradually increased, so that the pressure can be controlled. The device 11 prevents the pressure from increasing in the gas phase section 15. That is, when the temperature control device 10 operates the pressure reduction control valve 20 to reduce the pressure in the gas phase portion 15, the pressure detection sensor 26 detects the pressure in the gas phase portion 15, and this pressure is stored in the pressure control device 11. Each time the pressure increases by a certain amount from this pressure, the pressure reduction control valve 20 is opened and the gas phase portion 15 is depressurized until the pressure reaches the specified pressure.

上記のように、被冷却盤3の表面温度Tsを−
195±2℃に維持するには、冷却室1内の液相部
14の液温を上記よりも幾分低目の温度に維持す
る必要があり、気相部15は常時1気圧以下の減
圧状態にある。
As mentioned above, the surface temperature Ts of the cooled board 3 is -
In order to maintain the temperature at 195±2°C, it is necessary to maintain the liquid temperature in the liquid phase part 14 in the cooling chamber 1 at a temperature somewhat lower than the above temperature, and the gas phase part 15 must be kept at a reduced pressure of 1 atm or less at all times. in a state.

そして、前記液面低下時に、液化窒素供給管1
7から略−195.8℃(略1気圧)の液化窒素を供
給すると、必らず液相部14の液温上昇と気相部
15の圧力上昇が起ることになるので、これを防
ぐ為に液面制御装置9で制御弁18を開弁作動す
る間中、減圧用制御弁20を開弁させる。
Then, when the liquid level drops, the liquefied nitrogen supply pipe 1
If liquefied nitrogen at approximately -195.8°C (approximately 1 atm) is supplied from 7 to 7, the liquid temperature in the liquid phase section 14 and the pressure in the gas phase section 15 will inevitably increase, so in order to prevent this, The pressure reducing control valve 20 is opened while the liquid level control device 9 is opening the control valve 18 .

更に、被冷却盤3の温度Tsを確実に制御する
為に、液相部14の液温TLを温度制御装置10
の液温検出センサー27で検出し、液温TLがそ
の設定温度(例えば−197℃)以上に上昇したと
きに、減圧用制御弁20を開弁し、液温TLが上
記設定温度以下になるまで気相部15を減圧する
ようになつている。
Furthermore, in order to reliably control the temperature Ts of the cooled platen 3, the liquid temperature T L of the liquid phase section 14 is controlled by the temperature control device 10.
Detected by the liquid temperature detection sensor 27, when the liquid temperature T L rises above the set temperature (for example -197°C), the pressure reduction control valve 20 is opened and the liquid temperature T L is lower than the set temperature. The pressure in the gas phase section 15 is reduced until the temperature reaches .

尚、被冷却盤3は断熱壁に組込む必要はなく、
断熱壁外に設けて伝熱部を断熱壁を挿通させて液
相部に浸漬させてもよい。
Note that the cooled board 3 does not need to be incorporated into the heat insulating wall.
The heat transfer part may be provided outside the heat insulating wall and inserted through the heat insulating wall to be immersed in the liquid phase part.

また、上記実施例は液化窒素を用いる場合であ
るが、この他にも液化空気や液化ヘリウムなどを
用いて冷却することも出来る。
Further, although the above embodiment uses liquefied nitrogen, it is also possible to use liquefied air, liquefied helium, or the like for cooling.

本発明の冷却方法は、次の効果を奏する。 The cooling method of the present invention has the following effects.

1 温度制御装置で冷却室の液相部の液温をも検
出し、その液温が設定温度以上になつたときに
は、減圧装置を作動させて冷却室を減圧し、液
温を設定温度以下になるまで下げるので、被冷
却盤が温度上昇する前にその温度上昇に対する
防止装置を講ずることが出来る。
1 The temperature control device also detects the liquid temperature in the liquid phase part of the cooling chamber, and when the liquid temperature exceeds the set temperature, the pressure reducing device is activated to reduce the pressure in the cooling chamber and bring the liquid temperature below the set temperature. Since the temperature is lowered until the temperature rises, it is possible to take measures to prevent the temperature rise before the temperature of the cooled board rises.

これにより、被冷却盤の温度を正確に精度よ
く制御することが出来る。
Thereby, the temperature of the cooled disk can be controlled accurately and accurately.

