JPS6230801A - Ferromagnetic powder - Google Patents

Ferromagnetic powder

Info

Publication number
JPS6230801A
JPS6230801A JP60167626A JP16762685A JPS6230801A JP S6230801 A JPS6230801 A JP S6230801A JP 60167626 A JP60167626 A JP 60167626A JP 16762685 A JP16762685 A JP 16762685A JP S6230801 A JPS6230801 A JP S6230801A
Authority
JP
Japan
Prior art keywords
powder
fe3o4
metallic iron
magnetite
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60167626A
Other languages
Japanese (ja)
Inventor
Shigeaki Takagi
高城 重彰
Kenichi Otsuka
大塚 研一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60167626A priority Critical patent/JPS6230801A/en
Publication of JPS6230801A publication Critical patent/JPS6230801A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop ferromagnetic powder having a radio wave absorptive characteristic over a wide frequency range and excellent weatherability by allowing at least part of metallic iron to exist in Fe3O4 of pulverous particles essentially consisting of Fe3O4 and contg. a specific ratio of metallic iron. CONSTITUTION:Powder of FeO such as mill scale is pulverized to form pulverous powder having 1-80mum average grain size. The FeO is decomposed to Fe3O4 and Fe by thermal decomposition to produce the composite powder in which part of Fe is coated with Fe3O4. The content of Fe with respect to the content of Fe3O4 is made 1-25wt%. The ferromagnetic powder having the excellent absorptive characteristic of a wide range of radio waves including an extremely high frequency of >=10GHz and the weatherability is obtd. if the pulverous powder mixture composed of such pulverous Fe3O4 powder, pulverous Fe powder and the pulverous composite powder of Fe and Fe3O4 is used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電波吸収材などに用いる強磁性粉末に関し、
優れた電波吸収能と耐候性を与えるものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a ferromagnetic powder used for radio wave absorbing materials, etc.
It provides excellent radio wave absorption ability and weather resistance.

〔従来の技術〕[Conventional technology]

電波吸収材は、電磁波が建造物の壁面に反射して通信等
の妨げになったり、電磁波発生機器から電磁波が漏洩し
て他のディジタル機器に悪影響したりするのを防ぐ目的
で用いられ1通信やエレクトロニクスの発達に伴って需
要が増加している。
Radio wave absorbing materials are used to prevent electromagnetic waves from reflecting off the walls of buildings and interfering with communications, or from leaking from electromagnetic wave generating devices and adversely affecting other digital devices. Demand is increasing with the development of technology and electronics.

通常、電波吸収材はフェライト等の強磁性粉末と、樹j
指等の誘電体との複合体の形で用いられることが多い、
電波吸収材の好ましい特性とじては、できる限り薄い材
料で、広範囲の周波数の電波を吸収することである。そ
のために強磁性粉末の満たすべき条件は、簡単には、広
い周波数範囲にわたって高い透磁率を保つことであると
言える。
Radio wave absorbing materials are usually made of ferromagnetic powder such as ferrite and wood.
It is often used in the form of a composite with a dielectric material such as a finger.
The desirable properties of a radio wave absorbing material are that the material is as thin as possible and absorbs radio waves of a wide range of frequencies. Therefore, the condition that the ferromagnetic powder must meet can be simply said to be that it maintains high magnetic permeability over a wide frequency range.

前述のように1強磁性粉末としてはフェライト(マグネ
タイトを含む)がもっとも一般的である。しかしながら
、フェライトにおける問題点は、10GHz以上の高い
周波数で高い透磁率を保つことが原理上困難であること
である。すなわち、フェライトの組成等を変えることに
よって、低周波での透磁率を高めることは可能であるが
、それに付随して周波数特性が必ず劣化する宿命があり
、結局高周波域(10GHz以上)での透厳率は向トし
ないのである。
As mentioned above, ferrite (including magnetite) is the most common ferromagnetic powder. However, a problem with ferrite is that it is difficult in principle to maintain high magnetic permeability at high frequencies of 10 GHz or higher. In other words, it is possible to increase the magnetic permeability at low frequencies by changing the composition of the ferrite, but the frequency characteristics inevitably deteriorate as a result, and the permeability at high frequencies (10 GHz or higher) eventually decreases. There is no need to be strict.

