JPS6235445A - Device for analyzing sample surface - Google Patents

Device for analyzing sample surface

Info

Publication number
JPS6235445A
JPS6235445A JP60172780A JP17278085A JPS6235445A JP S6235445 A JPS6235445 A JP S6235445A JP 60172780 A JP60172780 A JP 60172780A JP 17278085 A JP17278085 A JP 17278085A JP S6235445 A JPS6235445 A JP S6235445A
Authority
JP
Japan
Prior art keywords
sample
sample surface
electron beam
ray
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60172780A
Other languages
Japanese (ja)
Other versions
JPH0642357B2 (en
Inventor
Teruji Hirai
平居 暉士
Takeshi Araki
武 荒木
Hideto Komi
秀人 古味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60172780A priority Critical patent/JPH0642357B2/en
Publication of JPS6235445A publication Critical patent/JPS6235445A/en
Publication of JPH0642357B2 publication Critical patent/JPH0642357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enable a microbeam to be scanned over the sample surface at high speed and efficiently analyze a large area on the sample surface by rotating the sample in one direction and moving it in one direction during scanning. CONSTITUTION:A spectroscopic crystal 3 and an X-ray detector 4 are mechanically connected in such a manner that an electron beam irradiation spot on a sample 1, the crystal 3 and the front slit of the detector 4 are located on a common Rawland circle. The crystal 3 and the detector 4 are driven by a wavelength scan motor (M) and set for the wavelength of mobile X-rays of a specified element. The sample 1 is held on a sample holder 6 the position of which is controlled by an X-direction fine adjustment base 7 and a Y-direction fine adjustment base 8. When a stage 14 which can be moved in one direction is moved toward the left while rotating a rotary table 9, the electron beam irradiation spot on the sample 1 moves in spiral form relative to the sample surface. As the result, a circular area on the sample surface is scanned by the electron beam.

Description

【発明の詳細な説明】 イ 産業上の利用分野 本発明はX線マイクロアナライザ等の、荷電粒子のマイ
クロビームで試料を励起し、試料から放射されるX線等
を検出することにより試料表面の広域の元素分布を測定
する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field The present invention excites a sample with a microbeam of charged particles, such as an X-ray microanalyzer, and detects the X-rays emitted from the sample. This invention relates to a device for measuring element distribution over a wide area.

口 従来の技術 ]ンピュータの利用により、試料面の元素の濃度分布等
のカラー表示が行われるようになり、X線マイクロアナ
ライザ等による、試料表面の広い面積における定性分析
及び特定元素の定量分析が求められるようになってきた
[Background technology] With the use of computers, color display of the concentration distribution of elements on the sample surface has become possible, and qualitative analysis and quantitative analysis of specific elements over a wide area of the sample surface using X-ray microanalyzers, etc. have become possible. It's starting to be sought after.

しかしX線マイクロアナライザのような装置は本来、試
料の局所分析(1μsn程度)を行う装置であり、広域
の分析としては、X線分光器の波長を特定の元素の特性
X線の波長に合せて設定しておき、試料の方を駆動して
広い面積の走査を行い、特定元素の濃度分布を求めるこ
とが行われている。
However, equipment such as the X-ray microanalyzer is originally a device that performs local analysis (about 1 μsn) of a sample, and for wide-area analysis, it is necessary to adjust the wavelength of the X-ray spectrometer to the characteristic X-ray wavelength of a specific element. The concentration distribution of a specific element is determined by setting the sample to scan a wide area by driving the sample.

