JPS623569B2 - - Google Patents

Info

Publication number
JPS623569B2
JPS623569B2 JP53091159A JP9115978A JPS623569B2 JP S623569 B2 JPS623569 B2 JP S623569B2 JP 53091159 A JP53091159 A JP 53091159A JP 9115978 A JP9115978 A JP 9115978A JP S623569 B2 JPS623569 B2 JP S623569B2
Authority
JP
Japan
Prior art keywords
weight
range
sio
oxide
powder mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53091159A
Other languages
Japanese (ja)
Other versions
JPS5517965A (en
Inventor
Gen Itakura
Takayuki Kuroda
Yoshiro Irie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9115978A priority Critical patent/JPS5517965A/en
Priority to NL7905587A priority patent/NL7905587A/en
Priority to DE19792929764 priority patent/DE2929764C2/en
Priority to FR7919028A priority patent/FR2433818B1/fr
Priority to CA000332432A priority patent/CA1140741A/en
Priority to GB7925661A priority patent/GB2027008B/en
Publication of JPS5517965A publication Critical patent/JPS5517965A/en
Publication of JPS623569B2 publication Critical patent/JPS623569B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】 本発明はチタン、ストロンチウム、バリウム、
カルシウム、ニオブ、タンタル、鉄、アルミニウ
ム、ナトリウム、ケイ素、リン、ビスマス、鉛、
銅および酸素の15種類の元素を含有することを特
徴とする半導体粒界絶縁型磁器誘電体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises titanium, strontium, barium,
Calcium, niobium, tantalum, iron, aluminum, sodium, silicon, phosphorus, bismuth, lead,
The present invention relates to a method for manufacturing a semiconductor grain boundary insulated ceramic dielectric material characterized by containing 15 types of elements including copper and oxygen.

従来、磁器誘電体のうちで、半導体磁器の粒界
に高絶縁層を設けることにより得られる、いわゆ
る半導体粒界絶縁型磁器誘電体としてチタン酸バ
リウム系磁器半導体を利用したものが知られてい
る。
Conventionally, among porcelain dielectric materials, those using barium titanate-based porcelain semiconductors are known as so-called semiconductor grain-boundary insulated porcelain dielectrics, which are obtained by providing a highly insulating layer at the grain boundaries of semiconductor porcelain. .

しかしながら、絶縁抵抗1011Ω−cm、実効誘電
率50000〜70000と非常に大きな値が得られるこの
チタン酸バリウム系半導体粒界絶縁型磁器誘電体
の欠点として、20℃を基準として、−30℃〜+85
℃の範囲における静電容量の変化が±40%程度で
あり、また誘電損失(tanδ)も約5〜10%と大
きいことである。
However, the disadvantage of this barium titanate semiconductor grain boundary insulated porcelain dielectric material, which has very large insulation resistance of 10 11 Ω-cm and effective permittivity of 50,000 to 70,000, is that when the temperature is -30℃ with 20℃ as the standard, ~+85
The change in capacitance in the temperature range of °C is about ±40%, and the dielectric loss (tan δ) is also large, about 5 to 10%.

そこで、近年チタン酸ストロンチウムを主体と
する、特に静電容量の温度変化率を小さくせしめ
た半導体粒界絶縁型磁器誘電体が開発されてきて
いる。このチタン酸ストロンチウムを主体とする
半導体粒界絶縁型磁器誘電体は当初チタン酸スト
ロンチウム(SrTiO3)に少量の酸化マンガン
(MnO2)、酸化ケイ素(SiO2)等を添加し、還元
雰囲気中で焼結してなる半導体磁器を単に熱処理
して粒界を再び酸化するか、酸化マンガン
(MnO2)、酸化ビスマス(Bi2O3)等を粒界に熱拡
散させることにより、得られていた。
Therefore, in recent years, a semiconductor grain-boundary insulated ceramic dielectric material mainly composed of strontium titanate has been developed, which particularly reduces the rate of change in capacitance with temperature. This semiconductor grain-boundary insulated porcelain dielectric material mainly composed of strontium titanate was initially created by adding small amounts of manganese oxide (MnO 2 ), silicon oxide (SiO 2 ), etc. to strontium titanate (SrTiO 3 ) in a reducing atmosphere. It was obtained by simply heat-treating sintered semiconductor porcelain to oxidize the grain boundaries again, or by thermally diffusing manganese oxide (MnO 2 ), bismuth oxide (Bi 2 O 3 ), etc. into the grain boundaries. .

これらの特徴として、チタン酸バリウム系に比
較して静電容量の温度変化率が小さく、誘電損失
(tanδ)の値も小さことが挙げられる。一方、実
効誘電率がチタン酸バリウム系に比較して小さい
ことが欠点であつた。そこで、実効誘電率の向上
を目的として、チタン酸ストロンチウムに添加す
る不純物がいくつか提案されている。たとえば、
酸化タンタル(Ta2O5)、酸化ニオブ(Nb2O5)、
酸化タングステン(WO3)等の半導体化に必要な
物質以外に酸化亜鉛(ZnO)、希土類酸化物等を
単一またはそれらを組み合わせて添加することに
より、実効誘電率40000〜50000程度、誘電損失1
%以下の半導体粒界絶縁型磁器誘電体も得られる
ようになり、一段と小型高性能化が計られてき
た。
These characteristics include a smaller rate of change in capacitance with temperature and a smaller value of dielectric loss (tan δ) than barium titanate-based materials. On the other hand, the drawback was that the effective dielectric constant was smaller than that of barium titanate. Therefore, several impurities have been proposed to be added to strontium titanate for the purpose of improving the effective dielectric constant. for example,
Tantalum oxide (Ta 2 O 5 ), niobium oxide (Nb 2 O 5 ),
By adding zinc oxide (ZnO), rare earth oxides, etc., alone or in combination, in addition to substances necessary for semiconductor formation such as tungsten oxide (WO 3 ), effective dielectric constant of about 40,000 to 50,000 and dielectric loss of 1 can be achieved.
% or less of semiconductor grain boundary insulation type porcelain dielectrics have become available, and further improvements in size and performance have been made.

