JP2012097287A - Sintered particle and carrier for electrophotographic developers, developer for electrophotographies using the same, and producing method of sintered particle sintering particle - Google Patents

Sintered particle and carrier for electrophotographic developers, developer for electrophotographies using the same, and producing method of sintered particle sintering particle Download PDF

Info

Publication number
JP2012097287A
JP2012097287A JP2010243371A JP2010243371A JP2012097287A JP 2012097287 A JP2012097287 A JP 2012097287A JP 2010243371 A JP2010243371 A JP 2010243371A JP 2010243371 A JP2010243371 A JP 2010243371A JP 2012097287 A JP2012097287 A JP 2012097287A
Authority
JP
Japan
Prior art keywords
sintered particles
sintered
particles
carrier
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010243371A
Other languages
Japanese (ja)
Other versions
JP5735779B2 (en
Inventor
Tomoya Yamada
智也 山田
Tomohide Iida
智英 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2010243371A priority Critical patent/JP5735779B2/en
Publication of JP2012097287A publication Critical patent/JP2012097287A/en
Application granted granted Critical
Publication of JP5735779B2 publication Critical patent/JP5735779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide sintered particle in which breaking and chipping are hardly generated even in the long term use and which is excellent in durability and a method for producing the same.SOLUTION: The sintered particle contains metal iron and FeOas main components and has a void ratio of 5% or less. It is preferable that the ratio (I/I) of the maximum peak value (I) of the FeOand the maximum peak value (I) of the metal iron is 0.05 to 0.70 by powder X-ray diffraction method from a standpoint for further improving the mechanical strength of the sintered particle. Further it is preferable that a specific surface area by a BET method is 0.09 m/g or less and an absolute specific gravity is 4.95 g/cmor more. Furthermore, it is preferable that a saturated magnetization is in a range of 70-120 Am/kg.

Description

本発明は、焼結粒子及びそれを用いた電子写真現像剤用キャリア、電子写真用現像剤並びに焼結粒子の製造方法に関するものである。   The present invention relates to sintered particles, an electrophotographic developer carrier using the same, an electrophotographic developer, and a method for producing sintered particles.

電子写真方式を用いたファクシミリやプリンタ、複写機などの画像形成装置では、粉体のトナーを感光体上の静電潜像に付着させてトナー像として可視像化し、このトナー像を用紙等に転写した後、加熱・加圧して用紙等に溶融定着させている。ここで、現像剤としては、トナーのみからなる一成分系現像剤と、トナーとキャリアとからなる二成分系現像剤とに大別される。近年では、二成分系現像剤の方が、トナーの帯電制御が容易で、安定して高画質を得られ、高速現像が可能であることから広く用いられている。   In image forming apparatuses such as facsimiles, printers, and copiers using an electrophotographic system, powder toner is attached to an electrostatic latent image on a photosensitive member to make it visible as a toner image. After being transferred to the sheet, it is heated and pressed to melt and fix it on a sheet or the like. Here, the developer is roughly classified into a one-component developer composed only of toner and a two-component developer composed of toner and carrier. In recent years, two-component developers are more widely used because toner charge control is easier, high image quality can be stably obtained, and high-speed development is possible.

二成分系現像剤を用いた現像方式では、トナーとキャリアとを現像装置内で撹拌混合し、摩擦によってトナーを所定量まで帯電させる。そして、回転する現像スリーブに現像剤を供給し、現像スリーブ状で磁気ブラシを形成させて、磁気ブラシを介して感光体へトナーを電気的に移動させて感光体上の静電潜像を可視像化する。トナー移動後のキャリアは現像スリーブ上に残留し、現像装置内で再びトナーと混合される。このため、キャリアの特性として、磁気ブラシを形成する磁気特性と、所望の電荷をトナーに付与する帯電特性および繰り返し使用における耐久性が要求される。   In the developing method using a two-component developer, the toner and the carrier are stirred and mixed in the developing device, and the toner is charged to a predetermined amount by friction. Then, a developer is supplied to the rotating developing sleeve, a magnetic brush is formed in the shape of the developing sleeve, and the toner is electrically moved to the photosensitive member via the magnetic brush, so that an electrostatic latent image on the photosensitive member can be formed. Visualize. The carrier after the toner movement remains on the developing sleeve and is mixed with the toner again in the developing device. For this reason, as the characteristics of the carrier, magnetic characteristics for forming a magnetic brush, charging characteristics for imparting a desired charge to the toner, and durability in repeated use are required.

そこで、マグネタイトや各種フェライト等の磁性粒子の表面を樹脂で被覆したキャリアが一般に用いられているが、キャリア粒子同士の摩擦や衝突によって長期間の使用でキャリアの割れや欠けが発生し、発生した破片や微粒子が画像特性に影響を与えたり、現像装置内の部品に損傷を与えることがあった。   Therefore, a carrier in which the surface of magnetic particles such as magnetite and various ferrites is coated with a resin is generally used, but the carrier particles are cracked or chipped due to friction or collision between the carrier particles over a long period of use. Debris and fine particles may affect the image characteristics and damage the parts in the developing device.

このような不具合を解消するため、例えば特許文献1では、キャリアを燃焼炎中で球状化処理することにより粒子の流動性を向上させる技術が提案されている。また、特許文献2では、キャリアの焼結条件を最適化することにより粒子の物理的強度を向上させる技術が提案されている。   In order to solve such problems, for example, Patent Document 1 proposes a technique for improving the fluidity of particles by spheroidizing a carrier in a combustion flame. Patent Document 2 proposes a technique for improving the physical strength of particles by optimizing the carrier sintering conditions.

特開2008-216339号公報JP 2008-216339 特開2007-271663号公報JP 2007-271663 A

上記提案技術によれば、キャリアの耐久性をある程度向上させることができると考えられるものの、近年の画像形成装置の高速化に伴う、現像剤の撹拌速度及び搬送速度のアップを考慮すればさらなる耐久性の向上が望まれる。   According to the proposed technique, although it is considered that the durability of the carrier can be improved to some extent, if the increase in the stirring speed and the conveying speed of the developer accompanying the recent increase in the speed of the image forming apparatus is taken into consideration, the durability is further increased. Improvement of the property is desired.

本発明は、このような状況のもとでなされたものであり、その目的は、長期間の使用によっても割れや欠けが生じ難く耐久性に優れた焼結粒子及びその製造方法を提供することにある。   The present invention has been made under such circumstances, and an object of the present invention is to provide sintered particles having excellent durability that are less likely to be cracked or chipped even after long-term use, and a method for producing the same. It is in.