2 液面制御装置で液相部の液面低下を検出し、
液化ガス供給管の制御弁を開弁して液化ガスを
補充する際に、減圧装置を作動させて冷却室を
減圧するので、液化ガス補充による液温上昇と
圧力上昇を防ぎ、液相部の温度条件の変動を極
めて少なくすることが出来る。
2 The liquid level control device detects the drop in the liquid level in the liquid phase part,
When the control valve of the liquefied gas supply pipe is opened to replenish liquefied gas, the pressure reducing device is activated to reduce the pressure in the cooling chamber. This prevents the liquid temperature and pressure from rising due to liquefied gas replenishment, and reduces the pressure of the liquid phase. Fluctuations in temperature conditions can be extremely reduced.

本発明の冷却装置は、次の効果を奏する。 The cooling device of the present invention has the following effects.

3 冷却室の気相部から真空ポンプの吸入口に至
る吸気管に加温手段を付設し、吸引した低温ガ
スを加温してから真空ポンプに吸入するので、
真空ポンプとして特殊で高価な低温用真空ポン
プを必要とせず、通常の安価な真空ポンプを用
いることができる。
3 A heating means is attached to the intake pipe leading from the gas phase part of the cooling chamber to the suction port of the vacuum pump, and the sucked low-temperature gas is heated before being sucked into the vacuum pump.
A special and expensive low-temperature vacuum pump is not required as a vacuum pump, and a normal, inexpensive vacuum pump can be used.

しかも、上記加温手段は例えば吸気管の経路を
長くして外気と熱交換させるような簡単なもので
済む。
Moreover, the heating means may be simple, such as e.g. by lengthening the path of the intake pipe to exchange heat with the outside air.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の冷却装置の系統図である。 1…冷却室、2…液化ガス供給装置、3…被冷
却盤、4…伝熱部、5…気液分離器、7…減圧装
置、8…真空ポンプ、9…液面制御装置、10…
温度制御装置、14…液相部、15…気相部、1
6…液出口、17…液化ガス供給管、18…制御
弁、19…加温手段(熱交換器)、20…減圧用
制御弁、21…吸入口、22…吸入管、23…下
限液面検出センサー、24…上限液面検出センサ
ー、25…被冷却盤の温度検出センサー、27…
液温検出センサー。
The drawing is a system diagram of the cooling device of the present invention. DESCRIPTION OF SYMBOLS 1... Cooling room, 2... Liquefied gas supply device, 3... Cooled board, 4... Heat transfer part, 5... Gas-liquid separator, 7... Pressure reduction device, 8... Vacuum pump, 9... Liquid level control device, 10...
Temperature control device, 14...liquid phase section, 15...gas phase section, 1
6...Liquid outlet, 17...Liquefied gas supply pipe, 18...Control valve, 19...Heating means (heat exchanger), 20...Control valve for pressure reduction, 21...Suction port, 22...Suction pipe, 23...Lower limit liquid level Detection sensor, 24... Upper limit liquid level detection sensor, 25... Cooled board temperature detection sensor, 27...
Liquid temperature detection sensor.

Claims (1)