しかしながら、このように小型高性能な素子に
おいては高性能な故に問題点もある。すなわち、
高誘電率である特徴を長期間様々な環境下で保持
し得ることの保証、つまり長期信頼性の問題につ
いては従来見るべきものがなかつた。さらに生産
上、同一の特性のものを多量に供給し得ることが
必要であるが、製造ロツト間およびロツト内の変
動をより小さくすることにおいての思考が、これ
までには言及されていない。本来、半導体粒界絶
縁型磁器誘電体は極めて抵抗の低い半導体粒子と
それをとり囲む絶縁層とからなる微細構造をなし
ているが、かかる構造を決定する因子としては単
に出発原料とその配合組成だけでなく、磁器作製
に至る製造工程上の各単位操作が全て関係するこ
とはいうまでもない。これらの因子を効果的にコ
ントロールすることにより、極めて優秀な特性を
現出すると同時に再現性の高い、さらに高信頼性
の素子を得ることが可能となるのである。したが
つて、組成と製造法は切りはなして考えられな
い。特に、ここに述べる高誘電率磁器誘電体にお
いは上述の因子関係は見逃すことはできない。
However, such a small and high-performance element has problems because of its high performance. That is,
Until now, there was nothing to look at regarding the issue of long-term reliability, which is ensuring that the high dielectric constant characteristic can be maintained over a long period of time under various environments. Furthermore, in terms of production, it is necessary to be able to supply large quantities of products with the same characteristics, but no consideration has been given to reducing variations between and within manufacturing lots. Originally, semiconductor grain-boundary insulated porcelain dielectrics have a fine structure consisting of extremely low-resistance semiconductor particles and an insulating layer surrounding them, but the factors that determine this structure are simply the starting materials and their composition. Needless to say, not only this, but also every unit operation in the manufacturing process leading to the production of porcelain is involved. By effectively controlling these factors, it is possible to obtain a device that exhibits extremely excellent characteristics, has high reproducibility, and is highly reliable. Therefore, the composition and manufacturing method cannot be considered inseparable. In particular, the above-mentioned factor relationship cannot be overlooked in the case of the high permittivity ceramic dielectric described here.

本発明は従来の半導体粒界絶縁型磁器誘電体に
おける上述の残された問題点を解決するために組
成面および製造工程面から詳細な検討を行つた結
果、再現性の極めて高い、かつ高信頼性の高誘電
率磁器誘電体を提供することに成功し得たもので
ある。
In order to solve the above-mentioned remaining problems in conventional semiconductor grain-boundary insulated porcelain dielectrics, the present invention was developed as a result of detailed studies from the viewpoint of composition and manufacturing process. The present invention has succeeded in providing a ceramic dielectric material with a high dielectric constant.

すなわち、本発明においては、少なくとも
TiO298.0〜99.0重量%、Fe2O30.001〜0.005重量
%、Al2O30.2〜0.5重量%、Nb2O50.2〜0.5重量
%、P2O50.1〜0.2重量%とからなる酸化チタンを
主成分とする粉末混合物と、少なくとも
SrCO396.0〜99.0重量%、BaCO31.00〜3.00重量
%、CaCO30.01〜0.5重量%、Na2CO30.1〜1.2重
量%、Fe2O30.001〜0.004重量%、SiO20.005〜
0.02重量%とからなる炭酸ストロンチウムを主成
分とする粉末混合物とを、TiとSrの原子数比が
0.99〜1.02の範囲となるように配合し、さらに少
なくともBi2O399.0〜99.9重量%、SiO20.005〜
0.02重量%、Fe2O30.001〜0.003重量%、Pb0.002
〜0.01重量%、CuO0.005〜0.02重量%、
Na200.001〜0.01重量%とからなる三二酸化ビス
マスを主成分とする粉末混合物をBiとSrの原子
数比が0.02〜0.06となるように添加し、さらにま
た少なくともTa2O599.0〜99.9重量%、
Fe2O30.0005〜0.002重量%、SiO20.01〜0.04重量
%とからなる五酸化タンタルを主成分とする粉末
混合物をTaとSrの原子数比が0.002〜0.006となる
ように添加してなる混合組成物を成型し、仮焼し
てSrTiO3を主成分とする固溶体となし、その後
これを粉砕して得た粉末を使用し、半導体粒界絶
縁型磁器誘電体を得ることを特徴としている。
That is, in the present invention, at least
Consists of TiO 2 98.0-99.0% by weight, Fe 2 O 3 0.001-0.005% by weight, Al 2 O 3 0.2-0.5% by weight, Nb 2 O 5 0.2-0.5% by weight, P 2 O 5 0.1-0.2% by weight. A powder mixture mainly composed of titanium oxide and at least
SrCO3 96.0~99.0% by weight, BaCO3 1.00~3.00% by weight, CaCO3 0.01 ~0.5% by weight, Na2CO3 0.1 ~1.2% by weight, Fe2O3 0.001 ~0.004% by weight, SiO2 0.005 ~
The atomic ratio of Ti and Sr is 0.02% by weight.
Blended in a range of 0.99 to 1.02, and further contains at least 99.0 to 99.9% by weight of Bi 2 O 3 and 0.005 to 0.005 of SiO 2
0.02 wt%, Fe2O3 0.001 ~0.003 wt%, Pb0.002
~0.01 wt%, CuO0.005~0.02 wt%,
A powder mixture mainly consisting of bismuth sesquioxide containing 00.001 to 0.01% by weight of Na 2 is added such that the atomic ratio of Bi to Sr is 0.02 to 0.06, and at least 99.0 to 99.9% by weight of Ta 2 O 5 is added. %,
A powder mixture containing tantalum pentoxide as a main component and consisting of 0.0005 to 0.002% by weight of Fe 2 O 3 and 0.01 to 0.04% by weight of SiO 2 is added so that the atomic ratio of Ta and Sr is 0.002 to 0.006. The mixed composition is molded and calcined to form a solid solution containing SrTiO 3 as the main component, and the resulting powder is used to obtain a semiconductor grain-boundary insulated porcelain dielectric. .