また本発明の目的は、安定して高画質を得ることができる電子写真現像剤用キャリア及び電子写真用現像剤を提供することにある。   Another object of the present invention is to provide an electrophotographic developer carrier and an electrophotographic developer that can stably obtain high image quality.

本発明者らは、焼結粒子の機械的強度について検討を重ねた結果、まず、粒子内部の空孔が焼結粒子の割れや欠けの起点となり、キャリアなどの焼結粒子の機械的強度を低下させることを突き止めた。キャリアなどに使用されているマグネタイト粒子のほとんどは、下記反応式(1)に示すように、Fe(ヘマタイト)を還元することにより製造されている。この還元反応において酸素ガスが発生する。また還元剤として炭素を加えた場合には、下記反応式(2)に示すように、炭素との反応により炭酸ガスが発生する。これらの製造工程において発生したガスの一部が粒子内部に残留して空孔が形成されると考えられる。そこで、気体を発生させずにFeを製造すればよいとの着想を得た。 As a result of repeated investigations on the mechanical strength of the sintered particles, the present inventors first found that the pores inside the particles became the starting point for cracking or chipping of the sintered particles, and the mechanical strength of the sintered particles such as the carrier was reduced. I found out that it would decrease. Most of the magnetite particles used for carriers and the like are produced by reducing Fe 2 O 3 (hematite) as shown in the following reaction formula (1). In this reduction reaction, oxygen gas is generated. When carbon is added as a reducing agent, carbon dioxide gas is generated by reaction with carbon as shown in the following reaction formula (2). It is considered that a part of the gas generated in these manufacturing processes remains inside the particles to form vacancies. Therefore, the idea of producing Fe 3 O 4 without generating gas was obtained.

6Fe → 4Fe + O↑ ・・・・・・・・・(1)
3Fe + C → 2Fe + CO↑ ・・・・・・(2)
6Fe 2 O 3 → 4Fe 3 O 4 + O 2 ↑ (1)
3Fe 2 O 3 + C → 2Fe 3 O 4 + CO ↑ (2)

また一方、焼結粒子内部に金属鉄を存在させると、粒子内部に発生した応力が金属鉄によって緩和され、クラックの拡大が抑制されるとの知見を得た。   On the other hand, the present inventors have found that when metallic iron is present inside the sintered particles, the stress generated inside the particles is relaxed by the metallic iron and the expansion of cracks is suppressed.

本発明はこれらの着想及び知見に基づきなされたものであり、本発明に係る焼結粒子は、金属鉄とFeとを主成分とし、空隙率を5%以下としたことを特徴とする。 The present invention has been made on the basis of these ideas and findings, and the sintered particles according to the present invention are characterized in that the main component is metallic iron and Fe 3 O 4 and the porosity is 5% or less. To do.

ここで、焼結粒子の機械的強度を一層向上させる観点からは、粉末X線回折によるFeの最大ピーク値(I)と金属鉄の最大ピーク値(I)の比(I/I)が0.05〜0.70の範囲となるようにするのが好ましい。(I/I)は金属鉄の含有量と正の相関関係があり、焼結粒子における金属鉄の含有量の一つの指標となるものである。 Here, from the viewpoint of improving the mechanical strength of the sintered particles further, the ratio (I maximum peak value of the Fe 3 O 4 by powder X-ray diffraction (I 1) and the maximum peak value of the metallic iron (I 2) 2 / I 1 ) is preferably in the range of 0.05 to 0.70. (I 2 / I 1 ) has a positive correlation with the content of metallic iron and serves as one index of the content of metallic iron in the sintered particles.

また、BET法による比表面積が0.09m/g以下、かつ真比重が4.95g/cm以上であるのが好ましい。 Moreover, it is preferable that the specific surface area by BET method is 0.09 m < 2 > / g or less, and a true specific gravity is 4.95 g / cm < 3 > or more.

さらに、飽和磁化は70A・m/kg〜120A・m/kgの範囲が好ましい。 Further, the saturation magnetization in the range of 70A · m 2 / kg~120A · m 2 / kg is preferred.

そしてまた、平均粒径は10μm〜100μmの範囲が好ましい。   The average particle size is preferably in the range of 10 μm to 100 μm.

本発明によれば、前記のいずれかに記載の焼結粒子の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリアが提供される。   According to the present invention, there is provided an electrophotographic developing carrier characterized in that the surface of the sintered particles described above is coated with a resin.

また本発明によれば、前記記載の電子写真現像用キャリアとトナーとを含むことを特徴とする電子写真用現像剤が提供される。   According to the present invention, there is provided an electrophotographic developer comprising the electrophotographic developer carrier described above and a toner.

さらに本発明によれば、金属鉄とFeとの混合相又はFeの単相が生成するように調整された金属鉄の粉末原料とFeの粉末原料とを液中にて混合してスラリーを得る工程と、前記スラリーを噴霧乾燥して造粒物を得る工程と、得られた造粒物を焼成して焼結粒子を得る工程とを有することを特徴とする焼結粒子の製造方法が提供される。 Furthermore, according to the present invention, a liquid material of metallic iron and a raw material of Fe 2 O 3 adjusted so that a mixed phase of metallic iron and Fe 3 O 4 or a single phase of Fe 3 O 4 is formed are obtained. Characterized in that it comprises a step of mixing in to obtain a slurry, a step of spray-drying the slurry to obtain a granulated product, and a step of firing the obtained granulated product to obtain sintered particles. A method for producing sintered particles is provided.

本発明に係る焼結粒子は、長期間の使用によっても割れや欠けが生じにくく、耐久性に優れる。   The sintered particles according to the present invention are not easily cracked or chipped even after long-term use, and are excellent in durability.

本発明に係る電子写真現像剤用キャリア及び電子写真用現像剤によれば画像形成速度の高速化に対応することができると共に、安定して高画質を得ることができる。   According to the carrier for electrophotographic developer and the developer for electrophotography according to the present invention, it is possible to cope with an increase in image forming speed and to stably obtain high image quality.

本発明に係る製造方法によれば、長期間の使用によっても割れや欠けが生じ難く、耐久性に優れた焼結粒子を製造することができる。   According to the production method of the present invention, it is possible to produce sintered particles that are hardly cracked or chipped even after long-term use and have excellent durability.

実施例1で作製した焼結粒子のSEM写真である。2 is a SEM photograph of sintered particles produced in Example 1. 実施例1で作製した焼結粒子の断面のSEM写真である。2 is a SEM photograph of a cross section of sintered particles produced in Example 1. 比較例1で作製した焼結粒子のSEM写真である。4 is a SEM photograph of sintered particles produced in Comparative Example 1. 比較例1で作製した焼結粒子の断面のSEM写真である。4 is a SEM photograph of a cross section of a sintered particle produced in Comparative Example 1. 実施例及び比較例のXRDパターンを示す図である。It is a figure which shows the XRD pattern of an Example and a comparative example.