これを補うためには、鉄などの金属の強磁性粉末を併用
すると、高周波域での電波吸収f艶を改みすることがで
きる。その場合、吸収叶tオな限界の周波数は粒径の2
乗に反比例し、5gmの粒子で10GHz、IJLmの
粒子では250GH2程度までの吸収が可能である。
To compensate for this, if ferromagnetic powder of metal such as iron is used in combination, the radio wave absorption f gloss in the high frequency range can be improved. In that case, the limit frequency at which absorption is possible is 2 times the particle size.
It is inversely proportional to the power of 5 gm, and particles of 5 gm can absorb up to 10 GHz, and particles of IJLm can absorb up to about 250 GH2.

しかし、このような金属(ここでは特に鉄)の微粉を工
業的に得ることは必ずしも容易ではない、カーボニル法
によれば10gm程度以rの細かい鉄粉を製造すること
ができるが、きわめてコスト高であることは周知のとお
りである。単純な機械粉砕法によっては、鉄に展延性が
あるために粉砕しにくく、水やガスを噴射するアトマイ
ズ法によっては、粗粒が多くなるために微粉の歩留りが
悪くなるなど、結局コスト高となってしまう。
However, it is not necessarily easy to industrially obtain such fine powder of metal (especially iron here).The carbonyl method can produce fine iron powder of about 10 gm or less, but it is extremely costly. It is well known that this is the case. Simple mechanical crushing methods are difficult to crush due to the malleability of iron, while atomizing methods, which involve injecting water or gas, result in a poor yield of fine powder due to the large number of coarse particles, resulting in high costs. turn into.

また、通常の望境においても極めて錆びやすく、耐候性
にの問題が残る。
In addition, it is extremely susceptible to rust even under normal conditions, and there remain problems with weather resistance.

〔発明が解決しようとする問題点〕 本発明者らは、このような問題点を解決するために、低
コストで電波吸収材用に優れた特性を41する強磁性粉
末を製造することについて検討した結果、さきに酸化鉄
粉を出発物質とする強磁性粉末を提案した(特願昭6O
−79752)が、本発明はこれをさらに発展させ、出
発物質に限定されることなく、粉末に付与すべき特性に
着目して以下に述べる強磁性粉末を提案するに至った。
[Problems to be Solved by the Invention] In order to solve these problems, the present inventors have studied the production of ferromagnetic powder that is low cost and has excellent properties for use in radio wave absorbing materials. As a result, we proposed a ferromagnetic powder using iron oxide powder as a starting material (patent application 1986).
-79752), but the present invention further develops this and proposes the ferromagnetic powder described below by focusing on the characteristics that should be imparted to the powder without being limited to the starting material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、マグネタイトと金属鉄とを含有し。 The present invention contains magnetite and metallic iron.

金属鉄の含有量が1〜25wt%であって、マグネタイ
トと金属鉄とを同時に含有する粒子を含むような強磁性
粉末を特徴とする。
The present invention is characterized by a ferromagnetic powder having a metallic iron content of 1 to 25 wt% and containing particles containing magnetite and metallic iron at the same time.

さらに1強磁性粉末であって、しかも粒子内の金属鉄の
少なくとも一部が、マグネタイトの内部に存在するよう
な強磁性粉末が極めて好適である。
Further, a ferromagnetic powder in which at least a part of the metallic iron in the particles is present inside magnetite is extremely suitable.

〔作用〕[Effect]

本発明の着眼点は1粒子が金属鉄(M−Fe)とマグネ
タイト(Fe304)の双方を同時に含む、いわば複合
粉末であれば、実質的な粒度が細かくなって電波吸収能
が向上し、さらに金属がマグネタイトの内部にあるなら
ば、耐候性も改善されるとの考えにある。金属と酸化物
との組合せとして、金属鉄とマグネタイトとはともに強
磁性であり、製造玉の問題も少なく、もっとも好ましい
ものである。このように金属鉄とマグネタイトとが複合
粉末粒子を構成するならば、幾何学的な粒子の粒度より
も、金属鉄の実質的な粒度はもっと小さくなり、前に述
べたような原理によって、より高い周波数帯での電波吸
収能が向上するのである。そして、その金属鉄が1粒子
内でマグネタイトの部分よりも内部に存在すれば、直接
外気と接することが少なくなり、耐候性が改善されるの
である。
The point of view of the present invention is that if one particle contains both metal iron (M-Fe) and magnetite (Fe304) at the same time, so to speak, a composite powder, the actual particle size becomes finer and the radio wave absorption ability improves. The idea is that if the metal is inside the magnetite, weather resistance will also be improved. As a combination of a metal and an oxide, metal iron and magnetite are both ferromagnetic and cause fewer problems in production, and are the most preferred. If metallic iron and magnetite constitute composite powder particles in this way, the actual particle size of metallic iron will be smaller than the geometrical particle size, and according to the principle mentioned earlier, This improves the ability to absorb radio waves in high frequency bands. If the metallic iron is present inside the particle rather than the magnetite part, it will be less likely to come into direct contact with the outside air, and weather resistance will be improved.