要するに本発明の製造方法においては、主とし
てSrTiO3,Ta2O5およびBi2O3からなる半導体磁
器に上記に示す種々の微量成分を含有させること
が特徴である。この微量成分は工業用原料に含ま
れる微量成分の含有量の統計的な数値範囲を考慮
して添加、検討を行なつた結果、特性変動のほと
んどない範囲を規定しているものであり、逆にこ
範囲の微量成分量の工業用原料は安価に入手でき
るものであり、工業的生産上において極めて有利
である。
In short, the manufacturing method of the present invention is characterized in that the semiconductor porcelain mainly composed of SrTiO 3 , Ta 2 O 5 and Bi 2 O 3 contains the various trace components shown above. These trace components have been added and studied in consideration of the statistical numerical range of the content of trace components contained in industrial raw materials, and as a result, a range in which there is almost no variation in characteristics has been defined, and the opposite is true. Industrial raw materials with trace component amounts in this range are available at low cost and are extremely advantageous in industrial production.

以下、実施例に基づき本発明を詳細に説明す
る。
Hereinafter, the present invention will be explained in detail based on Examples.

少なくとも酸化チタン(TiO2)98.0〜99.0重量
%、酸化鉄(Fe2O3)0.001〜0.005重量%、酸化
アルミニウム(Al2O3)0.2〜0.5重量%、酸化ニ
オブ(Nb2O5)0.2〜0.5重量%、五酸化リン
(P2O5)0.1〜0.2重量%とからなる酸化チタンを
主成分とする混合粉末と、少なくとも炭酸ストロ
ンチウム(SrCO3)96.0〜99.0重量%、炭酸ナト
リウム(Na2CO3)0.1〜1.2重量%、酸化鉄
(Fe2O3)0.001〜0.004重量%、酸化ケイ素
(SiO2)0.005〜0.02重量%とからなる炭酸ストロ
ンチウムを主成分とする混合粉末とを、TiとSr
との原子数比(NTi/NSr)が0.95〜1.05の範囲
で数種類配合し、さらにそれぞれに少なくとも酸
化ビスマス(Bi2O3)99.0〜99.9重量%、酸化ケ
イ素(SiO2)0.005〜0.02重量%、酸化鉄
(Fe2O3)0.001〜0.003重量%、酸化鉛(PbO)
0.002〜0.01重量%、酸化銅(CuO)0.005〜0.02
重量%、酸化ナトリウム(Na2O)0.001〜0.01重
量%とからなる酸化ビスマスを主成分とする粉末
混合物をBiとSrの原子数比(NBi/NSr)が0.02
〜0.06となるように、さらにまた少なくとも酸化
タンタル(Ta2O5)99.0〜99.9重量%、酸化鉄
(Fe2O3)0.0005〜0.002重量%、酸化ケイ素
(SiO2)0.01〜0.04重量%とからなる酸化タンタ
ルを主成分とする粉末混合物をTaとSrの原子数
比(NTa/NSr)が0.002〜0.006となるように添
加した。この後、75mmφ×15〜20mmtの円板状に
成型し、1160〜1240℃の範囲で仮焼した。この仮
焼物はボールミルによつ粉砕された。乾燥後、15
mmφ×0.7mmtの形状に加圧成型され、水素1〜
10%、窒素99〜90%からなる還元雰囲気中で1350
〜1450℃の範囲で、2〜4時間焼成した。この
後、亜鉛化銅(Cu2O)を0.1〜0.5mg/cm2の範囲
で焼結体の表面に付着し、1050〜1200℃で1〜2
時間熱処理した。しかる後、素子両面に電極を設
けた。この素子の静電容量測定およびtanδ測定
は1KHzで1Vの交流電界下で行い、絶縁抵抗測定
は直流電圧50Vを1分間印加後の値を記録して行
つた。
At least 98.0 to 99.0% by weight of titanium oxide (TiO 2 ), 0.001 to 0.005% by weight of iron oxide (Fe 2 O 3 ), 0.2 to 0.5% by weight of aluminum oxide (Al 2 O 3 ), and 0.2% by weight of niobium oxide (Nb 2 O 5 ). -0.5% by weight of titanium oxide, 0.1-0.2% by weight of phosphorus pentoxide (P 2 O 5 ), and at least 96.0-99.0% by weight of strontium carbonate (SrCO 3 ) and 0.1-0.2% by weight of strontium carbonate (SrCO 3 ) and 0.1-0.2% by weight of phosphorus pentoxide (P 2 O 5 ). 2 CO 3 ) 0.1 to 1.2% by weight, iron oxide (Fe 2 O 3 ) 0.001 to 0.004% by weight, and silicon oxide (SiO 2 ) 0.005 to 0.02% by weight. Ti and Sr
Several types of atomic ratio (N Ti /N Sr ) are blended in the range of 0.95 to 1.05, and each contains at least 99.0 to 99.9 weight % of bismuth oxide (Bi 2 O 3 ) and 0.005 to 0.02 weight % of silicon oxide (SiO 2 ). wt%, iron oxide ( Fe2O3 ) 0.001-0.003 wt%, lead oxide (PbO)
0.002-0.01% by weight, copper oxide (CuO) 0.005-0.02
% by weight, and 0.001 to 0.01% by weight of sodium oxide (Na 2 O ) .
~0.06, and at least tantalum oxide (Ta 2 O 5 ) 99.0 to 99.9% by weight, iron oxide (Fe 2 O 3 ) 0.0005 to 0.002% by weight, and silicon oxide (SiO 2 ) 0.01 to 0.04% by weight. A powder mixture containing tantalum oxide as a main component was added so that the atomic ratio of Ta to Sr (N Ta /N Sr ) was 0.002 to 0.006. Thereafter, it was molded into a disk shape of 75 mmφ x 15 to 20 mm, and calcined in the range of 1160 to 1240°C. This calcined material was pulverized using a ball mill. After drying, 15
Pressure molded into a shape of mmφ x 0.7mmt, hydrogen 1~
1350 in a reducing atmosphere consisting of 10% and 99-90% nitrogen.
It was baked in the range of ~1450°C for 2 to 4 hours. After this, copper zincide (Cu 2 O) was attached to the surface of the sintered body in a range of 0.1 to 0.5 mg/cm 2 and heated for 1 to 2 hours at 1050 to 1200℃.
Heat treated for hours. After that, electrodes were provided on both sides of the element. Capacitance and tan δ measurements of this element were performed under an AC electric field of 1 V at 1 KHz, and insulation resistance measurements were performed by recording the values after applying a DC voltage of 50 V for 1 minute.