本発明に係る焼結粒子についてまず説明する。本発明に係る焼結粒子の大きな特徴は、金属鉄とFeとを主成分とし、空隙率を5%以下としたことにある。焼結粒子中に金属鉄が存在することによって、粒子に生じたクラックの進展が金属鉄の有する靱性で抑制される。加えて、粒子中の空隙が少ないことによって粒子強度が向上し耐久性が高まる。 First, the sintered particles according to the present invention will be described. A major feature of the sintered particles according to the present invention is that the main component is metallic iron and Fe 3 O 4 and the porosity is 5% or less. By the presence of metallic iron in the sintered particles, the progress of cracks generated in the particles is suppressed by the toughness of metallic iron. In addition, since there are few voids in the particles, the particle strength is improved and durability is increased.

後述するように、焼結粒子の製造工程において、金属鉄とFeとを原料として焼結させると、後述の反応式(3)に示すとおり、反応に伴うガスが発生しない。このため、粒子内部に形成される空孔が従来に比べて格段に少なくなる。粒子強度の観点からは、粒子の空隙率はゼロであるのが好ましいが、実使用上は5%までである。より好ましくは3%以下であり、さらに好ましくは2%以下である。 As will be described later, when metal iron and Fe 3 O 4 are sintered as raw materials in the manufacturing process of the sintered particles, no gas is generated due to the reaction, as shown in reaction formula (3) described later. For this reason, the void | hole formed in particle | grains becomes markedly fewer compared with the past. From the viewpoint of particle strength, the void ratio of the particles is preferably zero, but is practically up to 5%. More preferably, it is 3% or less, More preferably, it is 2% or less.

また、焼結粒子における金属鉄の含有量は、粉末X線回折によるFeの最大ピーク値(I)と金属鉄の最大ピーク値(I)との比(I/I)で表して0.05〜0.70の範囲であることが好ましい。(I/I)が0.05未満であると、金属鉄の含有量が少なすぎて本発明の効果が充分に得られないおそれがある。他方、(I/I)が0.70を超えると、粒子強度は向上するものの金属鉄の含有量が多すぎて飽和磁化σsや保磁力Hcなどの磁気特性が高くなり過ぎるおそれがある。より好ましい(I/I)の範囲は0.10〜0.60の範囲である。 The content of metallic iron in the sintered particles, the ratio of the maximum peak value of the Fe 3 O 4 by powder X-ray diffraction and (I 1) the maximum peak value of the metal iron (I 2) (I 2 / I 1 ) And preferably in the range of 0.05 to 0.70. If (I 2 / I 1 ) is less than 0.05, the content of metallic iron is too small and the effects of the present invention may not be sufficiently obtained. On the other hand, if (I 2 / I 1 ) exceeds 0.70, although the particle strength is improved, the content of metallic iron is too large, and magnetic properties such as saturation magnetization σs and coercive force Hc may be too high. . A more preferable range of (I 2 / I 1 ) is a range of 0.10 to 0.60.

本発明に係る焼結粒子は、BET法による比表面積が0.09m/g以下で、且つ真比重が4.95g/cm以上であるのが好ましい。すなわち、粒子表面に窪みなどの凹凸がなく、しかも粒子内部が詰まった状態、換言すれば粒子内に空孔のすくない状態が好ましい。 The sintered particles according to the present invention preferably have a specific surface area by the BET method of 0.09 m 2 / g or less and a true specific gravity of 4.95 g / cm 3 or more. That is, it is preferable that the particle surface has no irregularities such as dents and the inside of the particle is clogged, in other words, a state where there are not many pores in the particle.

本発明に係る焼結粒子の飽和磁化σsは70A・m/kg〜120A・m/kgの範囲が好ましい。飽和磁化σsが70A・m/kg未満であると、例えば、焼結粒子をキャリア芯材として用いた場合に、感光体へのキャリアの付着が頻繁に起きるおそれがある。一方、飽和磁化σsが120A・m/kgを超えると、磁気ブラシの穂が硬くなり、電子写真現像における画質低下を招くおそれがある。より好ましい飽和磁化σsは80A・m/kg〜95A・m/kgの範囲である。 Saturation magnetization σs of sintered particles of the present invention in the range of 70A · m 2 / kg~120A · m 2 / kg is preferred. When the saturation magnetization σs is less than 70 A · m 2 / kg, for example, when sintered particles are used as the carrier core material, there is a possibility that the carrier adheres frequently to the photoreceptor. On the other hand, when the saturation magnetization σs exceeds 120 A · m 2 / kg, the ears of the magnetic brush become hard, and there is a possibility that the image quality deteriorates in electrophotographic development. More preferred saturation magnetization σs is in the range of 80A · m 2 / kg~95A · m 2 / kg.

本発明に係る焼結粒子の平均粒径としては10μm〜100μmの範囲が好ましい。焼結粒子の平均粒径が10μm以上であることで、粒子のそれぞれに必要な磁力が確実に付与され、例えば、焼結粒子をキャリア芯材として用いた場合に、感光体へのキャリア付着が抑制されるようになる。一方、焼結粒子の平均粒径が100μm以下であることで、画像特性を良好に保つことができるようになる。焼結粒子の平均粒径を上記範囲とするには、焼結粒子の製造工程中及び/又は製造工程後に篩等を用いて分級処理を行えばよい。また、粒度分布はシャープであるのが好ましい。   The average particle size of the sintered particles according to the present invention is preferably in the range of 10 μm to 100 μm. When the average particle diameter of the sintered particles is 10 μm or more, a necessary magnetic force is reliably imparted to each of the particles. For example, when the sintered particles are used as a carrier core material, carrier adhesion to the photoreceptor is prevented. It will be suppressed. On the other hand, when the average particle size of the sintered particles is 100 μm or less, the image characteristics can be kept good. In order to set the average particle diameter of the sintered particles within the above range, classification may be performed using a sieve or the like during and / or after the manufacturing process of the sintered particles. The particle size distribution is preferably sharp.

本発明の焼結粒子は各種用途に用いることができ、例えば、電子写真現像用キャリアや電磁波吸収材、電磁波シールド材用材料粉末、ゴム、プラスチック用充填材・補強材、ペンキ、絵具・接着剤用艶消材、充填材、補強材等として用いることができる。これらの中でも特に電子写真現像用キャリアとして好適に用いられる。   The sintered particles of the present invention can be used in various applications, for example, electrophotographic developing carriers, electromagnetic wave absorbing materials, electromagnetic shielding material powders, rubber, plastic fillers / reinforcing materials, paints, paints and adhesives. It can be used as a matting material, filler, reinforcing material, etc. Among these, it is particularly preferably used as a carrier for electrophotographic development.

