JPH0441276Y2 - - Google Patents

Info

Publication number
JPH0441276Y2
JPH0441276Y2 JP1983017511U JP1751183U JPH0441276Y2 JP H0441276 Y2 JPH0441276 Y2 JP H0441276Y2 JP 1983017511 U JP1983017511 U JP 1983017511U JP 1751183 U JP1751183 U JP 1751183U JP H0441276 Y2 JPH0441276 Y2 JP H0441276Y2
Authority
JP
Japan
Prior art keywords
liquefied gas
cryogenic
impeller
case
cryogenic liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983017511U
Other languages
Japanese (ja)
Other versions
JPS59123693U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1751183U priority Critical patent/JPS59123693U/en
Publication of JPS59123693U publication Critical patent/JPS59123693U/en
Application granted granted Critical
Publication of JPH0441276Y2 publication Critical patent/JPH0441276Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

【考案の詳細な説明】 〔考案の利用分野〕 本考案は極低温液化ガス移送装置に係り、特に
液体ヘリウム等の極低温レベルの液化ガス移送に
好適な極低温液化ガス移送装置に関するものであ
る。
[Detailed description of the invention] [Field of application of the invention] The present invention relates to a cryogenic liquefied gas transfer device, and particularly to a cryogenic liquefied gas transfer device suitable for transferring cryogenic liquefied gas such as liquid helium. .

〔従来の技術〕[Conventional technology]

従来の液化ガス移送装置は、液体窒素の温度域
の低温ポンプが実用化されている段階である。従
来の低温ポンプは液体窒素温度レベルであつたた
め、常温部からの熱侵入が問題になるといつても
技術的に解決できていた。
Conventional liquefied gas transfer devices are at the stage where cryogenic pumps in the temperature range of liquid nitrogen have been put into practical use. Conventional low-temperature pumps operate at liquid nitrogen temperatures, so whenever heat intrusion from room-temperature parts became a problem, it could be solved technically.

例えば、特開昭58−10194号公報、特公昭46−
32899号公報等に記載のように、ポンプ駆動用の
モータを容器上部の常温部に取り付け、容器内の
駆動軸を断熱したり、ポンプ駆動用のモータを容
器上部の常温部に取り付けるとともにモータ部を
ケーシングで囲み、駆動軸を液化ガスで冷却する
とともに気化したガスでケーシング内を満たすよ
うになつていた。
For example, JP-A-58-10194, JP-A-46-
As described in Publication No. 32899, etc., the motor for driving the pump is installed in the normal temperature part of the upper part of the container, and the drive shaft inside the container is insulated. was surrounded by a casing, the drive shaft was cooled with liquefied gas, and the casing was filled with vaporized gas.

また、ポンプ装置からの熱侵入が防げるものと
して、特公昭50−30281号公報、実開昭58−63394
号公報等に記載のように、ポンプおよびポンプ駆
動用のモータを一体にして液化ガス中に浸漬した
ものがある。
In addition, as a device that can prevent heat intrusion from the pump device, Japanese Patent Publication No. 50-30281 and Utility Model Application Publication No. 58-63394
As described in the above publications, there is a pump in which a pump and a motor for driving the pump are integrated and immersed in liquefied gas.

〔考案が解決しようとする課題〕[The problem that the idea aims to solve]

上記従来技術は、液化ガスとして液体ヘリウム
のような極低温液化ガスを移送する場合について
の配慮はされておらず、特開昭58−10194号公報、
特公昭46−32899号公報等に記載のものの場合、
液体ヘリウム温度レベルでは、モータが容器上部
の常温部にあると、液体窒素温度レベルに比べ侵
入熱による気化量が大幅に増えることになり、こ
のため、液化ガス移送効率に対して熱の侵入が大
きな問題となる。
The above-mentioned conventional technology does not take into consideration the case where a cryogenic liquefied gas such as liquid helium is transferred as the liquefied gas, and Japanese Patent Application Laid-Open No. 10194-1989,
In the case of those described in Special Publication No. 46-32899, etc.,
At the liquid helium temperature level, if the motor is at room temperature at the top of the container, the amount of vaporization due to intrusion heat will increase significantly compared to the liquid nitrogen temperature level, and therefore the heat intrusion will affect the liquefied gas transfer efficiency. It becomes a big problem.