第1図はTiとSrの原子数比NTi/NSrを0.95〜
1.05の範囲で変化させたときの各種20枚の電気的
諸特性の平均値を図示したものである。ただし、
この時、NBi/NSr=0.04NTa/NSr=0.004とな
るようにした。この図から明らかなようにNTi
Sr値が0.99〜1.02の範囲で誘電率εが大きく、
絶縁抵抗の大きい素子が得られることが認められ
る。
Figure 1 shows the atomic ratio N Ti /N Sr of Ti and Sr from 0.95 to
This figure shows the average values of various electrical characteristics of 20 various sheets when varied within a range of 1.05. however,
At this time, N Bi /N Sr =0.04N Ta /N Sr =0.004. As is clear from this figure, N Ti /
When the N Sr value is in the range of 0.99 to 1.02, the dielectric constant ε is large;
It is recognized that an element with high insulation resistance can be obtained.

ここで用いた試料は、TiO298.9重量%、
Fe2O30.002重量%、Al2O30.44重量%、
Nb2O50.45重量%、P2O50.12重量%とからなる酸
化チタンを主成分とする粉末混合物と、
SrCO397.6重量%、BaCO31.5重量%、CaCO30.2
重量%、Na2CO30.7重量%、Fe2O30.003重量%と
からなる炭酸ストロンチウムを主成分とする粉末
混合物とをTiとSrの原子数比(NTi/NSr)が所
定の数値となるように配合し、さらにBi2O399.9
重量%、SiO20.01重量%、Fe2O30.002重量%、
PbO0.008重量%、CuO0.02重量%、Na2O0.01重
量%とからなる三二酸化ビスマスを主成分とする
粉末混合物をBiとSrの原子数比(NBi/NSr)が
0.04となるように添加し、さらにTa2O599.9重量
%、Fe2O30.001重量%、SiO20.02重量%とからな
る五酸化タンタルを主成分とする粉末混合物を
TaとSrの原子数比(NTa/NSr)が0.004となる
ように添加した混合組成物である。また、仮焼は
1200℃で2時間行い、水素10%、窒素90%からな
る雰囲気中で1425℃、3時間で焼結体を得、さら
に亜酸化銅(Cu2O)を0.3mg/cm2を付着し、1130
℃にて1.5時間の熱処理を行つたものである。
The sample used here contained 98.9% by weight of TiO 2 ,
Fe 2 O 3 0.002% by weight, Al 2 O 3 0.44% by weight,
A powder mixture whose main component is titanium oxide, consisting of 0.45% by weight of Nb 2 O 5 and 0.12% by weight of P 2 O 5 ,
SrCO3 97.6% by weight, BaCO3 1.5% by weight, CaCO3 0.2
% by weight, 0.7% by weight of Na 2 CO 3 , and 0.003% by weight of Fe 2 O 3 with a powder mixture whose main component is strontium carbonate and the atomic ratio of Ti and Sr (N Ti /N Sr ) is a predetermined value. Blend so that Bi 2 O 3 99.9
wt%, SiO 2 0.01 wt%, Fe 2 O 3 0.002 wt%,
A powder mixture containing bismuth sesmuth oxide as a main component consisting of 0.008% by weight of PbO, 0.02% by weight of CuO, and 0.01% by weight of Na 2 O was prepared so that the atomic ratio of Bi and Sr (N Bi /N Sr ) was
A powder mixture containing tantalum pentoxide as the main component, which was added so that the amount of tantalum pentoxide was 0.04% by weight, and further consisted of 99.9% by weight of Ta 2 O 5 , 0.001% by weight of Fe 2 O 3 , and 0.02% by weight of SiO 2 was added.
This is a mixed composition in which Ta and Sr are added so that the atomic ratio (N Ta /N Sr ) is 0.004. Also, calcination
A sintered body was obtained at 1200℃ for 2 hours in an atmosphere consisting of 10% hydrogen and 90% nitrogen at 1425℃ for 3 hours, and 0.3mg/cm 2 of cuprous oxide (Cu 2 O) was added. 1130
Heat treatment was performed at ℃ for 1.5 hours.