本発明の焼結粒子の製造方法に特に限定はないが、以下に説明する本発明に係る製造方法で製造するのが好適である。   Although there is no limitation in particular in the manufacturing method of the sintered particle of this invention, manufacturing with the manufacturing method which concerns on this invention demonstrated below is suitable.

原料としてFeの粉末と金属鉄の粉末とを秤量して分散媒中に投入し混合してスラリーを作製する。本発明に係る製造方法では、後述する反応によって、ガスを発生させずにFeの単相又はFeと金属鉄との混合相を生成させる。したがって、金属鉄の配合量は、Feの単相を生成させる場合は、Feの100重量部に対して8.74重量部であり、Feと金属鉄との混合相を生成させる場合には、Feの100重量部に対して8.74重量部を超える量である。Feの粉末及び金属鉄の粉末は一般に工業用として入手できるものを用いればよいが、目的とする焼結粒子の粒径に対して十分に小さい粒径であることが望ましい。これらの原料粉末の好ましい粒径は5μm以下であり、より好ましくは1μm以下である。スラリーの固形分濃度は50wt%〜90wt%の範囲が望ましい。 As a raw material, Fe 2 O 3 powder and metallic iron powder are weighed, put into a dispersion medium, and mixed to prepare a slurry. In accordance with the present invention, by a reaction which will be described later, to produce a mixed phase of a single phase or Fe 3 O 4 and metallic iron Fe 3 O 4 without generating gas. Therefore, the amount of metallic iron, the case of generating a single phase of Fe 3 O 4, a 8.74 parts by weight per 100 parts by weight of Fe 2 O 3, and Fe 3 O 4 and metallic iron When the mixed phase is generated, the amount exceeds 8.74 parts by weight with respect to 100 parts by weight of Fe 2 O 3 . The Fe 2 O 3 powder and the metal iron powder may be those that are generally available for industrial use, but it is desirable that the particle size be sufficiently smaller than the particle size of the intended sintered particles. The preferable particle diameter of these raw material powders is 5 μm or less, more preferably 1 μm or less. The solid content concentration of the slurry is desirably in the range of 50 wt% to 90 wt%.

本発明で使用する分散媒としては水が好適である。分散媒には、Feの粉末及び金属鉄の粉末の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.5〜2wt%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.5〜2wt%程度とするのが好ましい。その他、潤滑剤や焼結促進剤等を配合してもよい。 Water is preferred as the dispersion medium used in the present invention. In addition to Fe 2 O 3 powder and metallic iron powder, a binder, a dispersant, and the like may be blended in the dispersion medium as necessary. For example, polyvinyl alcohol can be suitably used as the binder. The blending amount of the binder is preferably about 0.5 to 2 wt% in the slurry. Moreover, as a dispersing agent, polycarboxylate ammonium etc. can be used conveniently, for example. As the blending amount of the dispersant, the concentration in the slurry is preferably about 0.5 to 2 wt%. In addition, you may mix | blend a lubricant, a sintering accelerator, etc.

次に、以上のようにして作製されたスラリーを湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒径は5μm以下が好ましく、より好ましくは1μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。   Next, the slurry produced as described above is wet pulverized. For example, wet grinding is performed for a predetermined time using a ball mill or a vibration mill. The average particle diameter of the raw material after pulverization is preferably 5 μm or less, more preferably 1 μm or less. The vibration mill or ball mill preferably contains a medium having a predetermined particle diameter. Examples of the material of the media include iron-based chromium steel and oxide-based zirconia, titania, and alumina. As a form of a grinding | pulverization process, any of a continuous type and a batch type may be sufficient. The particle size of the pulverized product is adjusted depending on the pulverization time and rotation speed, the material and particle size of the media used, and the like.

そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球状に造粒する。噴霧乾燥時の雰囲気温度は100〜300℃の範囲が好ましい。これにより、粒径10〜100μmの球状の造粒物が得られる。なお、得られた造粒物は、振動ふるい等を用いて、粗大粒子や微粉を除去し粒度分布をシャープなものとするのが望ましい。   Then, the pulverized slurry is spray-dried and granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer, and granulated into a spherical shape by spraying into the atmosphere. The atmospheric temperature during spray drying is preferably in the range of 100 to 300 ° C. Thereby, the spherical granulated material with a particle size of 10-100 micrometers is obtained. In addition, it is desirable that the obtained granulated product has a sharp particle size distribution by removing coarse particles and fine powder using a vibration sieve or the like.

次に、造粒物を加熱炉に投入し焼成させて焼結粒子を生成させる。焼成工程における反応を下記反応式(3)に示す。かかる式から理解されるように、本発明の製造方法では焼成工程でガスが発生しないので、焼結粒子内にガスが残留することがなく、粒子強度を高めることができる。
4Fe + Fe → 3Fe ・・・・・・・(3)
Next, the granulated product is put into a heating furnace and fired to generate sintered particles. The reaction in the firing step is shown in the following reaction formula (3). As can be understood from this formula, in the production method of the present invention, no gas is generated in the firing step, so that no gas remains in the sintered particles, and the particle strength can be increased.
4Fe 2 O 3 + Fe → 3Fe 3 O 4 (3)

なお、Feを過剰に配合した場合には、Feと反応しなかった金属鉄が粒子内に分散して存在することになる。前述のように、焼結粒子中に金属鉄が存在すると、焼結粒子に生じたクラックの進展を金属鉄が抑制し粒子強度がさらに高まる。 In addition, when Fe is blended excessively, metallic iron that has not reacted with Fe 2 O 3 is present in a dispersed manner in the particles. As described above, when metallic iron is present in the sintered particles, the metallic iron suppresses the progress of cracks generated in the sintered particles, and the particle strength is further increased.

焼成温度としては800℃以上であれば焼結は進み、生成した焼結粒子の形状が維持される。焼結温度の好ましい上限値は1500℃である。焼結温度が1500℃以下であると、焼結粒子同士の過剰焼結が起こらず、異形粒子の発生が抑制されるからである。したがって、焼結温度としては800〜1500℃の範囲が好ましく、より好ましくは1100〜1300℃の範囲である。また、焼成時間としては1〜6時間の範囲が好ましい。そして、焼結温度から常温まで焼結粒子を徐々に冷却する。   If the firing temperature is 800 ° C. or higher, sintering proceeds and the shape of the generated sintered particles is maintained. A preferable upper limit of the sintering temperature is 1500 ° C. This is because, when the sintering temperature is 1500 ° C. or less, excessive sintering between the sintered particles does not occur, and generation of irregularly shaped particles is suppressed. Therefore, the sintering temperature is preferably in the range of 800 to 1500 ° C, more preferably in the range of 1100 to 1300 ° C. The firing time is preferably in the range of 1 to 6 hours. Then, the sintered particles are gradually cooled from the sintering temperature to room temperature.