また、特公昭50−30281号公報、実開昭58−
63394号公報等に記載のもののようにモータまで
液化ガス中に浸漬したものでは、液体ヘリウム等
の極低温温度で直接にモータ部が冷却され、機器
の破損が生じるという恐れがある。
Also, Special Publication No. 50-30281, Utility Model Publication No. 58-
If the motor is immersed in liquefied gas, such as the one described in Publication No. 63394, the motor part will be directly cooled by the extremely low temperature of liquid helium, which may cause damage to the equipment.

本考案の目的は、ポンプ部の損傷を防止すると
ともに極低温液化ガスの移送効率を向上できる極
低温液化ガス移送装置を提供することにある。
An object of the present invention is to provide a cryogenic liquefied gas transfer device that can prevent damage to the pump part and improve the transfer efficiency of cryogenic liquefied gas.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、極低温液化ガスを
収納する極低温容器に、極低温容器の上部を貫通
し内部が常温で極低温液化ガス液面より下方の極
低温容器内の底部近傍まで伸びる筒状の断熱され
たケースを設け、ケース内の下方端部に、極低温
液化ガスに接するインペラ、該インペラを一端に
設けたシヤフト、該シヤフトをモータ軸として駆
動するモータおよび該モータ部をはさんでシヤフ
トを支持する軸受から成るポンプ部を組み込み、
極低温容器内の極低温液化ガスがポンプ部のイン
ペラ背面側から侵入してインペラと軸受との間で
気化しモータ部およびケース内を順次介して極低
温容器外に放出される流路を形成し、該流路の放
出部に気化した蒸発ガスの圧力を調節する調節弁
を設けたものである。
In order to achieve the above purpose, a cryogenic container containing cryogenic liquefied gas is provided with a structure that penetrates the top of the cryogenic container and extends to near the bottom of the cryogenic container below the liquid level of the cryogenic liquefied gas at room temperature. A cylindrical insulated case is provided, and an impeller in contact with the cryogenic liquefied gas, a shaft with the impeller at one end, a motor that drives the shaft as a motor shaft, and the motor section are installed at the lower end of the case. Incorporating a pump part consisting of a bearing that supports the shaft between the
The cryogenic liquefied gas in the cryogenic container enters from the back side of the impeller of the pump section, vaporizes between the impeller and the bearing, and forms a flow path through which it passes sequentially through the motor section and the inside of the case and is released outside the cryogenic container. However, a control valve is provided at the discharge portion of the flow path to adjust the pressure of the vaporized gas.

〔作用〕[Effect]

内部が常温の筒状の断熱されたケースの先端部
にポンプを設け、該ポンプを極低温液化ガス内に
浸漬させて用い、極低温液化ガスがポンプ部のイ
ンペラ背面側から侵入してインペラと軸受との間
でシヤフト部を冷却しながら気化するようにし、
気化した蒸発ガスをモータ部およびケース内を順
次介して極低温容器外に放出させ、該放出させる
蒸発ガスの圧力を調整できるようにしているの
で、軸受側の蒸発ガスの圧力調整ができ、ポンプ
部のインペラ背面側から軸受側に侵入する液化ガ
スの軸受への侵入が防げ、軸受等ポンプ部の損傷
を防止できる。また、これとともに、ポンプ部を
断熱された筒状のケースに設け、常温部に位置す
るポンプ部分を極力少なくし、インペラと軸受と
の間のシヤフト部で熱侵入を抑えるようにしてい
るので、極低温液化ガスへの熱侵入が抑えられ極
低温液化ガスの移送効率を向上できる。
A pump is installed at the tip of a cylindrical, insulated case whose inside is at room temperature, and the pump is immersed in cryogenic liquefied gas. It vaporizes while cooling the shaft part between it and the bearing.
The vaporized gas is sequentially released through the motor section and inside the case to the outside of the cryogenic container, and the pressure of the released vaporized gas can be adjusted, so the pressure of the vaporized gas on the bearing side can be adjusted, and the pump This prevents liquefied gas from entering the bearing from the back side of the impeller, thereby preventing damage to the bearing and other parts of the pump. In addition, the pump part is installed in an insulated cylindrical case, minimizing the pump part located in the room temperature part and suppressing heat intrusion in the shaft part between the impeller and the bearing. Heat infiltration into the cryogenic liquefied gas is suppressed, and the transfer efficiency of the cryogenic liquefied gas can be improved.