なお、上記実施例ではNTa/NSr=0.004、NB
/NSr=0.04とした場合の例について示した
が、NTa/NSr=0.004±0.002、NBi/NSr=0.04
±0.02の範囲においては、第1図に示すε及び
C・R積が−10%を下回わることはなく、逆に、
Ta/NSr=0.004、NBi/NSr=0.04について特
性値のピークを示す。また、tanδは上記のNT
/NSL及びNBi/NSrの範囲においては±10%
以内で第1図の値と等価である。
Note that in the above example, N Ta /N Sr = 0.004, N B
An example was shown in which i /N Sr = 0.04, but N Ta /N Sr = 0.004±0.002, N Bi /N Sr = 0.04
In the range of ±0.02, ε and C・R product shown in Figure 1 do not fall below -10%; conversely,
Peaks of characteristic values are shown for N Ta /N Sr =0.004 and N Bi /N Sr =0.04. Also, tan δ is the above N T
±10% in the range of a /N SL and N Bi /N Sr
It is equivalent to the value in FIG. 1 within the range.

ただし、NTi/NSr=1.004およびNBi/NSr
0.04とし、NTa/NSr=0.004±0.002の範囲で成
分を変化させた時は、その性能はNTa/NSr
0.004の場合の第1図の結果とほとんど変わら
ず、安定な特性を示した。また、NTi/NSr
1.004およびNTa/NSr=0.004とし、NBi/NSr
0.04±0.02の範囲で成分を変えた時、NBi/NSr
=0.04の場合の上記結果とほとんど変わらず、安
定な特性を示した。
However, N Ti /N Sr = 1.004 and N Bi /N Sr =
0.04, and when the component is changed in the range of N Ta /N Sr = 0.004±0.002, the performance is N Ta /N Sr =
The results were almost the same as those shown in Figure 1 for the case of 0.004, showing stable characteristics. Also, N Ti /N Sr =
1.004 and N Ta /N Sr = 0.004, and N Bi /N Sr =
When changing the component within the range of 0.04±0.02, N Bi /N Sr
= 0.04, the above results were almost the same, showing stable characteristics.

第2図〜第6図は第1図説明の試料のうち、N
Ti/NSr=1.004のものについて、仮焼温度と焼成
温度を種々変化させ、電気的特性を各種20枚につ
いて調べた結果を示したものである。ただし、こ
の時、NBi/NSr=0.04、NTa/NSr=0.004とな
るようにした。この結果を要約すると、 (A) 誘電率ε:仮焼温度の高いものほど誘電率は
大きく、また焼成温度を高めると誘電率はやは
り大きくなるが、1420℃以上では大きな変化は
ない。
Figures 2 to 6 show N of the samples explained in Figure 1.
This figure shows the results of examining the electrical properties of 20 different types of samples with Ti /N Sr = 1.004 while varying the calcination temperature and firing temperature. However, at this time, N Bi /N Sr = 0.04 and N Ta /N Sr = 0.004. To summarize the results, (A) Dielectric constant ε: The higher the calcination temperature, the higher the dielectric constant, and increasing the calcination temperature also increases the dielectric constant, but there is no significant change above 1420°C.

(B) 絶縁抵抗R:仮焼温度の高いものほど小さ
い。また、焼成温度を高めるとしだいに減少す
る傾向があるが、1420℃以上では大きな変化な
い。
(B) Insulation resistance R: The higher the calcination temperature, the smaller it is. In addition, as the firing temperature is increased, it tends to gradually decrease, but there is no significant change at 1420°C or higher.

(C) C.R積:C.R積はほぼ絶縁抵抗の傾向に一致
する。
(C) CR product: CR product roughly matches the trend of insulation resistance.

(D) 誘電損失tanδ:tanδに対する仮焼温度、焼
成温度の影響はほとんどない。
(D) Dielectric loss tanδ: There is almost no effect of calcination temperature or firing temperature on tanδ.

(E) 温度特性ε−Tc:焼成温度が1410℃以上で
は静電容量の温度変化率はほとんど変わらな
い。仮焼温度の影響が大きく、仮焼温度の高い
方が変化は小さい。
(E) Temperature characteristic ε-T c : When the firing temperature is 1410°C or higher, the temperature change rate of capacitance hardly changes. The effect of calcination temperature is large, and the higher the calcination temperature, the smaller the change.

第7図は例として、第2図〜第6図の結果から
組成は固定し、ε値25000を得るための仮焼温度
および焼成温度の設定条件を示した。
FIG. 7 shows, as an example, the setting conditions of the calcination temperature and firing temperature to obtain an ε value of 25,000, with the composition fixed based on the results shown in FIGS. 2 to 6.