【特許請求の範囲】 1 冷却室1へ液化ガス供給装置2から液化ガス
供給管17で液化ガスを供給して、冷却室1の液
相部14の液面を所定の液面高さに貯溜し、冷却
室1の気相部15を吸気管22により減圧装置7
で減圧して、液相部14の温度を下げ、冷却室1
の上側に被冷却盤3を設けてその伝熱部4を液相
部14に浸漬し、液相部14から被冷却盤3に冷
熱を伝えて冷却し、液面制御装置9で液相部14
の上限液面と下限液面とを検出し、液面が下限液
面以下に下つたときに、液化ガス供給管17の制
御弁18を開いて、該液面が上限液面になるまで
液化ガスを補充することにより、液相部14の液
面を所定の液面高さ範囲に保持し、温度制御装置
10で被冷却盤3の温度Tsを検出し、この温度
Tsが設定温度以上になつたときに減圧装置7を
作動させて、該温度Tsが設定温度以下になるま
で気相部15を減圧し、以上により被冷却盤3を
液化ガス設定温度以下に冷却する方法において、
液面制御装置9が液化ガス供給管17の制御弁1
8を開いて液化ガスを冷却室1に補充する際に、
液面制御装置9で減圧装置7を作動させて気相部
15を減圧することにより、液相部14の液化ガ
スを冷却して、液相部14が補充されてきた液化
ガスの混入で温度上昇することを防止し、温度制
御装置10で液相部14の液温を検出し、この液
温がその設定温度以上になつたときに減圧装置7
を作動させて、該液温が設定温度以下になるまで
気相部15を減圧する事により、被冷却盤3が設
定温度以上に上昇することを防止する事を特徴と
する液化ガス浸漬式冷却方法。 2 断熱構造の冷却室1内に液化ガスを貯溜し、
液化ガス供給装置2の気液分離器5の液出口16
と冷却室1とを液化ガス供給管17で制御弁18
を介して連通し、冷却室1の気相部15と真空ポ
ンプ8の吸入口21とを吸気管22で減圧用制御
弁20を介して連通し、冷却室1の上側に被冷却
盤3を付設し、被冷却盤3の伝熱部4を冷却室1
の液相部14に浸漬して被冷却盤3を液化ガスで
冷却し、液面制御装置9の液面検出センサ23,
24で液相部14の上限液面と下限液面とを検出
可能にし、液相部14の液面が下限液面以下に下
つた状態では、制御弁18を開弁して上限液面に
なるまで液化ガスを補充し、温度制御装置10の
温度検出センサ25で検出する被冷却盤3の温度
がその設定温度以上になつた状態では、減圧用制
御弁20を開弁し、冷却室1の気相部15を減圧
して液相部14の液温を下げるように構成した冷
却装置において、液化ガス供給管17の制御弁1
8を開弁作動する状態では、液面制御装置9で減
圧用制御弁20を開弁し、冷却室1の気相部15
を減圧して液相部14の液温を下げるように構成
し、温度制御装置10の液温検出センサ27で検
出する液温がその設定温度以上に上つた状態で
は、減圧用制御弁20を開弁し、冷却室1の気相
部15を減圧して液相部14の液温を下げること
により該液温を設定温度以下に下げるように構成
し、上記吸気管22に加温手段19を付設し、吸
入管22に吸入した低温ガスを加温してから真空
ポンプ8へ吸入するように構成した事を特徴とす
る液化ガス浸漬式冷却装置。
[Claims] 1. Supplying liquefied gas from the liquefied gas supply device 2 to the cooling chamber 1 through the liquefied gas supply pipe 17, and storing the liquid level in the liquid phase section 14 of the cooling chamber 1 at a predetermined liquid level height. Then, the gas phase part 15 of the cooling chamber 1 is connected to the pressure reducing device 7 through the intake pipe 22.
to reduce the pressure in the liquid phase section 14 and cool the cooling chamber 1.
A cooled platen 3 is provided on the upper side, and its heat transfer part 4 is immersed in the liquid phase part 14, cold heat is transferred from the liquid phase part 14 to the cooled platen 3 to cool it, and the liquid level control device 9 cools the liquid phase part. 14
The upper limit liquid level and the lower limit liquid level are detected, and when the liquid level falls below the lower limit liquid level, the control valve 18 of the liquefied gas supply pipe 17 is opened and the liquid level is liquefied until the liquid level reaches the upper limit liquid level. By replenishing the gas, the liquid level in the liquid phase section 14 is maintained within a predetermined liquid level height range, the temperature Ts of the cooled plate 3 is detected by the temperature control device 10, and this temperature is
When Ts reaches or exceeds the set temperature, the pressure reducing device 7 is activated to reduce the pressure in the gas phase section 15 until the temperature Ts falls below the set temperature, thereby cooling the cooled plate 3 to below the liquefied gas set temperature. In the method of
The liquid level control device 9 is the control valve 1 of the liquefied gas supply pipe 17.
When opening 8 to replenish the cooling chamber 1 with liquefied gas,
By operating the pressure reducing device 7 with the liquid level control device 9 to reduce the pressure in the gas phase portion 15, the liquefied gas in the liquid phase portion 14 is cooled, and the temperature of the liquid phase portion 14 decreases due to the mixing of the replenished liquefied gas. The temperature control device 10 detects the liquid temperature in the liquid phase section 14, and when the liquid temperature exceeds the set temperature, the pressure reducing device 7
The liquefied gas immersion type cooling is characterized in that the temperature of the cooled board 3 is prevented from rising above the set temperature by activating the system and reducing the pressure in the gas phase section 15 until the temperature of the liquid falls below the set temperature. Method. 2 Storing liquefied gas in a cooling chamber 1 with an insulated structure,
Liquid outlet 16 of the gas-liquid separator 5 of the liquefied gas supply device 2
and the cooling chamber 1 through a control valve 18 via a liquefied gas supply pipe 17.
The gas phase part 15 of the cooling chamber 1 and the suction port 21 of the vacuum pump 8 are connected through the intake pipe 22 through the pressure reducing control valve 20, and the cooling board 3 is connected to the upper side of the cooling chamber 1. The heat transfer part 4 of the cooled board 3 is attached to the cooling chamber 1.
The cooling target plate 3 is cooled by liquefied gas by being immersed in the liquid phase part 14 of
24 makes it possible to detect the upper limit liquid level and lower limit liquid level of the liquid phase part 14, and when the liquid level of the liquid phase part 14 falls below the lower limit liquid level, the control valve 18 is opened to detect the upper limit liquid level. When the temperature of the cooled board 3 detected by the temperature detection sensor 25 of the temperature control device 10 reaches or exceeds the set temperature, the pressure reduction control valve 20 is opened and the cooling chamber 1 is In the cooling device configured to reduce the pressure of the gas phase section 15 of the liquid phase section 14 to lower the liquid temperature of the liquid phase section 14, the control valve 1 of the liquefied gas supply pipe 17
In the state where the valve 8 is opened, the liquid level control device 9 opens the pressure reducing control valve 20 and the gas phase section 15 of the cooling chamber 1 is opened.
When the liquid temperature detected by the liquid temperature detection sensor 27 of the temperature control device 10 exceeds the set temperature, the pressure reduction control valve 20 is The valve is opened and the gas phase section 15 of the cooling chamber 1 is depressurized to lower the liquid temperature of the liquid phase section 14 to lower the temperature of the liquid below a set temperature. A liquefied gas immersion type cooling device characterized in that the liquefied gas immersion type cooling device is equipped with a liquefied gas immersion cooling device and is configured to heat the low-temperature gas sucked into the suction pipe 22 and then suck it into the vacuum pump 8.
JP57191725A 1982-10-29 1982-10-29 Liquefied gas immersion type cooling method and device thereof Granted JPS5980954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57191725A JPS5980954A (en) 1982-10-29 1982-10-29 Liquefied gas immersion type cooling method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57191725A JPS5980954A (en) 1982-10-29 1982-10-29 Liquefied gas immersion type cooling method and device thereof