また、加熱炉内には不活性ガスを供給して、加熱炉内の酸素濃度を1%以下とするのが好ましい。加熱炉内の酸素濃度を低く抑えることによって、生成されたFeの酸化分解を防止するためである。 Further, it is preferable to supply an inert gas into the heating furnace so that the oxygen concentration in the heating furnace is 1% or less. This is to prevent oxidative decomposition of the produced Fe 3 O 4 by keeping the oxygen concentration in the heating furnace low.

次に、焼結粒子が互いに固着している場合には必要により解砕する。具体的には、例えば、ハンマーミル等によって焼結粒子を解砕する。解砕工程の形態としては連続式及び回分式のいずれであってもよい。そして、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。   Next, when the sintered particles are fixed to each other, they are crushed as necessary. Specifically, for example, the sintered particles are crushed by a hammer mill or the like. As a form of a crushing process, any of a continuous type and a batch type may be sufficient. And if necessary, classification may be performed in order to make the particle size in a predetermined range. As a classification method, a conventionally known method such as air classification or sieve classification can be used. In addition, after primary classification with an air classifier, the particle size may be aligned within a predetermined range with a vibration sieve or an ultrasonic sieve. Furthermore, you may make it remove a nonmagnetic particle with a magnetic field separator after a classification process.

以上のようにして作製した本発明の焼結粒子を、電子写真現像用キャリアとして用いる場合、焼結粒子をそのまま電子写真現像用キャリアとして用いることもできるが、帯電性等の観点からは、焼結粒子の表面を樹脂で被覆して用いるのが好ましい。   When the sintered particles of the present invention prepared as described above are used as a carrier for electrophotographic development, the sintered particles can be used as they are as a carrier for electrophotographic development. It is preferable to use the particles by coating the surface of the particles with a resin.

焼結粒子の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ−4−メチルペンテン−1、ポリ塩化ビニリデン、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。   Conventionally known resins can be used for coating the surface of the sintered particles, such as polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene). ) Resin, polystyrene, (meth) acrylic resin, polyvinyl alcohol resin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, and other thermoplastic elastomers, and fluorosilicone resins.

焼結粒子の表面を樹脂で被覆するには、樹脂の溶液又は分散液を焼結粒子に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001〜30wt%、特に0.001〜2wt%の範囲内にあるのがよい。   In order to coat the surface of the sintered particles with the resin, a resin solution or dispersion may be applied to the sintered particles. Solvents for the coating solution include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol, and butanol Alcohol solvents such as ethyl cellosolve, cellosolve solvents such as butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as dimethylformamide and dimethylacetamide, etc. . The concentration of the resin component in the coating solution is generally in the range of 0.001 to 30 wt%, particularly 0.001 to 2 wt%.

焼結粒子への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。   As a method of coating the sintered particles with the resin, for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, or the like can be used. Among these, the fluidized bed method is particularly preferable in that it can be efficiently applied with a small amount of resin. For example, in the case of the fluidized bed method, the resin coating amount can be adjusted by the amount of resin solution sprayed and the spraying time.

本発明に係る電子写真用現像剤は、以上のようにして作製した電子写真現像用キャリアとトナーとを混合してなる。電子写真現像用キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1wt%〜20wt%の範囲が好ましい。トナー濃度が1wt%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が20wt%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3〜15wt%の範囲である。   The electrophotographic developer according to the present invention is obtained by mixing the electrophotographic developer carrier prepared as described above and a toner. The mixing ratio of the electrophotographic developing carrier and the toner is not particularly limited, and may be appropriately determined from the developing conditions of the developing device to be used. Generally, the toner concentration in the developer is preferably in the range of 1 wt% to 20 wt%. When the toner density is less than 1 wt%, the image density becomes too low, and when the toner density exceeds 20 wt%, the toner scatters in the developing device, and the toner adheres to the background portion such as internal dirt or transfer paper. This is because there is a risk of occurrence. A more preferable toner concentration is in the range of 3 to 15 wt%.

電子写真現像用キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。   For mixing the electrophotographic carrier and the toner, a conventionally known mixing device can be used. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, or the like can be used.

以下、本発明を実施例によりさらに詳しく説明するが本発明はこれらの例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these examples at all.

実施例1
原料として、平均粒径が0.6μmのFeの粉末10kgと、平均粒径が5.0μmの金属鉄の粉末1kgとを純水3.0kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を60g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
Example 1
As raw materials, 10 kg of Fe 2 O 3 powder having an average particle diameter of 0.6 μm and 1 kg of metal iron powder having an average particle diameter of 5.0 μm are dispersed in 3.0 kg of pure water, and polycarboxylic acid is used as a dispersant. 60 g of an acid ammonium dispersant was added to form a mixture. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.

この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し(ディスク回転数20,000rpm)、粒径10〜100μmの乾燥造粒物を得た。この造粒物から、網目91μmの篩網を用いて粗粒を分離し、網目37μmの篩網を用いて微粒を分離した。   This mixed slurry was sprayed into hot air of about 130 ° C. with a spray dryer (disk rotation speed: 20,000 rpm) to obtain a dry granulated product having a particle size of 10 to 100 μm. From this granulated product, coarse particles were separated using a sieve mesh having a mesh size of 91 μm, and fine particles were separated using a sieve mesh having a mesh size of 37 μm.

この造粒粉を、窒素雰囲気下の電気炉に投入し1200℃で3時間焼成した。得られた焼結粒子をハンマーミルで解砕した後に振動ふるいを用いて分級し、平均粒径50μmの焼結粒子を得た。図1に焼結粒子のSEM写真、図2に焼結粒子の断面SEM写真をそれぞれ示す。また、得られた焼結粒子の粉体X線回折(「XRD」X-ray diffraction)分析を行い、Feの最大ピーク値(I)と金属鉄の最大ピーク値(I)の比(I/I)を算出した。さらに、焼結粒子の空隙率、比表面積、真比重、磁気特性、強度指数を下記に示す方法で測定した。図5に、粉末X線回折分析の結果を示し、表1にその他の測定結果をまとめて示す。 This granulated powder was put into an electric furnace under a nitrogen atmosphere and fired at 1200 ° C. for 3 hours. The obtained sintered particles were pulverized with a hammer mill and then classified using a vibration sieve to obtain sintered particles having an average particle diameter of 50 μm. FIG. 1 shows an SEM photograph of the sintered particles, and FIG. 2 shows a cross-sectional SEM photograph of the sintered particles. Further, the powder X-ray diffraction of the obtained sintered particles were ( "XRD" X-ray diffraction) analysis, the maximum peak value of the Fe 3 O 4 (I 1) and the maximum peak value of the metallic iron (I 2) The ratio (I 2 / I 1 ) was calculated. Furthermore, the porosity, specific surface area, true specific gravity, magnetic properties, and strength index of the sintered particles were measured by the following methods. FIG. 5 shows the results of powder X-ray diffraction analysis, and Table 1 summarizes other measurement results.