さらに、この条件下におけるC.R積を図中に示
した。また、参考のために仮焼体の収縮率および
粉砕粉末の粒径との関係も示した。この図から明
らかなように、仮焼温度の高いものほど仮焼体の
収縮率は大きく、その仮焼体をボールミルにて粉
砕した粉の粒径は大きくなり、焼結体の電気特性
はこの粒径と関係していることが明白である。そ
して、たとえばε=25000の設定条件として仮焼
温度を高くした場合には焼成温度は低温側へ設定
する必要がある。ここで、C.R積を300MΩ.μ
F以上とする条件を入れた場合、 (1) 仮焼温度:1190℃±10℃ (2) 焼成温度:1425±5℃ とすればよいと考えられる。
Furthermore, the CR product under these conditions is shown in the figure. For reference, the relationship between the shrinkage rate of the calcined body and the particle size of the pulverized powder is also shown. As is clear from this figure, the higher the calcination temperature is, the higher the shrinkage rate of the calcined body is, and the particle size of the powder obtained by pulverizing the calcined body in a ball mill becomes larger, and the electrical properties of the sintered body are affected by this. It is clear that it is related to particle size. For example, when the calcination temperature is set high as a setting condition of ε=25000, the calcination temperature needs to be set to a lower temperature side. Here, the CR product is 300MΩ. μ
When including the conditions for F or higher, it is considered that (1) Calcining temperature: 1190°C ± 10°C (2) Firing temperature: 1425 ± 5°C.

上記のように仮焼温度および焼成温度を第1図
での条件に設定して得られた素子にリード線を半
田付し、コンデンサとして要求される諸特性を調
べた結果を第8図〜第13図に示す。ただし、N
Ti/NSr=1.004、NBi/NSr=0.04およびNTa
Sr=0.004の組成を用いている。
Lead wires were soldered to the device obtained by setting the calcination temperature and firing temperature to the conditions shown in Figure 1 as described above, and the results of investigating various characteristics required for a capacitor are shown in Figures 8 to 8. It is shown in Figure 13. However, N
Ti /N Sr = 1.004, N Bi /N Sr = 0.04 and N Ta /
A composition of N Sr =0.004 is used.

ここで、その他の条件は第1図での試料条件と
同じである。
Here, other conditions are the same as the sample conditions in FIG.

この結果から明らかなように、温度特性、周波
数特性、DC電圧特性、AC電圧特性、耐湿性、高
温負荷試験の全てにわたつて極めて安定な優れた
特性を示す。このような効果が得られるのは、多
種類の微量成分を含有させることにより、焼結体
が緻密化するためと考えられ、それにより電気特
性が安定化するものと考えられる。
As is clear from these results, it exhibits extremely stable and excellent characteristics in all of the temperature characteristics, frequency characteristics, DC voltage characteristics, AC voltage characteristics, moisture resistance, and high temperature load tests. It is thought that such an effect is obtained because the sintered body is made denser by containing various types of trace components, which stabilizes the electrical properties.

なお、ここで上記の実施例における酸化タンタ
ル(Ta2O5)を主成分とする粉末混合物を、酸化
ニオブ(Nb2O5)を主成分とする粉末混合物と
し、その他の条件を全て同一として実施したとき
においても上記と同様の結果を得ることができ
た。
Here, the powder mixture containing tantalum oxide (Ta 2 O 5 ) as the main component in the above example is changed to a powder mixture containing niobium oxide (Nb 2 O 5 ) as the main component, and all other conditions are the same. When this experiment was carried out, the same results as above could be obtained.

なお、実施例においては電極について詳細は示
さなかつたが、銀を60%以上含む電極材料を用い
た。さらに、電極材料としてアルミニウムあるい
は銅の少なくとも一を溶射した場合も同等な効果
の得られることが確認されている。また、実施例
に示された粉砕粉末の粒径はヘキサメタリン酸ナ
トリウムの0.2%水溶液を分散剤として、沈降法
によつて測定されたときの平均粒径である。この
粒径は2.0〜4.0μmまでの許容範囲がある。さら
に、実施例では粉末プレス成型法を用いたが、量
産にいては押出成型法やシート成型法も使用可能
であることはいうまでもない。
Although details of the electrodes were not shown in the examples, an electrode material containing 60% or more of silver was used. Furthermore, it has been confirmed that similar effects can be obtained when at least one of aluminum and copper is thermally sprayed as the electrode material. Furthermore, the particle size of the pulverized powder shown in the Examples is the average particle size measured by a sedimentation method using a 0.2% aqueous solution of sodium hexametaphosphate as a dispersant. This particle size has an acceptable range of 2.0 to 4.0 μm. Furthermore, although the powder press molding method was used in the examples, it goes without saying that extrusion molding methods and sheet molding methods can also be used in mass production.

また、実施例に示された焼結体の結晶粒は5〜
100μmの範囲に90%以上分布することが特徴で
ある。
In addition, the crystal grains of the sintered bodies shown in the examples are 5 to 5.
It is characterized by more than 90% distribution within the 100 μm range.