以f、本発明の具体的構成とその作用をさらに詳細に説
明する。
Hereinafter, the specific structure and operation of the present invention will be explained in further detail.

はじめに、金属鉄を1〜’25wt%含有する理由につ
いて述べる。すでに説明したとおり、フェライトの1種
であるマグネタイトのみに頼っていたのでは、周波数の
高い領域、たとえばマイクロ波帯での電波吸収能には原
理E限界がある。この点は、粒度さえ小さければ高周波
域での吸収IIがマグネタイトよりも期待できる金属鉄
を含有させるのである。そのノ^本思想はすでに述べた
とおりであるが、金属鉄が1wt%未満ではその効果が
わずかであり、工業的な意味が小さいから除外する。一
方、金属鉄が25wt%を越えると、後述のように金属
鉄の一部をマグネタイトの内部に生成させたとしても、
残りの金属鉄が外気にさらされる機会が多くなるため、
酸化がおこりやすくなって、粉末全体の耐候性が十分で
なくなり、用途が限定されてしまう、したがって、金属
鉄の計を1〜25wt%にルノ限する。
First, the reason for containing 1 to 25 wt% of metallic iron will be described. As already explained, if only magnetite, which is a type of ferrite, is relied upon, there is a principle E limit to the ability to absorb radio waves in a high frequency region, for example, in the microwave band. In this respect, if the particle size is small, metallic iron can be expected to have better absorption II in the high frequency range than magnetite. The basic idea has already been mentioned, but if metallic iron is less than 1 wt%, the effect is slight and the industrial significance is small, so it is excluded. On the other hand, if metallic iron exceeds 25 wt%, even if some metallic iron is generated inside the magnetite as described below,
Because the remaining metal iron is exposed to the outside air more often,
Oxidation tends to occur, and the weather resistance of the powder as a whole becomes insufficient, limiting its uses.Therefore, the total amount of metallic iron is limited to 1 to 25 wt%.

次に、1つの粒子の中にマグネタイトと金属鉄とを同時
に含有させる理由を述べる。
Next, the reason why magnetite and metal iron are contained simultaneously in one particle will be described.

第1の理由は、前に述べたとおり、とりわけ金属粉にお
いては高周波域での電波吸収能を増すために、細かい粒
度とすることが望まれる。ところが、これも前述したよ
うに、金属鉄を低コストで微粉化することは難しいので
、1つの粒子内にマグネタイトと金属鉄とがともに存在
すれば、その粒子の大きさよりも金属鉄の大きさが小さ
くなり、特性上有利になる。
The first reason is, as mentioned above, it is desirable for metal powder to have a fine particle size, especially in order to increase its ability to absorb radio waves in a high frequency range. However, as mentioned above, it is difficult to pulverize metal iron at low cost, so if both magnetite and metal iron exist in one particle, the size of the metal iron will be smaller than the size of the particle. becomes smaller, which is advantageous in terms of characteristics.

第2の理由は、このようにいわばマグネタイトと金属鉄
との複合粉末とすることにより、中線にこれらの粉末を
混合するよりも均一・性が良好であり、′電波吸収材の
中での特性的な偏りが抑制される。
The second reason is that by creating a composite powder of magnetite and metal iron, the uniformity and properties are better than when these powders are mixed in the center line. Characteristic biases are suppressed.

こうした複合粉末の中で、さらに金属鉄がマグネタイト
よりも粒子の中心部に存在するようにすれば、l1lJ
候性も改みすることができる。すなわち、金属鉄はきわ
めて酸化されやすいから、理想的にはこれをマグネタイ
トで覆ってやれば、金属鉄が外気に触れることが無く、
酸化が抑えられる。完全に弼うまで行かなくとも1部分
的に金属鉄がマグネタイトよりも内部にあれば、すべて
が表面にあるよりも耐候性が大きい。
In such a composite powder, if metallic iron is present in the center of the particles rather than magnetite, l1lJ
Weather characteristics can also be changed. In other words, metal iron is extremely susceptible to oxidation, so ideally covering it with magnetite would prevent metal iron from coming into contact with the outside air.
Oxidation is suppressed. If the metal iron is partially inside the magnetite, even if it does not completely close, the weather resistance is greater than if it is all on the surface.