しかしこの方法は、分析面積を画素点に分割して、一画
素点毎にX線測定を行わねばならないから非常な時間が
か\る。X線測定の所要時間は一画素点当り10mS程
度で、仮に測定面積を縦横夫々500の画素に分割する
と全部で250000個の画素になり、正味のX線測定
時間は40分余りである。しかし試料を止めては動かす
と云う動作を繰返すので、機構の慣性のため高速駆動は
できず、スロースタート、スローストップを繰返すこと
になり、−走査線の終りの折返し点では機構のバックラ
ッシュを除くため余分の移動を行わせねばならないから
、試料の移動のために実測定時間の何倍もの時間を消費
し、所定面積の測定に10時間もか\ることがあった。
However, this method requires a considerable amount of time because the analysis area must be divided into pixel points and X-ray measurement must be performed for each pixel point. The time required for X-ray measurement is approximately 10 mS per pixel point, and if the measurement area is divided into 500 vertical and horizontal pixels, there will be a total of 250,000 pixels, and the net X-ray measurement time will be over 40 minutes. However, since the sample is stopped and moved repeatedly, high-speed drive is not possible due to the inertia of the mechanism, and slow starts and slow stops are repeated. Since extra movement must be performed to remove the sample, it takes many times the actual measurement time to move the sample, and it sometimes takes up to 10 hours to measure a given area.

ハ 発明が解決しようとする問題点 上述したように荷電粒子のマイクロビームラ用いる分析
装置で広い面積における指定元素の定量分布の測定を行
うことが求められているが適当な方法がなかった。本発
明は荷電粒子マイクロビームを用いる分析装置で数mm
〜数σ平方程度の広□面積における指定元素の濃度分布
を精度良くかつ短時間で行い得るようにしようとするも
のである。
C. Problems to be Solved by the Invention As mentioned above, there is a need to measure the quantitative distribution of specified elements over a wide area using an analyzer using a microbeam laser of charged particles, but there has been no suitable method. The present invention is an analyzer that uses a charged particle microbeam to
The purpose is to make it possible to measure the concentration distribution of a designated element in a wide square area of approximately several sigma squares with high accuracy and in a short time.

二 問題点解決のための手段 試料を回転させると共に、回転の半径方向に移動させ、
X線分光器は定量をしようとする元素の特性X線の波長
位置に設定して上記試料面上の空間的に固定した一定点
をにらむようにした。即ちX線分光器は試料面を渦巻線
状に走査しながらX線検出出力を、試料上のマイクロビ
ーム照射点の位置のデータに対応させて記録するように
した。
(ii) means for solving the problem, rotating the sample and moving it in the radial direction of the rotation;
The X-ray spectrometer was set at the wavelength position of the characteristic X-ray of the element to be quantified so as to aim at a spatially fixed point on the sample surface. That is, the X-ray spectrometer was configured to record the X-ray detection output while scanning the sample surface in a spiral manner in correspondence with data on the position of the microbeam irradiation point on the sample.

ホ 作用 本発明は試料を一方向の回転と一方向の直線運動との組
合せで動かし、マイクロビームにょる試査の場合のよう
なバックラッシュ消六の動作が不要であり、余分な試料
運動がなく、一方向運動であるから慣性の問題がなく、
そのため起動停止に要する時間消費がない。試料の運動
期間を全部実分析時間に当てることができるので、分析
所要時間が短縮できるのである。
E. Function The present invention moves the sample by a combination of rotation in one direction and linear motion in one direction, eliminating the need for backlash elimination operations as in the case of testing using a microbeam, and eliminating unnecessary sample movement. , since it is a unidirectional motion, there is no problem of inertia,
Therefore, there is no time consumption required for starting and stopping. Since the entire sample movement period can be used as the actual analysis time, the time required for analysis can be shortened.