以上述べたように、本発明の製造方法より得ら
れる半導体粒界絶縁型磁器誘電体は、従来に見ら
れる半導体粒界絶縁型半導体磁器コンデンサに比
較して、極めて信頼性の高い、あらゆる環境下で
長期間の使用に耐える画期的な素子である。すな
わち、既存の有機フイルムコンデンサの占有する
分野をも置換することが可能となるもので、主に
バイパス用、カツプリング用、フイルター用等広
範囲にわたつて適用できるといつた磁器コンデン
サとしては従来の概念を打ち破るものであり、産
業的価値は極めて大きい。
As described above, the semiconductor grain-boundary insulated ceramic dielectric obtained by the manufacturing method of the present invention has extremely high reliability in all environments compared to conventional semiconductor grain-boundary insulated semiconductor ceramic capacitors. This is a revolutionary device that can withstand long-term use. In other words, it is possible to replace the field occupied by existing organic film capacitors, and it is a conventional concept for ceramic capacitors that can be used in a wide range of applications, mainly for bypass, coupling, and filter applications. The industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の素子におけるチタンとストロ
ンチウムの原子数比と特性の関係を示す図、第2
図〜第6図は仮焼温度と焼成温度を種々変化させ
たときの諸特性を示す図、第7図はεを25000と
するに必要な設定条件とそのときの付帯特性を示
す図、第8図〜第13図はコンデンサとして要求
される諸特性を調べた結果を示す図である。
FIG. 1 is a diagram showing the relationship between the atomic ratio of titanium and strontium and the characteristics in the device of the present invention, and FIG.
Figures 6 to 6 are diagrams showing various characteristics when the calcination temperature and firing temperature are varied. Figure 7 is a diagram showing the setting conditions necessary to set ε to 25000 and the incidental characteristics at that time. 8 to 13 are diagrams showing the results of investigating various characteristics required for a capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくともTiO298.0〜99.0重量%、
Fe2O30.001〜0.005重量%、Al2O30.2〜0.5重量
%、Nb2O50.2〜0.5重量%、P2O50.1〜0.2重量%
とからなる酸化チタンを主成分とする粉末混合物
と、少なくともSrCO396.0〜99.0重量%、
BaCO31.00〜3.00重量%、CaCO30.01〜0.5重量
%、Na2CO30.1〜1.2重量%、Fe2O30.001〜0.004
重量%、SiO20.005〜0.02重量%とからなる炭酸
ストロンチウムを主成分とする粉末混合物とを、
TiとSrの原子数比が0.99〜1.02の範囲となるよう
に配合し、さらに少なくともBi2O399.0〜99.9重
量%、SiO20.005〜0.02重量%、Fe2O3C0.001〜
0.003重量%、PbO0.002〜0.01重量%、CuO0.005
〜0.02重量%、Na2O0.001〜0.01重量%とからな
る三二酸化ビスマスを主成分とする粉末混合物を
BiとSrの原子数比が0.02〜0.06となるように添加
し、さらにまた少なくともTa2O599.0〜99.9重量
%、Fe2O30.0005〜0.002重量%、SiO20.01〜0.04
重量%とからなる五酸化タンタルを主成分とする
粉末混合物をTaとSrの原子数比が0.002〜0.006と
なるように添加してなる混合組成物を成型し、仮
焼してSrTiO3を主成分とする固溶体となし、そ
の後これを粉砕して得た粉末を所望の形状に成型
して後、還元雰囲気中にて結晶粒径が5〜100μ
mの範囲に90%以上分布するように焼成して得た
半導体磁器に0.1〜0.5mg/cm2の範囲でCu2Oを塗
布して後、大気中にて1050〜1200℃の範囲で1〜
2時間熱処理して得る半導体粒界絶縁型磁器誘電
体の製造方法。
1 at least 98.0-99.0% by weight of TiO2 ,
Fe2O3 0.001 ~0.005wt%, Al2O3 0.2 ~0.5wt%, Nb2O5 0.2 ~0.5wt%, P2O5 0.1 ~0.2wt%
and at least 96.0 to 99.0% by weight of SrCO 3 ,
BaCO3 1.00-3.00 wt%, CaCO3 0.01-0.5 wt%, Na2CO3 0.1-1.2 wt%, Fe2O3 0.001-0.004
% by weight, and a powder mixture mainly composed of strontium carbonate consisting of 0.005 to 0.02% by weight of SiO 2 .
It is blended so that the atomic ratio of Ti and Sr is in the range of 0.99 to 1.02, and further contains at least 99.0 to 99.9% by weight of Bi 2 O 3 , 0.005 to 0.02% by weight of SiO 2 , and 0.001 to 100% of Fe 2 O 3 C.
0.003 wt%, PbO0.002~0.01 wt%, CuO0.005
A powder mixture whose main component is bismuth sesmuth oxide consisting of ~0.02% by weight and 0.001~0.01% by weight of Na 2 O.
Bi and Sr are added so that the atomic ratio is 0.02 to 0.06, and furthermore, at least Ta 2 O 5 99.0 to 99.9 weight %, Fe 2 O 3 0.0005 to 0.002 weight %, and SiO 2 0.01 to 0.04 are added.
A powder mixture containing tantalum pentoxide as a main component consisting of tantalum pentoxide of After forming a solid solution as a component, the powder obtained by pulverizing this is molded into a desired shape, and the crystal grain size is 5 to 100 μm in a reducing atmosphere.
After applying Cu 2 O in the range of 0.1 to 0.5 mg/cm 2 to semiconductor porcelain obtained by firing so that Cu 2 O is distributed over 90% in the range of m, it is heated in the air at 1050 to 1200 °C. ~
A method for producing a semiconductor grain boundary insulated porcelain dielectric obtained by heat treatment for 2 hours.
JP9115978A 1978-07-25 1978-07-25 Porcelain dielectric substance and method of fabricating same Granted JPS5517965A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP9115978A JPS5517965A (en) 1978-07-25 1978-07-25 Porcelain dielectric substance and method of fabricating same
NL7905587A NL7905587A (en) 1978-07-25 1979-07-18 CERAMIC DEEP ELECTRIC AND METHOD FOR MANUFACTURING IT.
DE19792929764 DE2929764C2 (en) 1978-07-25 1979-07-23 Process for the production of a ceramic dielectric
FR7919028A FR2433818B1 (en) 1978-07-25 1979-07-24
CA000332432A CA1140741A (en) 1978-07-25 1979-07-24 Ceramic dielectrics and process for production thereof
GB7925661A GB2027008B (en) 1978-07-25 1979-07-24 Industrial co ltd ceramic dielectrics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9115978A JPS5517965A (en) 1978-07-25 1978-07-25 Porcelain dielectric substance and method of fabricating same