〔考案の実施例〕[Example of idea]

以下本考案の一実施例を第1図及び第2図によ
り説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は、本考案の極低温液化ガス移送装置を
示し、この場合、液体ヘリウムポンプを用いた移
送装置である。液体ヘリウムポンプは、第2図に
示すように、筒状のケース14内に取り付けられ
て、液体ヘリウム容器11内に浸漬される。この
場合、簡略図示を用いているが、液体ヘリウム容
器11は内部を極低温に保持するための断熱構
造、例えば、真空断熱となつている。また、ケー
ス14も液体ヘリウムポンプの軸受室12を常温
に保持し、液体ヘリウムとの断熱をとるための断
熱構造、例えば、真空断熱となつている。
FIG. 1 shows a cryogenic liquefied gas transfer device of the present invention, in this case a transfer device using a liquid helium pump. The liquid helium pump is installed in a cylindrical case 14 and immersed in the liquid helium container 11, as shown in FIG. In this case, although a simplified illustration is used, the liquid helium container 11 has a heat insulating structure for keeping the inside at an extremely low temperature, for example, vacuum heat insulation. Further, the case 14 also has a heat insulating structure, for example, vacuum heat insulation, to maintain the bearing chamber 12 of the liquid helium pump at room temperature and to provide heat insulation from the liquid helium.

液体ヘリウムポンプは、この場合、第1図に示
す構成となつている。モータ6は軸受室12内に
組み込まれ、ジヤーナル軸受7,8およびスラス
ト軸受9,10により支持される。モータ6のモ
ータ軸であるシヤフト1の下方の端部には、イン
ペラ2が取り付けてある。また、シヤフト1の周
囲には、モータ部の軸受7部側からの軸方向の輻
射熱を防止するケース5が設けてある。シヤフト
1とケース5との間には、インペラ2の背面空間
につながり、また、モータ部の内空間につながる
小さな隙間を有している。モータ部の内空間は、
スラストプレートに対面した上部ケースの図示を
省略した小さな貫通穴から第2図に示すケース1
4内の内側空間につながり、さらに蒸発ガス調節
弁21につながる。また、インペラ2の外周部に
つながる空間は、ケースの内面の〓間を介して第
2図に示すケース14内の外側空間につながり、
さらに蒸発ガス調節弁20につながる。これら蒸
発ガス調節弁20および21を調節することによ
つて、ケース14内の蒸発ガスの放出流量が調整
可能である。
The liquid helium pump in this case has the configuration shown in FIG. The motor 6 is installed in a bearing chamber 12 and supported by journal bearings 7 and 8 and thrust bearings 9 and 10. An impeller 2 is attached to the lower end of the shaft 1, which is the motor shaft of the motor 6. Further, a case 5 is provided around the shaft 1 to prevent radiant heat in the axial direction from the bearing 7 side of the motor section. A small gap is provided between the shaft 1 and the case 5, which is connected to the back space of the impeller 2 and also connected to the inner space of the motor section. The inner space of the motor section is
Case 1 shown in Figure 2 from a small through hole (not shown) in the upper case facing the thrust plate.
It is connected to the inner space in the 4, and further connected to the evaporative gas control valve 21. In addition, the space connected to the outer circumference of the impeller 2 is connected to the outer space inside the case 14 shown in FIG. 2 through the inner surface of the case.
It is further connected to an evaporative gas control valve 20. By adjusting these evaporative gas control valves 20 and 21, the discharge flow rate of evaporative gas within the case 14 can be adjusted.