へ 実施例 図は本発明の一実施例を示す。1は試料で、電子ビーム
2を試料lの表面に収束させる。5は試料面の電子ビー
ム照射点から放射されるX線で、分光結晶3で分光され
、X線検出器4に入射せしめられる。試料1の電子ビー
ム照射点と分光結晶3とX線検出器4の曲面スリットが
共通のローランド円R上に位置するように、分光結晶と
X線検出器とは機構的に連結され、波長走査用モータM
によって駆動され指定元素の特性X線の波長位置に設定
される。試料1は試料ホルダ6に保持される。試料ホル
ダ6はX方向微動台7、Y方向微動台8によって位置調
節可能である。X方向微動台、Y方向微動台は回転テー
ブル9の中央に載置固定されている。回転テーブル9は
一方向移動ステージ14に垂直軸によって回転自在に保
持され、同ステージに固定されたモータ11により歯車
10を介して回転駆動される。一方移動ステージ14は
、基台B上に一方向ガイドにより一方向摺動可能に載置
されており、同ステージに固定されたナツトが基台Bに
保持された送りねじ16に螺合しており、送りねじ16
をモータ17で駆動することにより、一方向、図では左
右方向に移動せしめられる。
Embodiment The figure shows an embodiment of the present invention. 1 is a sample, and an electron beam 2 is focused on the surface of the sample 1. Reference numeral 5 indicates X-rays emitted from an electron beam irradiation point on the sample surface, which is separated by a spectroscopic crystal 3 and made incident on an X-ray detector 4. The spectroscopic crystal and the X-ray detector are mechanically connected so that the electron beam irradiation point of the sample 1, the curved slit of the spectroscopic crystal 3, and the X-ray detector 4 are located on a common Rowland circle R, and wavelength scanning is performed. Motor M
is driven by and set at the wavelength position of the characteristic X-ray of the specified element. The sample 1 is held in a sample holder 6. The position of the sample holder 6 can be adjusted by an X-direction fine movement table 7 and a Y-direction fine movement table 8. The X-direction fine movement table and the Y-direction fine movement table are mounted and fixed at the center of the rotary table 9. The rotary table 9 is rotatably held on a one-way moving stage 14 by a vertical axis, and is rotationally driven via a gear 10 by a motor 11 fixed to the stage. On the other hand, the moving stage 14 is placed on the base B so as to be slidable in one direction by a one-way guide, and a nut fixed to the stage is screwed into a feed screw 16 held on the base B. cage, feed screw 16
By driving it with a motor 17, it can be moved in one direction, in the left and right directions in the figure.

上述溝造で、回転テーブル9を回転させながら一方向移
動ステージ14を例えば左方向に移動させると、試料l
上の電子ビーム照射点は空間的には不動であるが、試料
面に対しては局線を画いて移動し、試料面の円形領域が
電子ビームによって走査されることになる。
In the above-mentioned groove structure, when the one-way moving stage 14 is moved, for example, to the left while rotating the rotary table 9, the sample l
The upper electron beam irradiation point does not move spatially, but moves along a line with respect to the sample surface, and a circular area on the sample surface is scanned by the electron beam.

回転テーブル9の周縁には磁気テープが貼設してあり、
一方向移動ステージ14に固定された磁気ヘッド13が
この磁気テープに対向させである。
Magnetic tape is attached to the periphery of the rotary table 9.
A magnetic head 13 fixed to a one-way moving stage 14 faces this magnetic tape.