Publications (2)

Publication Number Publication Date
JPS5517965A JPS5517965A (en) 1980-02-07
JPS623569B2 true JPS623569B2 (en) 1987-01-26

Family

ID=14018710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9115978A Granted JPS5517965A (en) 1978-07-25 1978-07-25 Porcelain dielectric substance and method of fabricating same

Country Status (6)

Country Link
JP (1) JPS5517965A (en)
CA (1) CA1140741A (en)
DE (1) DE2929764C2 (en)
FR (1) FR2433818B1 (en)
GB (1) GB2027008B (en)
NL (1) NL7905587A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4347167A (en) * 1980-10-01 1982-08-31 University Of Illinois Foundation Fine-grain semiconducting ceramic compositions
JPS59188103A (en) * 1983-04-08 1984-10-25 株式会社村田製作所 Porcelain composition for voltage nonlinear resistor
JPH0666219B2 (en) * 1989-02-22 1994-08-24 株式会社村田製作所 Multilayer ceramic capacitors
JP4591709B2 (en) * 2006-07-14 2010-12-01 信越化学工業株式会社 Capacitors
CN109293357A (en) * 2018-09-30 2019-02-01 陕西科技大学 One kind having the single-phase SrBi of this structure of viral in Austria3Nb2FeO12Multiferroic ceramics and preparation method thereof
CN109704763B (en) * 2018-12-28 2021-06-15 有研工程技术研究院有限公司 Preparation method of low-temperature sintered ceramic dielectric material
CN116768624B (en) * 2023-06-28 2024-05-03 上海工程技术大学 Sodium niobate-based phase-change-free dielectric ceramic material, preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2836501A (en) * 1955-11-04 1958-05-27 Electric Machinery Mfg Co Electrostrictive ceramic materials
GB861346A (en) * 1957-11-29 1961-02-15 Nat Res Dev Dielectric ceramic compositions and the method of production thereof
US3299332A (en) * 1961-07-10 1967-01-17 Murata Manufacturing Co Semiconductive capacitor and the method of manufacturing the same
NL135251C (en) * 1963-02-22
US3268783A (en) * 1965-10-05 1966-08-23 Murata Manufacturing Co Capacitor comprising an nu-type semiconductor metallic oxide and a layer of compensated material
DE1614605B2 (en) * 1967-09-20 1974-06-27 Siemens Ag, 1000 Berlin Und 8000 Muenchen Capacitor dielectric with inner barrier layers and less temperature dependence
US3933668A (en) * 1973-07-16 1976-01-20 Sony Corporation Intergranular insulation type polycrystalline ceramic semiconductive composition
CA1095704A (en) * 1976-01-20 1981-02-17 Gen Itakura Semiconductive ceramics

Also Published As

Publication number Publication date
JPS5517965A (en) 1980-02-07
CA1140741A (en) 1983-02-08
NL7905587A (en) 1980-01-29
FR2433818A1 (en) 1980-03-14
GB2027008B (en) 1982-10-27
FR2433818B1 (en) 1982-05-28
GB2027008A (en) 1980-02-13
DE2929764C2 (en) 1984-02-02
DE2929764A1 (en) 1980-02-28

Similar Documents

Publication Publication Date Title
US3673119A (en) Semiconducting ceramic compositions
SE432097B (en) SINTERED BODY OF SEMI-CONDUCTIVE CERAMIC MATERIAL, PROCEDURE FOR MANUFACTURING THE BODY AND ANY USE OF THE BODY
JPS623569B2 (en)
JPS597665B2 (en) High dielectric constant porcelain composition
JPH0414442B2 (en)
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JPH058524B2 (en)
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
KR910001347B1 (en) Ultra-low fire ceramic compositions and method for producing thereof
JPS6351992B2 (en)
JPS606535B2 (en) porcelain composition
JPS6117087B2 (en)
JPS6032344B2 (en) Grain boundary insulated semiconductor porcelain capacitor material
JPS6217368B2 (en)
KR910001344B1 (en) Multilayer ceramic capacitor and method for producing thereof
JP2934388B2 (en) Manufacturing method of semiconductor porcelain
JP2900687B2 (en) Semiconductor porcelain composition and method for producing the same
JP2694975B2 (en) Method for producing high dielectric constant porcelain composition
JP2936876B2 (en) Semiconductor porcelain composition and method for producing the same
JPH03285870A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JPH0478577B2 (en)
JPH0522667B2 (en)
JPH03218964A (en) Semiconductor porcelain and production thereof
JPS6126207B2 (en)
JPS6328491B2 (en)