ヒに述べたような金属鉄とマグネタイトとの複合粉末を
製造するには、いくつかの方法が考えられる。
Several methods can be considered to produce the composite powder of metallic iron and magnetite as described in 1.

第1はマグネタイト粉末を還元性ガス(水素など)や固
体還元剤(コークスなど)で部分的に還元することであ
る。この場合、金属鉄の実質粒1^を小さくするために
、還元前にマグネタイト粉末を1分に粉砕しておくと良
い、この方法によると、通常金属鉄はでグネタイト粉末
のまわりに生成する。したがって、これをもう−庇部分
酸化して、金属鉄の表面をマグネタイトで覆うのも有効
な方法である。
The first is to partially reduce magnetite powder with a reducing gas (such as hydrogen) or a solid reducing agent (such as coke). In this case, in order to reduce the size of the actual particles 1^ of metallic iron, it is preferable to crush the magnetite powder to 1 min before reduction. According to this method, metallic iron is usually generated around the magnetite powder. Therefore, it is an effective method to partially oxidize the metal iron and cover the surface of the metal iron with magnetite.

第2は、ウスタイ)(Fed)を熱分解し、金属鉄とマ
グネタイトとに分解する方法である。ウスタイトの粉末
としては、ミルスケールなど、鉄が高温で酸化されたの
ち、比較的速く冷却された酸化鉄がある。ウスタイトの
熱分解の場合、金属鉄はマグネタイト中に球状に析出し
たり、マグネタイトの粒界に沿って、析出したり、ある
いはマグネタイトの表面に析出したりする。
The second method is to thermally decompose Ustai (Fed) into metallic iron and magnetite. Examples of wustite powder include iron oxide, such as mill scale, which is produced by oxidizing iron at high temperatures and then cooling it relatively quickly. In the case of pyrolysis of wustite, metallic iron precipitates in magnetite in a spherical shape, along the grain boundaries of magnetite, or on the surface of magnetite.

第3は、金属鉄を部分的に酸化し、酸化部分をマグネタ
イトとする方法である。たとえば、鉄粉を大気中で加熱
して酸化させ、これを水中におとして急冷すると、粉末
粒子の内部が金属鉄、表面部がウスタイトとなる。さら
に500℃程度でウスタイトを金属鉄とマグネタイトと
に分解すれば、所♀の複合粉末が得られる。
The third method is to partially oxidize metal iron and turn the oxidized portion into magnetite. For example, when iron powder is heated in the air to oxidize it and then quenched in water, the inside of the powder particle becomes metallic iron and the surface becomes wustite. Further, by decomposing the wustite into metallic iron and magnetite at about 500°C, the desired composite powder can be obtained.

そのほか、種々の酸化鉄を、金属鉄とマグネタイトが平
衡するような条件で熱処理することによって、複合粉末
を得ることかでさる。
In addition, composite powders can be obtained by heat-treating various iron oxides under conditions such that metallic iron and magnetite are in equilibrium.

このような金属鉄とマグネタイトとを同時に含む粉末の
好ましい粒度は、平均粒径として1〜80pmである。
The preferred particle size of such a powder containing metallic iron and magnetite at the same time is 1 to 80 pm as an average particle size.

平均粒径がlpm未満であると、粉末の比表面精が大き
くなるため、金属鉄や、場合によってはマグネタイトも
酸化されやすくなり、耐候性が劣化する。一方、平均粒
径が80gmを越えると、電波吸収材として樹脂と混練
して押出成形する場合に、押出性が劣化するから好まし
くない。
When the average particle size is less than lpm, the specific surface fineness of the powder becomes large, so that metallic iron and, in some cases, magnetite are also easily oxidized, and weather resistance deteriorates. On the other hand, if the average particle size exceeds 80 gm, extrudability deteriorates when kneaded with a resin as a radio wave absorbing material and extruded, which is not preferable.

〔実施例〕〔Example〕

実施例1 ミルスケールを振動ボールミルで10時間粉砕l−”z
〜仁4)錫じ七〜で相會)ル七−1L1で 盃ビl叡シ
径8.0延mの微粉を得た。
Example 1 Mill scale was ground in a vibrating ball mill for 10 hours l-”z
A fine powder having a diameter of 8.0 m was obtained using the 7-1L1.

この微粉は T、Feニア3.9wt% であり、不純物としては。This fine powder T, Fe nia 3.9wt% And as an impurity.

S i02 :0.22wt%、 MnO:0.35wt% P:0.01wt%。S i02: 0.22wt%, MnO: 0.35wt% P: 0.01wt%.

S:0.01wt%。S: 0.01wt%.

CaO:0.05wt% を含んでいた。CaO: 0.05wt% It contained.

熱処理のための粉末容器として、厚み1mmの鉄板を加
工して、上部が開放され、内法が50mm立方の立方体
容器を作成した。
As a powder container for heat treatment, a 1 mm thick iron plate was processed to create a cubic container with an open top and an internal dimension of 50 mm.

粉末を容器に充填したのち、厚み約5=nmのスチール
ウール製の蓋をし、容器ごとコークスの中に埋めた。コ
ークスは2〜10mmに篩分けした範囲のものを用いた
ため、被処理粉末とコークスとはスチールウールの蓋で
接触が防がれ、しかも、スチールクールの蓋は通気性が
あるため。
After filling the powder into a container, the container was covered with a steel wool lid having a thickness of approximately 5 nm, and the container was buried in coke. Since the coke used was one that had been sieved to a size of 2 to 10 mm, contact between the powder to be treated and the coke was prevented by the steel wool lid, and the steel cool lid was breathable.

コークスとともに*器を加熱することにより、容器内を
5光性雰囲気とすることができた。加熱は500°Cで
12時間行なった。
By heating the container together with coke, it was possible to create a five-light atmosphere inside the container. Heating was carried out at 500°C for 12 hours.

熱処理後の粉末はほとんど凝集していなかったため、そ
のまま以後の測定に供した。
Since the powder after heat treatment was hardly aggregated, it was used as it was for subsequent measurements.

その結果。the result.

M、Fe : 10.1wt%、 Fe304 : 85.8wt%、 FeO: l、9wt%、 Fe2O3≦O,l w t% であり、その他の不純物は原料ミルケース粉とほぼ同等
であった。平均粒度は8.84 mであった。
M, Fe: 10.1 wt%, Fe304: 85.8 wt%, FeO: l, 9 wt%, Fe2O3≦O, l wt%, and other impurities were almost the same as the raw material mill case powder. The average particle size was 8.84 m.

この粉末の飽和磁化σSを求めるため、振動試料型磁化
測定装置を用い、磁界10kOe(キロエルステッド)
のもとで測定した結果、飽和磁化cr s = 98.
8 e m u / gと高い値を得た。
In order to determine the saturation magnetization σS of this powder, a vibrating sample type magnetization measuring device was used, and a magnetic field of 10 kOe (kiloersted) was used.
As a result of measurement under the condition, the saturation magnetization cr s = 98.
A high value of 8 emu/g was obtained.

次に、粉末の耐候性を調べるため、粉末10gをアルミ
ナの皿にのせ、湿度95%、温度50℃のもとで、30
日間放置し、再び飽和磁化σSを測定した。その結果、
飽和磁化σS比(放置t&/放置前)は99.0%であ
り、実用1−聞題無い1耐候性を示した。
Next, to examine the weather resistance of the powder, 10 g of the powder was placed on an alumina plate and heated for 30 minutes at a humidity of 95% and a temperature of 50°C.
After leaving it for a day, the saturation magnetization σS was measured again. the result,
The saturation magnetization σS ratio (unused t &/before left unused) was 99.0%, showing practical use 1 - fair 1 weather resistance.

金属鉄が粉末のどの部分に存在するかを明らかにするた
め、粉末を樹脂に埋込んで研磨し、粒−t’−断面を光
学IjrJ微鏡で観察17た。金属鉄は、白い部分とし
て、マグネタイトから識別することができた。その結果
、第2図のように粒子表面に金属鉄があるもののほか、
:53図および第4図のように、粒子の内部に金属鉄が
存在するものがr&寮された。すなわち、第3図では、
マグネタイ)・の内部に金属鉄が孤ケして析出I7、金
属鉄がマグネタイトで囲まれている。また、第4 V4
では、マグネタイトの粒界に沿って金属鉄が析出してい
る。
In order to clarify in which part of the powder the metallic iron was present, the powder was embedded in resin and polished, and the grain-t'-section was observed with an optical IjrJ microscope17. Metallic iron could be distinguished from magnetite as a white part. As a result, in addition to particles with metallic iron on the surface as shown in Figure 2,
: As shown in Figures 53 and 4, particles in which metallic iron was present inside the particles were subjected to R&D. That is, in Figure 3,
Inside the magnetite, metallic iron is isolated and precipitated I7, and the metallic iron is surrounded by magnetite. Also, the 4th V4
In this case, metallic iron is precipitated along the grain boundaries of magnetite.

実施例2 次の実施例では、主にM、Fe清の影響を調べた。原料
は実施例1と同じミルスケールの微粉とし、これをアル
ミナのトレーに50gのせ、管状炉で熱処理した。
Example 2 In the next example, the effects of M and Fe were mainly investigated. The raw material was the same mill scale fine powder as in Example 1, and 50 g of this was placed on an alumina tray and heat treated in a tube furnace.

加熱は500℃とし、最初の5時間はN2+H2ガス中
、残りの8時間はN2ガス中で、合計13時間保持した
。できトがった粉末を乳鉢ですりつぶし、325メツシ
ユの篩で篩分けし、1下歩留りを求めた。−325メツ
シユの粉末につき、M 、 F e、F e304の分
析、平均粒度および飽和磁化σSのA一定、また、実施
例1と同様の耐候性試験(飽和磁化σS比)を行なった
Heating was carried out at 500° C., and the temperature was maintained in N2+H2 gas for the first 5 hours and in N2 gas for the remaining 8 hours, for a total of 13 hours. The resulting powder was ground in a mortar and sieved through a 325-mesh sieve to determine the yield. -325 mesh powder was subjected to analysis of M, Fe, Fe304, average particle size and saturation magnetization σS constant at A, and the same weather resistance test (saturation magnetization σS ratio) as in Example 1.

第1表に、加熱初期のH21&と特性との関係を示す。Table 1 shows the relationship between H21& at the initial stage of heating and the characteristics.

これらの粉末のうち、金属鉄を1wt%以ト含むものは
、いずれにおいても、その断面[5により、第2図、第
3図、第4図に示した金属鉄の存在彫態のすべてが9塁
められた。
Among these powders, those containing 1 wt% or more of metallic iron have a cross section [5, so that all of the forms of existence of metallic iron shown in Figs. 2, 3, and 4 are He was given 9th base.

第1表より、金属鉄が1wL%以上になると、次の比較
例で述べるマグネタイト鉱石粉末よりも飽和磁化(σS
)が大きくなり、金属鉄の効果が表われる。第1表の値
から、金属鉄量と飽和磁化σS比(対鉄性の指標となる
)との関係を示すと、第1図のようになる。なお、第1
図では、次の比較例の粉末についても同時に示1.てい
る。
From Table 1, when metallic iron is 1 wL% or more, the saturation magnetization (σS
) increases, and the effect of metallic iron appears. From the values in Table 1, the relationship between the amount of metallic iron and the saturation magnetization σS ratio (an index of iron resistance) is shown in FIG. In addition, the first
The figure also shows the powders of the following comparative examples 1. ing.

i1図から明らかなように、金属鉄が25W(%を越え
ると、対鉄性が劣化している。
As is clear from Figure i1, when the amount of metal iron exceeds 25 W (%), the resistance to iron deteriorates.

比較例 マグネタイト鉱石をボールミルで粉砕し、乎均粒径8.
8gmの粉末とした。これにモ均粒径7、94 mのカ
ーボニル鉄粉を種々の割合で混合したものにつき、実施
例1と同様の飽和磁化σSおよび耐候性試験(σSの比
)を行なった。
Comparative Example Magnetite ore was ground with a ball mill and the average particle size was 8.
It was made into a powder of 8 gm. The same saturation magnetization σS and weather resistance tests (σS ratio) as in Example 1 were carried out on a mixture of carbonyl iron powder with average particle diameters of 7 and 94 m in various ratios.

第2表にマグネタイト粉と鉄粉の混合比、分析値、σS
およびσS比を示す、第2表から、金属鉄のt−とσS
比との関係を求めて第1図に示す。
Table 2 shows the mixing ratio of magnetite powder and iron powder, analytical values, and σS.
From Table 2, which shows the t- and σS ratios of metallic iron,
The relationship with the ratio is determined and shown in Figure 1.

第1図より、本発明による複合粉末は、通常の混合粉末
よりも耐候性が優れており、これは主に、粒子内部に金
属鉄が存在することによると考えられる。
From FIG. 1, the composite powder according to the present invention has better weather resistance than ordinary mixed powder, and this is thought to be mainly due to the presence of metallic iron inside the particles.