(粉体X線回折分析)
X線回折分析装置(リガク社製「ULTIMAIV」)を用いてXRDパターンを測定した。X線源は銅を使用し、加速電圧40kV、電流30mAでX線を発生させた。粉末X線の測定条件は走査モード:連続測定、発散スリット:1/2°、散乱スリット:1/2°、受光スリット:0.15mm、回転速度:5.0rpm、測定角度:15°≦2θ≦95°、測定間隔:0.02°、走査速度:1.0°/分で測定を行った。
(Powder X-ray diffraction analysis)
The XRD pattern was measured using an X-ray diffraction analyzer (“ULTIMA IV” manufactured by Rigaku Corporation). The X-ray source used copper, and X-rays were generated at an acceleration voltage of 40 kV and a current of 30 mA. The measurement conditions of the powder X-ray are scanning mode: continuous measurement, divergence slit: 1/2 °, scattering slit: 1/2 °, light receiving slit: 0.15 mm, rotation speed: 5.0 rpm, measurement angle: 15 ° ≦ 2θ ≦ 95 °, measurement interval: 0.02 °, scanning speed: 1.0 ° / min.

(空隙率)
焼結粒子を熱硬化性の樹脂に分散させた状態で硬化させ、クロスセクションポリッシャー(日本電子株式会社製、SM−09010)により樹脂を切断することで焼結粒子の断面観察用の試料を作成した。倍率1000倍の断面SEM写真を用いて、粒子の空孔部分とその他の部分とを階調により分離し、空孔部分の面積率を算出した。50個の粒子の面積率を測定しその平均を空隙率とした。なお、断面SEM写真における粒子の空孔部分とその他の部分との階調による分離及び面積率の計算は、画像解析ソフト(Soft Imaging System GmbH社、「analysis」)を用いた。
(Porosity)
The sintered particles are cured in a state where they are dispersed in a thermosetting resin, and the cross section polisher (manufactured by JEOL Ltd., SM-09010) is cut to prepare a sample for observing the cross section of the sintered particles. did. Using a cross-sectional SEM photograph at a magnification of 1000 times, the pore portions of the particles and other portions were separated by gradation, and the area ratio of the pore portions was calculated. The area ratio of 50 particles was measured and the average was taken as the porosity. In addition, image analysis software (Soft Imaging System GmbH, “analysis”) was used for separation of the pores of the particles in the cross-sectional SEM photograph and other parts by gradation and calculation of the area ratio.

(比表面積)
焼結粒子の比表面積は、マウンテック社製「Macsorb(Model:1208」を用いてBET法により測定した。吸着ガスは窒素を用い、キャリアガスはヘリウムを用いた。
(Specific surface area)
The specific surface area of the sintered particles was measured by the BET method using “Macsorb (Model: 1208)” manufactured by Mountec Co., Ltd. Nitrogen was used as the adsorption gas and helium was used as the carrier gas.

(真比重)
焼結粒子の真比重は、Quantachrome社製「ULTRA PYCNOMETER 1000」を用いて測定した。
(True specific gravity)
The true specific gravity of the sintered particles was measured using “ULTRA PYCNOMETER 1000” manufactured by Quantachrome.

(磁気特性)
室温専用振動試料型磁力計(VSM)(東英工業社製「VSM−P7」)を用いて磁化の測定を行い、印加磁界795.8kA/m(1000Oe)の磁場における飽和磁化σ及び保磁力Hcをそれぞれ測定した。
(Magnetic properties)
Perform the measurement of the magnetization by using a room temperature-only vibrating sample magnetometer (VSM) (manufactured by Toei Kogyo Co., Ltd. "VSM-P7"), the saturation magnetization sigma S and coercive in the magnetic field of the applied magnetic field 795.8 kA / m (1000 Oe) The magnetic force Hc was measured.

(強度指数)
サンプルミル(協立理工社製「SK−M10」)に試料100gを投入し、回転数16000rpmで40秒間粉砕処理した後、処理前後の焼結粒子の平均粒径を測定し、下記式から強度指数を算出した。この値が1.0に近いほど粉砕処理によって粒子の割れや欠けが発生せず、機械的強度が高い。
強度指数=(処理後の平均粒径)/(処理前の平均粒径)
なお、焼結粒子の平均粒径は、日機装株式会社製のマイクロトラック、Model9320−X100を用いて測定した、体積率50%までの積算粒径とした。
(Strength index)
A sample mill (“SK-M10” manufactured by Kyoritsu Riko Co., Ltd.) was charged with 100 g of sample, ground for 40 seconds at a rotational speed of 16000 rpm, the average particle size of sintered particles before and after the treatment was measured, The index was calculated. The closer this value is to 1.0, the higher the mechanical strength is because the particles are not cracked or chipped by the grinding treatment.
Strength index = (average particle size after treatment) / (average particle size before treatment)
The average particle size of the sintered particles was an integrated particle size up to a volume ratio of 50% as measured using Microtrack, Model 9320-X100 manufactured by Nikkiso Co., Ltd.

実施例2
焼結温度を1300℃とした以外は実施例1と同様にして焼結粒子を作製した。そして作製した焼結粒子について、実施例1と同様にして、XRD分析を行い、Feの最大ピーク値(I)と金属鉄の最大ピーク値(I)の比(I/I)を算出した。また、焼結粒子の空隙率、比表面積、真比重、磁気特性、強度指数を前記方法で測定した。図5に、粉末X線回折分析の結果を示し、表1にその他の測定結果をまとめて示す。
Example 2
Sintered particles were produced in the same manner as in Example 1 except that the sintering temperature was 1300 ° C. And for sintered particles prepared in the same manner as in Example 1, subjected to XRD analysis, the ratio of the maximum peak value of the Fe 3 O 4 (I 1) and the maximum peak value of the metallic iron (I 2) (I 2 / I 1 ) was calculated. Further, the porosity, specific surface area, true specific gravity, magnetic properties, and strength index of the sintered particles were measured by the above methods. FIG. 5 shows the results of powder X-ray diffraction analysis, and Table 1 summarizes other measurement results.