上記磁気テープには回転テーブル9の回転角を示すため
の情報が記録しである。この情報は例えば、回転テーブ
ル9の回転角表示の起点を表わす符号と円周を1024
等分する一定ピッチのパルス状符号とで、CPU18は
磁気ヘッド13によりこれらの符号を読取り、回転角の
起点からのパルス符号の数を計数して回転テーブル9の
回転位置を検出している。送りねじ16を駆動するモー
タ17はパルスモータで、CPU18は回転テーブル9
の回転中心が電子ビーム2の光軸と一致する位置にある
ときの移動ステージ14の位置を起点にして、パルスモ
ータ17の駆動パルスを計数して回転テーブル9の中心
の図で左右方向の位置を検出している。移動ステージ1
4の起点位置は移動ステージ14がリミットスイッチS
に当接することによって検出される。以上の構成により
試料l上の任意の位置は回転テーブル9の回転角と移動
ステージの起点からの距離を座標データとして表CPU
は上述した試料運動によってマイクロビームで試料面の
走査を行いながらX線検出器4の出力を試料1上の各点
でサンプリングし、サンプリングしたデータを試料1の
X線強度サンプリング点の座標に対応するメモリ19の
アドレスに格納する。このようにして試料表面の所定面
積における指定元素の濃度分布のデータが得られ、これ
に基いて試料面の目的元素の濃度分布のカラー表示等が
できる。マイクロビームの光学系の周囲に複数台のX線
分光器が配置されている場合には上述方法で同時に複数
元素の濃度分布を測定することができる。
Information indicating the rotation angle of the rotary table 9 is recorded on the magnetic tape. This information includes, for example, a code representing the starting point of the rotation angle display of the rotary table 9 and a circumference of 1024.
The CPU 18 reads these codes with the magnetic head 13 and counts the number of pulse codes from the starting point of the rotation angle to detect the rotational position of the rotary table 9. The motor 17 that drives the feed screw 16 is a pulse motor, and the CPU 18 drives the rotary table 9.
Starting from the position of the movable stage 14 when the center of rotation is at a position that coincides with the optical axis of the electron beam 2, drive pulses of the pulse motor 17 are counted to determine the horizontal position of the center of the rotary table 9 in the diagram. is being detected. Moving stage 1
4, the moving stage 14 is at the limit switch S.
It is detected by coming into contact with the With the above configuration, any position on the sample l can be determined by the CPU using the rotation angle of the rotary table 9 and the distance from the starting point of the moving stage as coordinate data.
samples the output of the X-ray detector 4 at each point on the sample 1 while scanning the sample surface with a microbeam by the sample movement described above, and the sampled data corresponds to the coordinates of the X-ray intensity sampling point on the sample 1. The data is stored at the address in the memory 19. In this way, data on the concentration distribution of the designated element in a predetermined area of the sample surface is obtained, and based on this data, the concentration distribution of the target element on the sample surface can be displayed in color. When a plurality of X-ray spectrometers are arranged around the microbeam optical system, the concentration distribution of a plurality of elements can be measured simultaneously by the above-described method.

ト 効果 本発明によれば、試料面をマイクロビームで走査するの
に試料の一方向の回転と一方向の移動との組合せを用い
ているので、X方向、Y方向のジグザグ走査に比し走査
機構が簡単になり、往復運動が少いから高速走査が可能
となって、大面積の分析が能率的に行われる。X線分析
では測定精度を上げるためには一つの点について成る程
度時間をかける必要があるが、試料面を画素に区分し、
画素毎に分析を行って行く方法では、試料を一画素分ず
つ送っては停止すると云う動作を繰返し、起動、停止の
度に慣性吸収のためスロースタート、スローストップを
行うので、実測定時間よりこの移動時間の方が多くなり
、実測定時間が2〜3時間である場合でも全所要時間は
10時間もか\ると云うのが実情であるが、本発明によ
れば、略実測定時間で分析を完了することができる。
G. Effect According to the present invention, since a combination of rotation in one direction and movement in one direction of the specimen is used to scan the specimen surface with a microbeam, the scanning speed is lower than that in zigzag scanning in the X and Y directions. The mechanism is simple and there is little reciprocating movement, so high-speed scanning is possible, and analysis of large areas can be performed efficiently. In order to improve measurement accuracy in X-ray analysis, it is necessary to spend time on each point, but by dividing the sample surface into pixels,
In the method of performing analysis pixel by pixel, the sample is sent one pixel at a time and then stopped, which is repeated, and each time the sample is started and stopped, slow starts and slow stops are performed due to inertia absorption, so it takes longer than the actual measurement time. The actual situation is that this travel time is longer, and even if the actual measurement time is 2 to 3 hours, the total time required is about 10 hours, but according to the present invention, the actual measurement time is approximately 10 hours. The analysis can be completed with

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の要部側面図である。 The figure is a side view of essential parts of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 試料面を荷電粒子ビームで照射し、試料面から放射され
る放射線を検出する構成で、試料を回転させる台と、こ
の台を一方向に往復移動させる手段を有し、上記台を一
方向に移動させながら試料をこの移動速度に比し高速に
回転させて試料面を渦線伏走査線に沿って上記荷電粒子
ビームで走査するようにし、試料面の各位置から放射さ
れる放射線の検出信号を試料面上を移動する荷電粒子ビ
ーム照射点の各位置と対応させたメモリ上の各アドレス
に格納するようにした試料面分析装置。
The sample surface is irradiated with a charged particle beam and the radiation emitted from the sample surface is detected.The sample surface is irradiated with a charged particle beam and the radiation emitted from the sample surface is detected. While moving, the sample is rotated at a high speed compared to this moving speed so that the sample surface is scanned by the charged particle beam along the vortex line scanning line, and detection signals of radiation emitted from each position on the sample surface are detected. A sample surface analysis device in which the information is stored in each address on a memory corresponding to each position of a charged particle beam irradiation point moving on the sample surface.
JP60172780A 1985-08-05 1985-08-05 Sample surface analyzer Expired - Lifetime JPH0642357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60172780A JPH0642357B2 (en) 1985-08-05 1985-08-05 Sample surface analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60172780A JPH0642357B2 (en) 1985-08-05 1985-08-05 Sample surface analyzer

Publications (2)

Publication Number Publication Date
JPS6235445A true JPS6235445A (en) 1987-02-16
JPH0642357B2 JPH0642357B2 (en) 1994-06-01

Family

ID=15948212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60172780A Expired - Lifetime JPH0642357B2 (en) 1985-08-05 1985-08-05 Sample surface analyzer

Country Status (1)

Country Link
JP (1) JPH0642357B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318055A (en) * 1987-06-19 1988-12-26 Shimadzu Corp Measured data displaying method for epma
JPH01102839A (en) * 1987-10-15 1989-04-20 Hitachi Ltd Electron microscope with analytical function
JPH0424544A (en) * 1990-05-18 1992-01-28 Motohiro Iwami Soft x-ray spectrochemical analysis apparatus
WO2021240675A1 (en) * 2020-05-27 2021-12-02 株式会社日立ハイテク Nucleic acid analysis device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318055A (en) * 1987-06-19 1988-12-26 Shimadzu Corp Measured data displaying method for epma
JPH01102839A (en) * 1987-10-15 1989-04-20 Hitachi Ltd Electron microscope with analytical function
JPH0424544A (en) * 1990-05-18 1992-01-28 Motohiro Iwami Soft x-ray spectrochemical analysis apparatus
WO2021240675A1 (en) * 2020-05-27 2021-12-02 株式会社日立ハイテク Nucleic acid analysis device
JPWO2021240675A1 (en) * 2020-05-27 2021-12-02

Also Published As

Publication number Publication date
JPH0642357B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
JP3883060B2 (en) Crystal evaluation equipment
JP3377496B2 (en) Method and system for creating projection data in a CT system
EP0319345A2 (en) High power laser beam intensity mapping apparatus
EP0525286B1 (en) Surface inspection apparatus
CN111380880B (en) Diffraction device and method for nondestructive testing of crystal orientation uniformity inside workpiece
CN102116747A (en) Scanning device for ray bundle for backscatter imaging-used ray bundle and method
US20010036640A1 (en) System and methods for the high throughput screening of polymorphs
GB2243681A (en) Particle size analyser
JPS6235445A (en) Device for analyzing sample surface
JPH05264479A (en) X-ray analyzer
JP2001013095A (en) Inorganic matter analyzing apparatus in sample and inorganic and/or organic matter analyzing apparatus in sample
CN114018960B (en) Defect analysis device based on X-ray flaw detection image
JP3088516B2 (en) X-ray diffraction measurement method and apparatus
JPH075406Y2 (en) Sample surface analyzer
JPH10246708A (en) Apparatus and method for nondestructive inspection
CN111272096A (en) Three-dimensional scanning device and security inspection equipment
CN216926644U (en) Nondestructive imaging device capable of scanning up and down
CN108645760A (en) A kind of high throughput dusty material detection method, detection device and application process
RU2112209C1 (en) Device for determination of coating thickness by x-ray-fluorescent method
JPH07119717B2 (en) Semiconductor material evaluation equipment
JP2727691B2 (en) X-ray absorption fine structure analyzer
US3070693A (en) Diffraction apparatus and method of using same
JP2876672B2 (en) Surface analyzer
JPS5957145A (en) X-ray analytical apparatus
JPH08105846A (en) X-ray analyzer