実施例3 粉末冶金用の7トマイズ鉄粉(−80メツシユ)50g
をアルミするつぼに入れ、大気炉で800℃にB温し、
30分保持した後、鉄粉を水の中に落して急冷した。酸
化した粉末を、管状炉にN2ガスを流した状態で、50
0℃に10時間保持した。その結果、粒子内部が主に金
属鉄から成り、表面部がFにマグネタイトから成る。複
合粉末が得られた。モ均粒度は57.9 p−mであり
、組成は、 M、Fe:16.8wt% Fe304 : 73.Owt% FeOニア、6wt% Fe203 :1.3wt% であり、ほかに C:0.01wt%、 5i02:0−1wt%、 MnO:0.2wt%、 A立203:0.02wt% を不純物として含有していた。飽和磁化σSは100.
6emu/gと高く、耐候性(crsの比)は98.3
%と優れていた。
Example 3 50g of 7tomized iron powder (-80 mesh) for powder metallurgy
was placed in an aluminum pot and heated to 800℃ in an atmospheric furnace.
After holding for 30 minutes, the iron powder was dropped into water and rapidly cooled. The oxidized powder was heated in a tube furnace with N2 gas flowing for 50 minutes.
It was kept at 0°C for 10 hours. As a result, the inside of the particle mainly consists of metallic iron, and the surface part consists of F and magnetite. A composite powder was obtained. The average particle size is 57.9 p-m, and the composition is: M, Fe: 16.8 wt% Fe304: 73. Owt% FeO near, 6wt% Fe203: 1.3wt%, and C: 0.01wt%, 5i02: 0-1wt%, MnO: 0.2wt%, Al203: 0.02wt% as impurities. It contained. Saturation magnetization σS is 100.
High at 6 emu/g, weather resistance (CRS ratio) is 98.3
% was excellent.

〔発明の効果〕〔Effect of the invention〕

以と示したように、本発明による強磁性粉末は、電波吸
収材や電磁遮蔽材用として優れたものである。また飽和
磁化σSが高く、耐候性があることから、その他の用途
、例えば乾式複写機のキャリアなどとしても、十分な使
用に耐えると思われる。
As shown above, the ferromagnetic powder according to the present invention is excellent for use in radio wave absorbing materials and electromagnetic shielding materials. Furthermore, since it has a high saturation magnetization σS and is weather resistant, it is thought that it can be used satisfactorily for other uses, such as as a carrier for a dry type copying machine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、強磁性粉末のM 、 F e含有量と耐候性
(飽和磁化σS比)との関係を示すグラフ、第2図、第
3図および第4図は、本発明による強磁性粉末の粒子断
面の粒子構造を示す光学顕微鏡写真である。 出を人 川崎製鉄株式会社
FIG. 1 is a graph showing the relationship between M and Fe contents and weather resistance (saturation magnetization σS ratio) of ferromagnetic powder, and FIGS. 1 is an optical micrograph showing the particle structure of a cross section of a particle. Kawasaki Steel Co., Ltd.

Claims (1)

【特許請求の範囲】 1 マグネタイトと金属鉄とを含有し、金属鉄の含有量
が1〜25wt%であって、マグネタイトと金属鉄とを
同時に含有する粒子を含むことを特徴とする強磁性粉末
。 2 粒子内の金属鉄の少なくとも一部が、マグネタイト
の内部に存在することを特徴とす る、特許請求の範囲第1項の強磁性粉末。
[Scope of Claims] 1. A ferromagnetic powder containing magnetite and metallic iron, having a metallic iron content of 1 to 25 wt%, and containing particles containing both magnetite and metallic iron. . 2. The ferromagnetic powder according to claim 1, wherein at least a part of the metallic iron in the particles exists inside magnetite.
JP60167626A 1985-07-31 1985-07-31 Ferromagnetic powder Pending JPS6230801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167626A JPS6230801A (en) 1985-07-31 1985-07-31 Ferromagnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167626A JPS6230801A (en) 1985-07-31 1985-07-31 Ferromagnetic powder

Publications (1)

Publication Number Publication Date
JPS6230801A true JPS6230801A (en) 1987-02-09

Family

ID=15853275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167626A Pending JPS6230801A (en) 1985-07-31 1985-07-31 Ferromagnetic powder

Country Status (1)

Country Link
JP (1) JPS6230801A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157364A (en) * 1988-12-08 1990-06-18 Akitoshi Sugimoto Pool water filtration device and filtration system
JP2004281846A (en) * 2003-03-18 2004-10-07 Toshiba Corp High-frequency magnetic material, high-frequency magnetic part using the same, and method for manufacturing the same
US6827757B2 (en) 2001-11-30 2004-12-07 Jfe Steel Corporation Magnetite-iron based composite powder, magnetite-iron based powder mixture, method for producing the same, method for remedying polluted soil, water or gases and electromagnetic wave absorber
JP2006128278A (en) * 2004-10-27 2006-05-18 Toshiba Corp High-frequency magnetic material and high-frequency magnetic part using the same, and its manufacturing method
KR100921261B1 (en) * 2001-12-04 2009-10-09 토다 고교 가부시끼가이샤 Iron Particles for Purifying Contaminated Soil or Ground Water, Process for Producing the Iron Particles, Purifying Agent Comprising the Iron Particles, Process for Producing the Purifying Agent and Method of Purifying Contaminated Soil or Ground Water
JP2012097287A (en) * 2010-10-29 2012-05-24 Dowa Electronics Materials Co Ltd Sintered particle and carrier for electrophotographic developers, developer for electrophotographies using the same, and producing method of sintered particle sintering particle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157364A (en) * 1988-12-08 1990-06-18 Akitoshi Sugimoto Pool water filtration device and filtration system
JPH0433485B2 (en) * 1988-12-08 1992-06-03 Akitoshi Sugimoto
US6827757B2 (en) 2001-11-30 2004-12-07 Jfe Steel Corporation Magnetite-iron based composite powder, magnetite-iron based powder mixture, method for producing the same, method for remedying polluted soil, water or gases and electromagnetic wave absorber
KR100921261B1 (en) * 2001-12-04 2009-10-09 토다 고교 가부시끼가이샤 Iron Particles for Purifying Contaminated Soil or Ground Water, Process for Producing the Iron Particles, Purifying Agent Comprising the Iron Particles, Process for Producing the Purifying Agent and Method of Purifying Contaminated Soil or Ground Water
JP2004281846A (en) * 2003-03-18 2004-10-07 Toshiba Corp High-frequency magnetic material, high-frequency magnetic part using the same, and method for manufacturing the same
JP4601907B2 (en) * 2003-03-18 2010-12-22 株式会社東芝 High frequency magnetic material powder, high frequency magnetic component using the same, and manufacturing method
JP2006128278A (en) * 2004-10-27 2006-05-18 Toshiba Corp High-frequency magnetic material and high-frequency magnetic part using the same, and its manufacturing method
JP4664649B2 (en) * 2004-10-27 2011-04-06 株式会社東芝 High frequency magnetic material and high frequency magnetic component using the same
JP2012097287A (en) * 2010-10-29 2012-05-24 Dowa Electronics Materials Co Ltd Sintered particle and carrier for electrophotographic developers, developer for electrophotographies using the same, and producing method of sintered particle sintering particle

Similar Documents

Publication Publication Date Title
CN105355356B (en) Compressed-core and its manufacturing method
Caltun et al. Study of the microstructure and of the permeability spectra of Ni–Zn–Cu ferrites
JP2008195986A (en) Powder of soft magnetic metal, green compact thereof, and method for manufacturing powder of soft magnetic metal
JP2005273011A (en) Iron based nanosize particle and production method therefor
CN110235212B (en) Magnetic flat powder and magnetic sheet containing the same
GB674719A (en) Improvements in magnetic compositions
CN108865060A (en) The preparation method and applications of graphene composite wave-suction material based on 5G communication
JPS6230801A (en) Ferromagnetic powder
JP5556756B2 (en) Iron-based nano-sized particles and method for producing the same
US2734034A (en) Magnetic compositions
JPH05222483A (en) Production of iron nitride based high density sintered compact
US3002930A (en) Process of making a ferromagnetic body
JPS63117406A (en) Amorphous alloy dust core
CN105586555B (en) Cu Mn Ni systems precision electrical resistance alloy band bright annealing reducing medium and its method for annealing
Wu et al. Magnetic properties and thermal stability of γ′-Fe4N nanoparticles prepared by a combined method of reduction and nitriding
Maeda et al. Electromagnetic Microwave Absorption of α-Fe Microstructure Produced by Disproportionation Reaction of Sm2Fe7 Compound
JPS61238901A (en) Ferromagnetic powder
WO2018143472A1 (en) Soft magnetic flat powder
CN112374879A (en) Preparation method of anti-electromagnetic interference manganese-zinc ferrite material
JP2009043778A (en) Metal magnetic material powder for composite magnetic body
Lee et al. High-frequency properties of Fe-4.5 Wt% Si powders with an insulating layer synthesized by a modified dew-point treatment
US3609083A (en) Heat treatment of nickel zinc cobalt ferrite
JPH10261514A (en) Magnetic material
JPS6260804A (en) Production of ferromagnetic powder
US10607757B1 (en) Production method of soft magnetic metal powder