Publications (2)

Publication Number Publication Date
JPS5980954A JPS5980954A (en) 1984-05-10
JPS6237823B2 true JPS6237823B2 (en) 1987-08-14

Family

ID=16279444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57191725A Granted JPS5980954A (en) 1982-10-29 1982-10-29 Liquefied gas immersion type cooling method and device thereof

Country Status (1)

Country Link
JP (1) JPS5980954A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450974B1 (en) * 2001-12-06 2004-10-02 삼성전자주식회사 Raw material vaporization volume controlling device for modified chemical vapor deposition process
CN108679895A (en) * 2018-05-25 2018-10-19 中国科学院上海应用物理研究所 A kind of cooling recirculation system with pressure control device

Also Published As

Publication number Publication date
JPS5980954A (en) 1984-05-10

Similar Documents

Publication Publication Date Title
US5671603A (en) Apparatus for controlling level of cryogenic liquid
US5417072A (en) Controlling the temperature in a cryogenic vessel
US3440829A (en) Liquified gas delivery system
JPS6237823B2 (en)
US2581347A (en) Absorption refrigeration apparatus and heating arrangement therefor
US3307367A (en) Control device
US3216210A (en) Cryostat apparatus
US4296883A (en) Heat generation and distribution system
JP2596255B2 (en) Liquid refrigerant circulation system
JP2665835B2 (en) Heating and cooling device
JP4540315B2 (en) Cryogenic liquid heating method and apparatus
JP3046843U (en) Liquid supply device
JP2959951B2 (en) Liquid circulation thermostat
JPH04121598U (en) Low temperature liquefied gas supply equipment
JPH0441276Y2 (en)
JPS6242296Y2 (en)
JP2001241598A (en) Delivery method of cryogenic liquid and its delivery apparatus
US3330125A (en) Cryogenic method
JPH102631A (en) Evaporative cooling device
JP3337249B2 (en) Liquid level adjustment device for cryogenic liquid containers
JP2000283395A (en) Liquefied gas storage and supply facility
JPH09196528A (en) Heat exchanger for high-efficiency cooling
US2352798A (en) Refrigeration
JPH05306890A (en) Vaporizer
JPS6239319B2 (en)