実施例3
金属鉄の配合量を2kgとした以外は実施例1と同様にして焼結粒子を作製した。そして作製した焼結粒子について、実施例1と同様にして、XRD分析を行い、Feの最大ピーク値(I)と金属鉄の最大ピーク値(I)の比(I/I)を算出した。また、焼結粒子の空隙率、比表面積、真比重、磁気特性、強度指数を前記方法で測定した。図5に、粉末X線回折分析の結果を示し、表1にその他の測定結果をまとめて示す。
Example 3
Sintered particles were produced in the same manner as in Example 1 except that the amount of metallic iron was 2 kg. And for sintered particles prepared in the same manner as in Example 1, subjected to XRD analysis, the ratio of the maximum peak value of the Fe 3 O 4 (I 1) and the maximum peak value of the metallic iron (I 2) (I 2 / I 1 ) was calculated. Further, the porosity, specific surface area, true specific gravity, magnetic properties, and strength index of the sintered particles were measured by the above methods. FIG. 5 shows the results of powder X-ray diffraction analysis, and Table 1 summarizes other measurement results.

実施例4
金属鉄の配合量を2kgとし、焼結温度を1300℃とした以外は実施例1と同様にして焼結粒子を作製した。そして作製した焼結粒子について、実施例1と同様にして、XRD分析を行い、Feの最大ピーク値(I)と金属鉄の最大ピーク値(I)の比(I/I)を算出した。また、焼結粒子の空隙率、比表面積、真比重、磁気特性、強度指数を前記方法で測定した。図5に、粉末X線回折分析の結果を示し、表1にその他の測定結果をまとめて示す。
Example 4
Sintered particles were produced in the same manner as in Example 1 except that the amount of metallic iron was 2 kg and the sintering temperature was 1300 ° C. And for sintered particles prepared in the same manner as in Example 1, subjected to XRD analysis, the ratio of the maximum peak value of the Fe 3 O 4 (I 1) and the maximum peak value of the metallic iron (I 2) (I 2 / I 1 ) was calculated. Further, the porosity, specific surface area, true specific gravity, magnetic properties, and strength index of the sintered particles were measured by the above methods. FIG. 5 shows the results of powder X-ray diffraction analysis, and Table 1 summarizes other measurement results.

実施例5
金属鉄の配合量を3kgとした以外は実施例1と同様にして焼結粒子を作製した。そして作製した焼結粒子について、実施例1と同様にして、XRD分析を行い、Feの最大ピーク値(I)と金属鉄の最大ピーク値(I)の比(I/I)を算出した。また、焼結粒子の空隙率、比表面積、真比重、磁気特性、強度指数を前記方法で測定した。図5に、粉末X線回折分析の結果を示し、表1にその他の測定結果をまとめて示す。
Example 5
Sintered particles were produced in the same manner as in Example 1 except that the amount of metallic iron was 3 kg. And for sintered particles prepared in the same manner as in Example 1, subjected to XRD analysis, the ratio of the maximum peak value of the Fe 3 O 4 (I 1) and the maximum peak value of the metallic iron (I 2) (I 2 / I 1 ) was calculated. Further, the porosity, specific surface area, true specific gravity, magnetic properties, and strength index of the sintered particles were measured by the above methods. FIG. 5 shows the results of powder X-ray diffraction analysis, and Table 1 summarizes other measurement results.

比較例1
金属鉄を配合しなかった以外は実施例1と同様にして焼結粒子を作製した。図3に焼結粒子のSEM写真、図4に焼結粒子の断面SEM写真をそれぞれ示す。また、実施例1と同様にして、XRD分析を行い、Feの最大ピーク値(I)と金属鉄の最大ピーク値(I)の比(I/I)を算出した。さらに、焼結粒子の空隙率、比表面積、真比重、磁気特性、強度指数を前記方法で測定した。図5に、粉末X線回折分析の結果を示し、表1にその他の測定結果をまとめて示す。
Comparative Example 1
Sintered particles were produced in the same manner as in Example 1 except that no metallic iron was added. FIG. 3 shows an SEM photograph of the sintered particles, and FIG. 4 shows a cross-sectional SEM photograph of the sintered particles. In the same manner as in Example 1, subjected to XRD analysis, was calculated the maximum peak value of the Fe 3 O 4 and (I 1) the maximum peak value of the metal iron ratio of (I 2) (I 2 / I 1) . Furthermore, the porosity, specific surface area, true specific gravity, magnetic properties, and strength index of the sintered particles were measured by the above methods. FIG. 5 shows the results of powder X-ray diffraction analysis, and Table 1 summarizes other measurement results.

比較例2
金属鉄を配合せず、焼結温度を1000℃とした以外は実施例1と同様にして焼結粒子を作製した。そして作製した焼結粒子について、実施例1と同様にして、XRD分析を行い、Feの最大ピーク値(I)と金属鉄の最大ピーク値(I)の比(I/I)を算出した。また、焼結粒子の空隙率、比表面積、真比重、磁気特性、強度指数を前記方法で測定した。表1に測定結果をまとめて示す。
Comparative Example 2
Sintered particles were produced in the same manner as in Example 1 except that metallic iron was not blended and the sintering temperature was 1000 ° C. And for sintered particles prepared in the same manner as in Example 1, subjected to XRD analysis, the ratio of the maximum peak value of the Fe 3 O 4 (I 1) and the maximum peak value of the metallic iron (I 2) (I 2 / I 1 ) was calculated. Further, the porosity, specific surface area, true specific gravity, magnetic properties, and strength index of the sintered particles were measured by the above methods. Table 1 summarizes the measurement results.

本発明に係る焼結粒子である実施例1〜5の焼結粒子は、図1及び図2のSEM写真から理解されるように、粒子表面は滑らかで凹凸が少なく、しかも粒子内の空孔も少なかった。具体的には、表1から明らかなように、実施例1〜5の焼結粒子は空隙率が2.8以下で、比表面積は0.07m/g以下、真比重は4.95g/cm以上であった。加えてFeの最大ピーク値(I)と金属鉄の最大ピーク値(I)の比(I/I)が0.111〜0.504の範囲と、金属鉄の含有量が好適範囲であるので、飽和磁化σs及び保磁力Hcは実使用上問題のない範囲の値に抑えられ、且つ焼結粒子の強度指数は0.80以上と高い強度を示した。 As understood from the SEM photographs of FIGS. 1 and 2, the sintered particles of Examples 1 to 5, which are the sintered particles according to the present invention, have a smooth particle surface with little unevenness, and voids in the particles. There were few. Specifically, as apparent from Table 1, the sintered particles of Examples 1 to 5 have a porosity of 2.8 or less, a specific surface area of 0.07 m 2 / g or less, and a true specific gravity of 4.95 g / cm 3 or more. In addition, the ratio (I 2 / I 1 ) of the maximum peak value (I 1 ) of Fe 3 O 4 and the maximum peak value (I 2 ) of metallic iron is in the range of 0.111 to 0.504, and the inclusion of metallic iron Since the amount is in a preferable range, the saturation magnetization σs and the coercive force Hc are suppressed to values in a range where there is no problem in practical use, and the strength index of the sintered particles shows a high strength of 0.80 or more.