また、この場合は、さらに第2図に示すよう
に、シヤフト1のインペラ2の側の軸方向の温
度、すなわち、液体ヘリウムの液面位置が検出可
能なように温度調節計15,16を軸方向に間隔
を明けて設けてある。インペラ2による吐出側に
は、吐出圧力計17が設けてある。ケース14の
外空間と蒸発ガス調節弁20とがつながる空間に
は、軸受室圧力調節計18が設けてあり、また、
ケース14の内空間と蒸発ガス調節弁21とがつ
ながる空間には、軸受室圧力調節室19が設けて
ある。軸受室圧力調節室18,19は、吐出圧力
計17との圧力関係でそれぞれの蒸発ガス調節弁
20,21を制御する。また、軸受室圧力調節計
18,19は、温度調節計15,16の温度によ
つてそれぞれ蒸発ガス調節弁20,21を制御す
る。
Furthermore, in this case, as shown in FIG. 2, the temperature controllers 15 and 16 are set so that the temperature in the axial direction of the shaft 1 on the impeller 2 side, that is, the liquid level position of the liquid helium, can be detected. They are spaced apart in the direction. A discharge pressure gauge 17 is provided on the discharge side of the impeller 2. A bearing chamber pressure regulator 18 is provided in a space where the outer space of the case 14 and the evaporative gas control valve 20 are connected, and
A bearing chamber pressure adjustment chamber 19 is provided in a space where the inner space of the case 14 and the evaporative gas adjustment valve 21 are connected. The bearing chamber pressure adjustment chambers 18 and 19 control the respective evaporative gas adjustment valves 20 and 21 based on the pressure relationship with the discharge pressure gauge 17. Further, the bearing chamber pressure regulators 18 and 19 control the evaporative gas regulating valves 20 and 21 according to the temperatures of the temperature regulators 15 and 16, respectively.

上記のように構成された液体ヘリウムポンプで
は、ジヤーナル軸受7,8、スラスト軸受9,1
0及びモータ6は常温にて設計されており、液体
ヘリウムに接するインペラ2の部分にシヤフト1
を介して伝導により熱侵入がある。
In the liquid helium pump configured as described above, journal bearings 7, 8, thrust bearings 9, 1
0 and the motor 6 are designed at room temperature, and the shaft 1 is placed in the part of the impeller 2 that is in contact with liquid helium.
There is heat intrusion through conduction.

この熱侵入を低減させることはポンプ効率を決
定するもので、重要な要素である。常温域より低
温域への熱伝導はその温度差により必然的に決定
されてくるが、ここでは、その熱伝導を低減させ
るために、インペラ2の上部に保持されている液
体ヘリウムの一部をガス化させ、その顕熱分を利
用してシヤフト1を冷却し、そのシヤフト1の熱
伝導を減少させて侵入熱を減少させる。
Reducing this heat invasion determines pump efficiency and is an important factor. Heat conduction from the room temperature range to the low temperature range is inevitably determined by the temperature difference, but here, in order to reduce the heat conduction, a part of the liquid helium held in the upper part of the impeller 2 is used. It is gasified, and the shaft 1 is cooled using its sensible heat, thereby reducing the heat conduction of the shaft 1 and reducing the intrusion heat.

この場合、液体ヘリウム容器11内の液体ヘリ
ウム中に侵されたヘリウムポンプのインペラ2
を、シヤフト1を介してモータ6により駆動させ
ることによつて、液体ヘリウム容器11内の液体
ヘリウムは、インペラ2の軸方向から吸入され、
円周方向に吐出され輸送される。このとき、イン
ペラ2の背面に廻り込んだ液体ヘリウムは常温部
からの熱を受けて気化し、シヤフト1部の〓間に
入り込む。シヤフト1を冷却して温度回復した冷
却ガスは矢印のように流れて常温のガスとなり、
軸受室内へ入る。
In this case, the impeller 2 of the helium pump is eroded by the liquid helium in the liquid helium container 11.
By driving the motor 6 through the shaft 1, liquid helium in the liquid helium container 11 is drawn in from the axial direction of the impeller 2,
It is discharged and transported in the circumferential direction. At this time, the liquid helium that has circulated around the back side of the impeller 2 is vaporized by receiving heat from the room temperature section, and enters between the ends of the shaft 1 section. The cooling gas whose temperature has been recovered by cooling the shaft 1 flows as shown by the arrow and becomes room temperature gas.
Enter the bearing chamber.

また一方、インペラ2の周囲から吐出された液
体ヘリウムの一部は、気化してケース5を取り囲
むケース4とケース3との〓間を矢印の方向に通
つて、ケース3,4を冷却しながら温度回復して
軸受室部では常温になつたガスが軸受室とケース
との〓間を矢印の方向に流れる。
On the other hand, a part of the liquid helium discharged from around the impeller 2 evaporates and passes between the cases 4 and 3 surrounding the case 5 in the direction of the arrow, cooling the cases 3 and 4. The gas, which has recovered to normal temperature in the bearing chamber, flows between the bearing chamber and the case in the direction of the arrow.

なお、これら軸受室内に入つた常温ガス及び、
軸受室とケースとの〓間部に入つた常温ガスは、
それぞれ入つた部分から前記の流路を介して抜き
出し、気化した冷却ガスが流れるようにする必要
がある。この場合、常温ガスの抜き出しは大気中
への放出により行われる。軸受室内に入つた常温
ガスは、ケース14内の内側空間に出し、軸受室
とケースとの〓間部に入つた常温ガスは、ケース
14内の外側空間に出す。
Note that the room temperature gas that entered the bearing chamber and
The room-temperature gas that enters the space between the bearing chamber and the case is
It is necessary to extract the vaporized cooling gas from the portion where it entered through the aforementioned flow path so that it can flow. In this case, the cold gas is extracted by releasing it into the atmosphere. The normal temperature gas that has entered the bearing chamber is discharged to the inner space within the case 14, and the normal temperature gas that has entered the space between the bearing chamber and the case is discharged to the outer space within the case 14.

これら常温ガス(冷却ガス)の放出量は、軸受
室の圧力とポンプの吐出圧とのバランス、すなわ
ち、差圧により決定される。この場合、ポンプ側
の圧力をやや高く、軸受室側の圧力をやや低くす
る。このバランスが乱れる。例えば、軸受室側が
低くなり過ぎると、液体ヘリウムが軸受室へ入り
込み、軸受の破損が生じて危険である。また、逆
に軸受室側が高くなつて、気化したガスが流れず
にシヤフト1部が良く冷えなかつたら、熱侵入量
が多くなつて液体ヘリウムの移送効率、すなわ
ち、ポンプ効率が低下する。そこで、蒸発ガス調
節弁20,21を調節し放出量を調整して、蒸発
ガスを大気に放出するようにしている。この場
合、これらの調整を吐出圧力計17と軸受室圧力
調節計18,19とにより圧力バランスを検知
し、蒸発ガス調節弁20,21を調節して蒸発ガ
スの放出量を調整して大気に放出する。また、最
悪、ポンプの損傷を防止するために、液体ヘリウ
ムが軸受室12へ入り込まないように、液体ヘリ
ウムの液面位置を温度調節計15,16により検
知し、圧力バランス制御へフイードバツクして蒸
発ガス調節弁20,21を制御する。
The amount of these room temperature gases (cooling gases) released is determined by the balance between the pressure in the bearing chamber and the discharge pressure of the pump, that is, the differential pressure. In this case, the pressure on the pump side is slightly higher and the pressure on the bearing chamber side is slightly lower. This balance is disturbed. For example, if the bearing chamber side becomes too low, liquid helium will enter the bearing chamber, causing damage to the bearing, which is dangerous. On the other hand, if the bearing chamber side becomes higher and the vaporized gas does not flow and the shaft part is not cooled well, the amount of heat intrusion increases and the efficiency of transferring liquid helium, that is, the efficiency of the pump decreases. Therefore, the evaporative gas control valves 20 and 21 are adjusted to adjust the release amount, and the evaporative gas is released into the atmosphere. In this case, these adjustments are made by detecting the pressure balance using the discharge pressure gauge 17 and the bearing chamber pressure regulators 18 and 19, and adjusting the evaporative gas control valves 20 and 21 to adjust the amount of evaporative gas released into the atmosphere. discharge. In addition, in order to prevent damage to the pump in the worst case scenario, the liquid helium level position is detected by temperature controllers 15 and 16, and feedback is sent to pressure balance control to prevent liquid helium from entering the bearing chamber 12. Controls gas control valves 20 and 21.

以上、本実施例によれば、液体ヘリウムを収納
する液体ヘリウム容器の上部を貫通し、内部が常
温で液体ヘリウム液面より下方の液体ヘリウム容
器内の底部近傍まで伸びる筒状の断熱されたケー
スを設け、ケースの下方端部に、液体ヘリウムと
接するポンプ部を組み込み、液体ヘリウムがポン
プ部のインペラ背面側から侵入してインペラと軸
受との間で気化し、モータ部およびケース内を順
次介して液体ヘリウム容器外に放出される流路を
形成し、該流路の放出部に気化したガスの圧力を
調節する調節弁を設けているので、放出するガス
の圧力を調節して軸受側の気化したガスの圧力調
整をでき、ポンプ部のインペラ背面側から軸受側
に侵入する液体ヘリウムの軸受への侵入が防げ、
軸受等ポンプ部の損傷を防止できる。これととも
に、ポンプ部を断熱された筒状のケースに設け、
常温部に位置するポンプ部分を極力少なくし、イ
ンペラと軸受との間のシヤフト部で熱侵入を抑え
るようにしているので、極低温液化ガスへの熱侵
入が抑えられ極低温液化ガスの移送効率を向上で
きる。
As described above, according to this embodiment, the cylindrical insulated case penetrates through the upper part of the liquid helium container storing liquid helium and extends to near the bottom of the liquid helium container below the liquid helium surface at room temperature. A pump part that comes in contact with liquid helium is built into the lower end of the case, and liquid helium enters from the back side of the impeller in the pump part, vaporizes between the impeller and the bearing, and passes through the motor part and the inside of the case sequentially. A flow path is formed to release the liquid helium to the outside of the liquid helium container, and a control valve for adjusting the pressure of the vaporized gas is provided at the discharge part of the flow path. The pressure of the vaporized gas can be adjusted, and liquid helium that enters the bearing from the back side of the impeller in the pump section can be prevented from entering the bearing.
Damage to pump parts such as bearings can be prevented. Along with this, the pump part is installed in an insulated cylindrical case,
By minimizing the number of pump parts located at room temperature and suppressing heat intrusion in the shaft section between the impeller and the bearing, heat intrusion into the cryogenic liquefied gas is suppressed and the transfer efficiency of the cryogenic liquefied gas is improved. can be improved.

〔考案の効果〕[Effect of idea]

本考案によれば、内部が常温で断熱された筒状
のケース内に設けて極低温液化ガス内に浸漬され
たモータ部を極低温液化ガスの蒸発ガスによつて
冷却でき、該冷却後に放出される気化ガスの圧力
を調整するようにしてあるので、液化ガスの侵入
を防いでポンプ部の損傷を防止できるとともに、
ポンプ部を断熱された筒状のケースに設けて常温
部に位置するポンプ部分を極力少なくし、インペ
ラと軸受との間のシヤフト部で熱侵入を抑えるよ
うにしているので、極低温液化ガスへの熱侵入が
抑えられ極低温液化ガスの移送効率を向上できる
という効果がある。
According to the present invention, the motor section, which is installed in a cylindrical case whose interior is insulated at room temperature and immersed in cryogenic liquefied gas, can be cooled by the evaporated gas of the cryogenic liquefied gas, and released after cooling. Since the pressure of the vaporized gas is adjusted, it is possible to prevent the intrusion of liquefied gas and damage to the pump part.
The pump part is installed in an insulated cylindrical case to minimize the pump part located at room temperature, and the shaft part between the impeller and the bearing suppresses heat intrusion, so it is possible to reduce the amount of heat entering the cryogenic liquefied gas. This has the effect of suppressing heat intrusion and improving the transfer efficiency of cryogenic liquefied gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による極低温液化ガス移送装置
の一実施例を示す縦断面図、第2図は第1図のポ
ンプの制御システムを示す図である。 1……シヤフト、2,13……インペラ、3,
4,5,14……ケース、6……モータ、7,8
……ジヤーナル軸受、9,10……スラスト軸
受、11……液体ヘリウム容器、12……軸受
室、15,16……温度調節計、17……吐出圧
力計、18,19……軸受室圧力調節計、20,
21……蒸発ガス調節弁。
FIG. 1 is a longitudinal sectional view showing an embodiment of a cryogenic liquefied gas transfer device according to the present invention, and FIG. 2 is a diagram showing a control system for the pump shown in FIG. 1. 1...Shaft, 2, 13...Impeller, 3,
4,5,14...Case, 6...Motor, 7,8
... Journal bearing, 9, 10 ... Thrust bearing, 11 ... Liquid helium container, 12 ... Bearing chamber, 15, 16 ... Temperature controller, 17 ... Discharge pressure gauge, 18, 19 ... Bearing chamber pressure Controller, 20,
21...Evaporative gas control valve.

Claims (1)

【実用新案登録請求の範囲】 1 極低温液化ガスを収納する極低温容器と、 該極低温容器の上部を貫通し内部が常温で前
記極低温液化ガス液面より下方の該極低温容器
内の底部近傍まで伸びた筒状の断熱されたケー
スと、 前記極低温液化ガスに接するインペラ、該イ
ンペラを一端に設けたシヤフト、該シヤフトを
モータ軸として駆動するモータおよび該モータ
部をはさんで前記シヤフトを支持する軸受から
成り前記ケース内部の下方端部に組み込まれた
ポンプ部とから構成され、 前記極低温容器内の前記極低温液化ガスが前
記ポンプ部の前記インペラ背面側から侵入して
前記インペラと前記ケース内の常温部に位置す
る前記軸受との間で気化し前記モータ部および
前記ケース内を順次介して前記極低温容器外に
放出される流路を形成し、該流路の放出部に前
記気化した蒸発ガスの圧力を調節する調節弁を
設けたことを特徴とする極低温液化ガス移送装
置。 2 前記気化ガスの放出部に設けた調節弁は、前
記ポンプ部の前記軸受と前記インペラとの間に
設けた温度検出手段からの信号によつて調節さ
れる実用新案登録請求の範囲第1項記載の極低
温液化ガス移送装置。 3 前記気化ガスの放出部に設けた調節弁は、前
記ポンプ部の前記極低温液化ガスの吐出側と前
記気化ガスの放出部とに設けた圧力計からの信
号による前記極低温液化ガスの吐出圧力と前記
気化ガスの圧力との圧力差によつて調節される
実用新案登録請求の範囲第1項記載の極低温液
化ガス移送装置。
[Scope of Claim for Utility Model Registration] 1. A cryogenic container that stores cryogenic liquefied gas, and a cryogenic container that penetrates the upper part of the cryogenic container and whose interior is at room temperature and below the liquid level of the cryogenic liquefied gas. A cylindrical insulated case extending to the vicinity of the bottom, an impeller in contact with the cryogenic liquefied gas, a shaft provided with the impeller at one end, a motor that drives the shaft as a motor shaft, and the motor part are sandwiched between them. and a pump section which is made up of a bearing that supports a shaft and is built into the lower end of the inside of the case, and the cryogenic liquefied gas in the cryogenic container enters from the back side of the impeller of the pump section. A flow path is formed between the impeller and the bearing located at a normal temperature part in the case, and the gas is vaporized and discharged to the outside of the cryogenic container through the motor part and the inside of the case sequentially, and the discharge from the flow path is formed. A cryogenic liquefied gas transfer device, characterized in that a control valve for controlling the pressure of the vaporized gas is provided in the cryogenic liquefied gas transfer device. 2. The control valve provided in the vaporized gas discharge section is regulated by a signal from a temperature detection means provided between the bearing of the pump section and the impeller. The cryogenic liquefied gas transfer device described. 3. The control valve provided in the vaporized gas discharge section controls the discharge of the cryogenic liquefied gas based on a signal from a pressure gauge provided on the cryogenic liquefied gas discharge side of the pump section and the vaporized gas discharge section. The cryogenic liquefied gas transfer device according to claim 1, which is adjusted by the pressure difference between the pressure and the pressure of the vaporized gas.
JP1751183U 1983-02-10 1983-02-10 liquid helium pump Granted JPS59123693U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1751183U JPS59123693U (en) 1983-02-10 1983-02-10 liquid helium pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1751183U JPS59123693U (en) 1983-02-10 1983-02-10 liquid helium pump

Publications (2)

Publication Number Publication Date
JPS59123693U JPS59123693U (en) 1984-08-20
JPH0441276Y2 true JPH0441276Y2 (en) 1992-09-28

Family

ID=30148738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1751183U Granted JPS59123693U (en) 1983-02-10 1983-02-10 liquid helium pump

Country Status (1)

Country Link
JP (1) JPS59123693U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015192024A1 (en) * 2014-06-13 2015-12-17 Echogen Power Systems, L.L.C. Systems and methods for controlling backpressure in a heat engine system having hydrostatic bearings
JP7059158B2 (en) * 2018-10-05 2022-04-25 大陽日酸株式会社 Operation control method for cryogenic gas pumps and cryogenic gas pumps

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810194A (en) * 1981-07-03 1983-01-20 ケルンフオルシユングスアンラ−ゲ・ユ−リツヒ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Pump device for cryogenic liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810194A (en) * 1981-07-03 1983-01-20 ケルンフオルシユングスアンラ−ゲ・ユ−リツヒ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Pump device for cryogenic liquid

Also Published As

Publication number Publication date
JPS59123693U (en) 1984-08-20

Similar Documents

Publication Publication Date Title
EP3779202A1 (en) Vacuum pump
US4593835A (en) Cryogenic liquefied pump system
KR102620442B1 (en) vacuum pump
US8683816B2 (en) Heat exchanger device and NMR installation that comprises such a device
EP0188389B1 (en) Cryogenic vessel for a superconducting apparatus
JPH0441276Y2 (en)
KR20140056145A (en) Cooling device for a super conductor and super conducting synchronous machine
US4506512A (en) Cryogenic liquid distributing device
US3978682A (en) Refrigeration method and apparatus by converting 4 He to A superfluid
JPS5856272B2 (en) superconducting device
US5347818A (en) Dewar with improved efficiency
JPH04116907A (en) Superconductive cooling device
JPS59200090A (en) Super low temperature liquefied gas pump
JP2982310B2 (en) Heat shield plate cooling system
JPH0382175A (en) Cryostat for superconductive device
JPH0416028B2 (en)
US20220068529A1 (en) Apparatus and System to Enhance Thermal Gradients in Cryogenic Devices
JPS6237823B2 (en)
JPH0490471A (en) Water cooling device
JPH02203573A (en) Cryostat
JPH0778712A (en) Current lead for superconducting device
SU763649A1 (en) Device for overflowing cryogenic liquid
JPH0422798A (en) Vacuum pump
JPS6343992B2 (en)
JPH05199709A (en) Canned motor