これに対して、金属鉄を含有していない比較例1及び比較例2の焼結粒子は、空隙率が7.8%及び12.4%と高く、強度指数は0.58及び0.40と粒子の割れや欠けが発生しやすいものであった。   In contrast, the sintered particles of Comparative Example 1 and Comparative Example 2 that do not contain metallic iron have high porosity of 7.8% and 12.4%, and the strength index is 0.58 and 0.40. In other words, cracking and chipping of the particles are likely to occur.

本発明に係る焼結粒子は、長期間の使用によっても割れや欠けが生じにくく、耐久性に優れ有用である。また、本発明に係る製造方法によれば、割れや欠けが生じにくいこのような焼結粒子を効率的に製造することができ有用である。   The sintered particles according to the present invention hardly break or chip even after long-term use, and are excellent in durability and useful. In addition, according to the production method of the present invention, such sintered particles that are less prone to cracking and chipping can be efficiently produced and useful.

Claims (8)

金属鉄とFeとを主成分とし、空隙率を5%以下としたことを特徴とする焼結粒子。 Sintered particles characterized by comprising metal iron and Fe 3 O 4 as main components and a porosity of 5% or less. 粉末X線回折によるFeの最大ピーク値(I)と金属鉄の最大ピーク値(I)の比(I/I)が0.05〜0.70の範囲である請求項1記載の焼結粒子。 According maximum peak value of the Fe 3 O 4 by powder X-ray diffraction (I 1) and the maximum peak value of the metallic iron ratio of (I 2) (I 2 / I 1) is in the range of 0.05 to 0.70 Item 2. A sintered particle according to Item 1. BET法による比表面積が0.09m/g以下、かつ真比重が4.95g/cm以上である請求項1又は2記載の焼結粒子。 The sintered particles according to claim 1 or 2, wherein a specific surface area by the BET method is 0.09 m 2 / g or less and a true specific gravity is 4.95 g / cm 3 or more. 飽和磁化が70A・m/kg〜120A・m/kgの範囲である請求項1〜3のいずれかに記載の焼結粒子。 The sintered particles according to any one of claims 1 to 3, wherein the saturation magnetization is in a range of 70 A · m 2 / kg to 120 A · m 2 / kg. 平均粒径が10μm〜100μmの範囲である請求項1〜4のいずれかに記載の焼結粒子。   The sintered particles according to any one of claims 1 to 4, wherein the average particle size is in the range of 10 µm to 100 µm. 請求項1〜5のいずれかに記載の焼結粒子の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリア。   6. A carrier for electrophotographic development, wherein the surface of the sintered particles according to claim 1 is coated with a resin. 請求項6記載の電子写真現像用キャリアとトナーとを含むことを特徴とする電子写真用現像剤。   An electrophotographic developer comprising the electrophotographic developer carrier according to claim 6 and a toner. 金属鉄とFeとの混合相又はFeの単相が生成するように調整された金属鉄の粉末原料とFeの粉末原料とを液中にて混合してスラリーを得る工程と、前記スラリーを噴霧乾燥して造粒物を得る工程と、得られた造粒物を焼成して焼結粒子を得る工程とを有することを特徴とする焼結粒子の製造方法。 Metal iron powder raw material and Fe 2 O 3 powder raw material adjusted so that a mixed phase of metallic iron and Fe 3 O 4 or a single phase of Fe 3 O 4 is formed are mixed in a slurry to form a slurry. A method of producing sintered particles, comprising: a step of obtaining a granulated product by spray drying the slurry; and a step of obtaining sintered particles by firing the obtained granulated product. .
JP2010243371A 2010-10-29 2010-10-29 Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles Expired - Fee Related JP5735779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010243371A JP5735779B2 (en) 2010-10-29 2010-10-29 Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010243371A JP5735779B2 (en) 2010-10-29 2010-10-29 Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles

Publications (2)

Publication Number Publication Date
JP2012097287A true JP2012097287A (en) 2012-05-24
JP5735779B2 JP5735779B2 (en) 2015-06-17

Family

ID=46389540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243371A Expired - Fee Related JP5735779B2 (en) 2010-10-29 2010-10-29 Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles

Country Status (1)

Country Link
JP (1) JP5735779B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150340A1 (en) * 2016-03-01 2017-09-08 日立金属株式会社 Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230801A (en) * 1985-07-31 1987-02-09 Kawasaki Steel Corp Ferromagnetic powder
JP2008089869A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Carrier powder for electrophotographic development, method for manufacturing the same, and electrophotographic developer containing the carrier powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230801A (en) * 1985-07-31 1987-02-09 Kawasaki Steel Corp Ferromagnetic powder
JP2008089869A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Carrier powder for electrophotographic development, method for manufacturing the same, and electrophotographic developer containing the carrier powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150340A1 (en) * 2016-03-01 2017-09-08 日立金属株式会社 Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member
EP3425072A4 (en) * 2016-03-01 2019-09-25 Hitachi Metals, Ltd. Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member
US10858295B2 (en) 2016-03-01 2020-12-08 Hitachi Metals, Ltd. Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member

Also Published As

Publication number Publication date
JP5735779B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5825670B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP5735999B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5567396B2 (en) Ferrite particles for charging a magnetic brush and method for producing the same
JP5314457B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP5843378B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5735877B2 (en) Method for producing ferrite particles
JP2013035737A (en) Method for manufacturing ferrite particle
JP5822377B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP5620699B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5930576B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5735779B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP5761921B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5188918B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP5822378B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP5943465B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP5478322B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5892689B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP6061423B2 (en) Carrier core material, carrier for electrophotographic development using the same and developer for electrophotography
JP6121675B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP6008427B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP5924814B2 (en) Method for producing ferrite particles
JP5627072B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP2009086545A (en) Carrier core material for electrophotographic developer and manufacturing method therefor, and carrier for electrophotographic developer
JP6267965B2 (en) COMPOSITE PARTICLES AND ELECTROPHOTOGRAPHIC DEVELOPMENT CARRIER AND ELECTROPHOTOGRAPHIC DEVELOPER USING THE SAME
JP5920973B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150417

R150 Certificate of patent or registration of utility model

Ref document number: 5735779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees