JPS61238901A - Ferromagnetic powder - Google Patents

Ferromagnetic powder

Info

Publication number
JPS61238901A
JPS61238901A JP60079752A JP7975285A JPS61238901A JP S61238901 A JPS61238901 A JP S61238901A JP 60079752 A JP60079752 A JP 60079752A JP 7975285 A JP7975285 A JP 7975285A JP S61238901 A JPS61238901 A JP S61238901A
Authority
JP
Japan
Prior art keywords
powder
saturation magnetization
iron oxide
raw material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60079752A
Other languages
Japanese (ja)
Other versions
JPH0149762B2 (en
Inventor
Shigeaki Takagi
高城 重彰
Yasunori Komehana
康典 米花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60079752A priority Critical patent/JPS61238901A/en
Publication of JPS61238901A publication Critical patent/JPS61238901A/en
Publication of JPH0149762B2 publication Critical patent/JPH0149762B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain ferromagnetic powder having high satd. magnetization and excellent weatherability at a low cost by using iron oxide as a raw material having an adequate grain size and specifying the contents of metallic iron and magnetite. CONSTITUTION:This ferromagnetic powder consists of the iron oxide as the raw material and has 1-80mum average grain size. The metallic iron content (x), magnetite content y% thereof are 1<=x<=25 and y>=87-2.28x. This powder is usable for a radio wave absorbent material, electromagnetic shielding material, etc. The above-mentioned powder is obtd. easily by grinding the iron oxide raw material such as mill scale consisting essentially of FeO to a prescribed grain size, classifying the powder is necessary, then subjecting the powder to a heat treatment at about <=560 deg.C in a weak reducing atmosphere of a gaseous mixture composed of gaseous N2 and gaseous H2 and subjecting the powder to pulverizing and classifying if necessary.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明法は、飽和磁化が高く耐候性に優れた強磁性粉末
に関し、電波吸収材や電磁遮蔽材などに利用できるもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The method of the present invention relates to a ferromagnetic powder with high saturation magnetization and excellent weather resistance, and can be used in radio wave absorbing materials, electromagnetic shielding materials, and the like.

〔従来の技術〕[Conventional technology]

近年、強磁性粉末の用途分野の拡大はめざましいものが
あり、飽和磁化が高く耐候性に優れ、電波吸収材や電磁
遮蔽材など用途に応じた粉末の開発が盛んに行なわれて
いる0例えば電波障害を防止するために建材等に強磁性
粉末を混入した電磁吸収材あるいは電磁遮蔽材が強磁性
であることを利用した用途である。
In recent years, the field of application of ferromagnetic powder has been expanding at a remarkable pace, and powders with high saturation magnetization and excellent weather resistance are being actively developed for various uses, such as radio wave absorbers and electromagnetic shielding materials. This application takes advantage of the ferromagnetic nature of electromagnetic absorbing materials or electromagnetic shielding materials that are made by mixing ferromagnetic powder into building materials to prevent damage.

電波吸収材等に用いる強磁性粉末が備えるべき要件は、
コストが低いこと、飽和磁化が高いこと、耐候性が優れ
ていること、そして1粒度が細かいことである。より具
体的には、 飽和磁化σS≧80 e m u / g平均粒度≦8
0用m程度 が要求される。
The requirements that ferromagnetic powder used for radio wave absorbing materials etc. should have are as follows:
It has low cost, high saturation magnetization, excellent weather resistance, and small grain size. More specifically, saturation magnetization σS≧80 e mu / g average particle size≦8
0 m is required.

鉄(Fe)とマグネタイト(Fe304)は最も卑近で
元来コストの低い磁性材料であるが、これを細かい粉末
とした場合には次のような問題がある。
Iron (Fe) and magnetite (Fe304) are the most common and inherently low-cost magnetic materials, but when they are made into fine powders, the following problems arise.

鉄粉は飽和磁化σSが高く(理論値210emu/g)
、種々の公知の方法によって微粉とすることができるが
、単純な機械粉砕法によっては、鉄に展延性があるため
に粉砕しにくく、水やガスを噴射するアトマイズ法によ
っては、粗粒が多くなるために微粉の歩留りが悪くなる
など、結局コスト高となってしまう。また、通常の環境
においても極めて錆びやすく、耐候性上使用に耐えない
ことが多い。
Iron powder has high saturation magnetization σS (theoretical value 210 emu/g)
can be made into fine powder by various known methods, but simple mechanical grinding is difficult to grind due to the malleability of iron, and atomization, which involves injecting water or gas, produces many coarse particles. As a result, the yield of fine powder decreases, resulting in higher costs. Furthermore, it is extremely susceptible to rust even in normal environments, and is often unable to withstand use due to its weather resistance.

一方、マグネタイト粉は飽和磁化σSがやや低い(理論
値92 e m u / g )ものの耐候性は良く、
また鉄粉に比べて脆いため機械粉砕によって効率良く微
粉とすることができるし、「粉体及び粉末冶金J Vo
l、 26 、 No−7、p 、 235〜243に
示されたいわゆる湿式法によって微粉を得ることができ
る。しかし、マグネタイト粉の飽和磁化σSは、Fe3
O4の飽和磁化σS理論値が比較的低いため、わずかの
不純物が混入したり、成分が化学量論的な値からずれた
りすると、要求値飼料磁化σS≧aoemu/gを満た
すことがむずかしくなる。そこで、どうしても高純度の
マグネタイト粉を使わなければならないが、そのために
は上記湿式法に頼ることになり、その工程が複雑なため
にコスト高にならざると得なかった。
On the other hand, although magnetite powder has a slightly lower saturation magnetization σS (theoretical value 92 e mu / g), it has good weather resistance.
In addition, since it is more brittle than iron powder, it can be efficiently turned into fine powder by mechanical pulverization.
A fine powder can be obtained by the so-called wet method shown in 1, 26, No-7, p. 235-243. However, the saturation magnetization σS of magnetite powder is Fe3
Since the theoretical saturation magnetization σS of O4 is relatively low, if a small amount of impurity is mixed in or the components deviate from the stoichiometric value, it will be difficult to satisfy the required feed magnetization σS≧aoemu/g. Therefore, it is necessary to use highly purified magnetite powder, but for this purpose, the wet method described above has to be relied upon, and the process is complicated, resulting in high costs.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、これらの問題点を解決するため研究を重
ねた結果、飽和磁化が高く、耐候性が優れ、低コストで
製造することのできる強磁性粉末を開発した。
As a result of repeated research to solve these problems, the present inventors have developed a ferromagnetic powder that has high saturation magnetization, excellent weather resistance, and can be manufactured at low cost.

本発明はこのような強磁性粉末を提供することを目的と
するものである。
The object of the present invention is to provide such a ferromagnetic powder.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の着服点は、 l)酸化鉄であれば微粉化が容易であり、2)酸化鉄の
一部を金属鉄(M、Fe)で置きかえれば飽和磁化σS
が向上する、 3)その置きかえが一定範囲内であれば、耐候性の優れ
た粉末とすることができる、 ということにある。
The impregnation point of the present invention is as follows: l) Iron oxide can be easily pulverized, and 2) If part of the iron oxide is replaced with metallic iron (M, Fe), the saturation magnetization σS can be reduced.
3) If the replacement is within a certain range, a powder with excellent weather resistance can be obtained.

すなわち、 (1)酸化鉄を原料とすること、 (2)平均粒径が1〜80Bmであること、(3)金属
鉄(M、Fe)含有量が1〜25重量%であって、マグ
ネタイ) (Fe304)の含有量が y≧87−2.28 x ここにX=金属鉄含有量(重量%) y=マグネタイトの含有量(重量%) であるような強磁性粉末は、電波吸収材等用としての要
件を十分溝たすものである。
That is, (1) iron oxide is used as a raw material, (2) the average particle size is 1 to 80 Bm, and (3) the metallic iron (M, Fe) content is 1 to 25% by weight, and magnetite is ) The ferromagnetic powder whose content of (Fe304) is y≧87-2.28 This fully satisfies the requirements for use in other areas.

以下、本発明の構成を詳細に説明する。Hereinafter, the configuration of the present invention will be explained in detail.

第一に、酸化鉄を原料とする理由は次の通りである。本
発明に規定した粒径及び組成の強磁性粉末は、酸化鉄を
原料とする番゛王かに、金属鉄の機械粉砕やアトマイズ
により得られる鉄粉を原料としても製造することができ
る。一般に、同等粒度の粉末を得るために、粉化に要す
るコストは、金属鉄に対するより、酸化鉄に対する方が
ずっと低くて有利である。これは、酸化鉄が脆いために
、機械粉砕によって容易に粉化できるからである。機械
粉砕で比較的容易に可能な粒度は約IJLmまでである
First, the reason why iron oxide is used as a raw material is as follows. The ferromagnetic powder having the particle size and composition specified in the present invention can be produced not only from iron oxide as a raw material, but also from iron powder obtained by mechanically crushing or atomizing metal iron. In general, the cost of comminution is much lower and advantageous for iron oxides than for metallic iron to obtain powders of comparable particle size. This is because iron oxide is brittle and can be easily pulverized by mechanical crushing. Particle sizes that are relatively easily possible by mechanical grinding are up to about IJLm.

本発明者らは、このように粉化された酸化鉄を原料とし
て、M、FeとFe3O4が前記の量を含有する粉末を
作ると、高飽和磁化であるとともに、耐候性も優れてい
ることを見出したのである。従来、酸化鉄を還元して鉄
粉を製造することは公知であったが、M、Fe量を25
重量%に制限し、残りを酸化鉄(マグネタイトなど)と
することは試みられなかった。その理由は、電波吸収材
のような用途が無かったことのほかに、仮に丁体が酸化
鉄であっても、一定量のM 、 F eを含有すればそ
の分耐候性が劣化するとの予想ないしは先入観があった
ことと考えられる。しかしながら、本発明者らの研究に
よれば、一定量以上のマグネタイトを含み、しかも一部
がM、Feとなっているような粉末を酸化鉄から作ると
、通常のマグネタイト粉末よりも飽和磁化が大きくなる
利点があり、しかも電波吸収材用として耐候性に問題が
無いのである。
The present inventors have found that when a powder containing the above amounts of M, Fe, and Fe3O4 is produced using the powdered iron oxide as a raw material, it has high saturation magnetization and excellent weather resistance. They discovered this. Conventionally, it has been known to reduce iron oxide to produce iron powder, but when the amount of M and Fe is reduced to 25
No attempt has been made to limit it to % by weight and make the remainder iron oxide (such as magnetite). The reason for this is that there was no use for it as a radio wave absorber, and in addition to the fact that even if the material was made of iron oxide, it was predicted that if it contained a certain amount of M or Fe, its weather resistance would deteriorate accordingly. Or perhaps it was due to preconceived notions. However, according to the research of the present inventors, when a powder containing a certain amount or more of magnetite and a portion of which is M and Fe is made from iron oxide, the saturation magnetization is higher than that of ordinary magnetite powder. It has the advantage of being larger, and there is no problem with weather resistance when used as a radio wave absorbing material.

このような組成の粉末を酸化鉄から作るには。To make a powder of such a composition from iron oxide.

(a)ウスタイ) (Fed)の共析変態によりM 、
FeとFe3O4を生成させる、(b)へマタイ)(F
e203)の還元によりM 、 F eとFe3O4を
生成さセル、(c)’Fe50+の部分還元により、一
部をM、Feとする、 (d)k記(a)〜′(C)の組合せ、(e)上記(a
)〜(d)の何れかの別個の方法で作られた粉末を混合
して、所定のM 、 F e及びFe3O4含有量を得
る、 などの方法によって可能である。
(a) Due to the eutectoid transformation of (Fed) M,
Generate Fe and Fe3O4, (b) Hematai) (F
A cell in which M, Fe and Fe3O4 are generated by reduction of e203), (c) Partial reduction of 'Fe50+ results in a part of M and Fe, (d) Combination of (a) to '(C) in k. , (e) above (a
) to (d) by mixing powders made by any of the separate methods to obtain predetermined M, Fe, and Fe3O4 contents.

本発明者らの実験によれば、後に実施例で示すように、
耐候性が良好であるためには、M 、 F eが25重
量%以下で平均粒径が1gm以上であることが必要であ
る。M、Feが25重量%を越えると、粉末の中のM 
、 F e部分が外気にさらされる機会が多くなり、酸
化が起こるために飽和磁化σSが低下する。すなわち耐
候性が劣化する。また平均粒径が1gm未満であると、
粉末の比表面積が大きくなるため、この場合もM、Fe
が外気にさらされやすくなり、酸化が起こって耐候性が
劣化する。
According to the experiments conducted by the present inventors, as shown in the examples later,
In order to have good weather resistance, it is necessary that M and Fe be 25% by weight or less and the average particle size be 1 gm or more. When M and Fe exceed 25% by weight, M in the powder
, the Fe portion is exposed to the outside air more often, and oxidation occurs, resulting in a decrease in saturation magnetization σS. In other words, weather resistance deteriorates. Moreover, when the average particle size is less than 1 gm,
Since the specific surface area of the powder increases, M, Fe
is more easily exposed to outside air, oxidation occurs and weather resistance deteriorates.

M 、 F e量及び平均粒径を選べば耐候性が優れて
いるのは、M 、 F e部分が酸化鉄部分によって外
気から保護されるためと考えられ、この点が、本発明法
による粉末が従来予測されるよりも耐候性が良い結果を
生んだ原因と思われる。
The reason why weather resistance is excellent when the amount of M and Fe and the average particle size are selected is thought to be that the M and Fe parts are protected from the outside air by the iron oxide part. This is thought to be the reason why the weather resistance was better than previously predicted.

次に、電波吸収材等用の粉末としては、粉体性状も重要
である。すなわち、電波吸収材等は1通常強磁性粉末を
樹脂などに混合し、混練してシート状にノズルから押出
して製造されることが多い、そのためには、微粉である
ほど混線性や押出し性が良い0粒度が粗くなるとこれら
の性質が劣り、実施例で示すように平均粒径が80pm
を超えたものは押出しが不可能となる。
Next, powder properties are also important for powders for radio wave absorbers and the like. In other words, radio wave absorbing materials are often manufactured by mixing ferromagnetic powder with resin, kneading it, and extruding it into a sheet from a nozzle.For this purpose, the finer the powder, the better the crosstalk and extrudability. When the good 0 particle size becomes coarse, these properties become inferior, and as shown in the example, the average particle size is 80 pm.
Extrusion becomes impossible if it exceeds this range.

また、電波吸収材等用の粉末は飽和磁化σS≧80em
u/gを必要とするが、そのためには一定量以上のM 
、 F e及びFe3O4含有量が必要である。特にM
 、 F eは理論的な飽和磁化(Isが約2LOem
u/gであッテ、Fe3O4の約92 e m u /
 gより格段に大きく、M 、 F eを含むことが1
本発明粉末が通常のマグネタイト粉末よりも飽和磁化σ
Sを高くしうるポイントとなる。実施例の飽和磁化σS
測定結果によると、Fe3O4を含む粉末の飽和磁化σ
Sは、M、FeとFe3O4の理論飽和磁化σS値を加
算したものにほぼ等しい、すなわち、M 、 F eが
X重量%、Fe3O4が7重量%であれば、飽和磁化σ
Sの予想値は、 210X (x/100)+92X (y/100)従
って、Fe3O4の一部をM 、 F eで置きかえ、
M 、 F eを1重量%だけ増やすと、飽和磁化σS
は約2emu/g増加する。飽和磁化σSの上昇量はM
 、 F eの含有量に比例して増加するが、2 e 
m u / g以下の上昇量は工業的な意味が小さいか
ら、M 、 F eは1重量%以上必要である。このよ
うにしてM、Fe量(X重量%)が定められると、粉末
の飽和磁化σSを80 e m u 7gとするために
必要なFe3O4量(7重量%)は、最小限 y=87−2.28x(重量%) である。
In addition, the saturation magnetization σS≧80em of powder for radio wave absorbing materials, etc.
u/g, but for that purpose more than a certain amount of M
, Fe and Fe3O4 content are required. Especially M
, F e is the theoretical saturation magnetization (Is is about 2LOem
u/g, about 92 e m u/of Fe3O4
It is much larger than g, and it is 1 to include M and Fe.
The powder of the present invention has a higher saturation magnetization σ than normal magnetite powder.
This is a point where S can be increased. Saturation magnetization σS of the example
According to the measurement results, the saturation magnetization σ of powder containing Fe3O4
S is approximately equal to the sum of the theoretical saturation magnetization σS values of M, Fe and Fe3O4, that is, if M, Fe are X weight % and Fe3O4 is 7 weight %, the saturation magnetization σ
The expected value of S is 210X (x/100) + 92X (y/100) Therefore, replace part of Fe3O4 with M, Fe,
When M and Fe are increased by 1% by weight, the saturation magnetization σS
increases by about 2 emu/g. The amount of increase in saturation magnetization σS is M
, increases in proportion to the content of Fe, but 2 e
Since an increase of less than mu/g has little industrial significance, M and Fe are required to be at least 1% by weight. When the amount of M and Fe (X weight %) is determined in this way, the amount of Fe3O4 (7 weight %) required to make the saturation magnetization σS of the powder 80 e mu 7 g is the minimum amount y = 87- 2.28x (wt%).

このように、本発明による粉末はM、F eを増加させ
ることによって飽和磁化σSを向上させ、同一不純物量
であれば従来のマグネタイト粉よりも大きな飽和磁化が
得られ、逆に同一飽和磁化σSならば純度を落とし、コ
ストダウンすることができるのである。なお、規定した
量のM 、 F e及びFe3O4以外の残部は非磁性
の物質で良<、Fed、Fe203またはその他の物質
であってもよく、特に#1約は無い。
As described above, the powder according to the present invention improves the saturation magnetization σS by increasing M and Fe, and with the same amount of impurities, a larger saturation magnetization can be obtained than the conventional magnetite powder, and conversely, the same saturation magnetization σS can be obtained. If so, it is possible to reduce purity and reduce costs. Note that the remainder other than the specified amounts of M, Fe, and Fe3O4 may be a nonmagnetic substance, Fed, Fe203, or other substances, and there is no #1 in particular.

以上、本発明の詳細を述べたが、数値限定の理由をまと
めると次のようになる。
The details of the present invention have been described above, but the reasons for the numerical limitations are summarized as follows.

(1)平均粒径の下限   :耐候性 (2)平均粒径の上限   :混練押出性(3)M、F
eの下限   :飽和磁化σS(4)M、Feの上限 
  :耐候性 (5)Fe304の下限  :飽和磁化c7.sさて1
本発明になる強磁性粉末を製造するための具体的な方法
を以下例示する。なお、実施例において、より具体的な
製造条件を述べることとする。
(1) Lower limit of average particle size: Weather resistance (2) Upper limit of average particle size: Kneading and extrudability (3) M, F
Lower limit of e: Saturation magnetization σS(4)M, upper limit of Fe
: Weather resistance (5) Lower limit of Fe304 : Saturation magnetization c7. s Now 1
A specific method for producing the ferromagnetic powder according to the present invention will be exemplified below. In addition, more specific manufacturing conditions will be described in Examples.

まず原料としては、ミルスケールを用いるコトができる
。これは鉄鋼製品製造工程における副産物であり、Fe
Oを主成分としていて、注意深く入手すれば、純度の高
いものを選ぶことが可能である。ミルスケールは脆いか
ら1機械粉砕によって所定の粒度に粉砕することができ
る。さらに細かいものは、空気分級法による分級や、集
塵採取によって得られる。
First, mill scale can be used as a raw material. This is a byproduct in the steel product manufacturing process, and Fe
The main component is O, and if you carefully obtain it, it is possible to select one with high purity. Since mill scale is brittle, it can be ground to a predetermined particle size by one mechanical grinding. Even finer particles can be obtained by classification using the air classification method or by dust collection.

次にFeOを主成分とする粉末を熱処理し、Fe3O4
とM−Feに変態させる。M、Feを生成させるために
は、通常弱還元性の雰囲気が必要となる。従って、N2
ガスにH2ガスを添加した雰囲気で加熱するのが一法で
ある。そのほか。
Next, the powder containing FeO as the main component is heat-treated to produce Fe3O4
and metamorphose into M-Fe. In order to generate M and Fe, a weakly reducing atmosphere is usually required. Therefore, N2
One method is to heat in an atmosphere in which H2 gas is added to the gas. others.

COガスや固体C(コークスなど)を還元剤として用い
ることができる。また、粉末の耐候性を改善するために
、はじめに還元性雰囲気、次に中性または弱酸化性の雰
囲気を用いることもある。
CO gas or solid C (such as coke) can be used as a reducing agent. Additionally, in order to improve the weather resistance of the powder, a reducing atmosphere may be used first and then a neutral or weakly oxidizing atmosphere.

熱処理温度は、粉末の焼結凝集が過度にならぬようにす
るためと、ウスタイトの分解変態を促進するために、5
60℃以下で行うのが良い。
The heat treatment temperature was set at 5.5% to prevent excessive sintering agglomeration of the powder and to promote decomposition transformation of wustite.
It is best to do this at a temperature below 60°C.

560℃はウスタイトの共析変態温度である。560°C is the eutectoid transformation temperature of wustite.

こうして所望のM、Fe、Fe304含有量をもつ粉末
ができるが、熱処理中に粉末が焼結・凝集した場合は、
粉砕工程を加えたり、または何らかの分級工程を加える
ことがある。
In this way, a powder with the desired M, Fe, and Fe304 contents is produced, but if the powder sinters and agglomerates during heat treatment,
A grinding step or some sorting step may be added.

なお、粉末中c7)M、Fe、Fe304などの分析は
次のように行うのが良い、まず、鉄鋼分析で通常使われ
る湿式分析法によってM 、 F eとT、Feを分析
する9次に、X線回折を用いFed、Fe304.Fe
203 c7)重量比を定量する。これらの値と、湿式
分析による非金属鉄量とから、Fe01Fe304、F
e2O3の絶対量が求まる0本明細書に記された分析値
はこの方法によるものである。
In addition, analysis of c7) M, Fe, Fe304, etc. in powder should be carried out as follows. First, analyze M, Fe, T, and Fe using the wet analysis method normally used in steel analysis. , Fed, Fe304. using X-ray diffraction. Fe
203 c7) Determine the weight ratio. From these values and the amount of nonmetallic iron determined by wet analysis, Fe01Fe304, F
The analytical values described in this specification for determining the absolute amount of e2O3 are based on this method.

また、平均粒度は、累積重量粒度分布が50%になる粒
度、いわゆるメジアン径である0粒度分布測定法として
は、粗い粉末についてはふるい分は法、細かい粉末につ
いてはマイクロトラック法や沈降法を使用することがで
きるが、本明細書の数値はマイクロトラック法によるも
のである。
The average particle size is the particle size at which the cumulative weight particle size distribution is 50%, the so-called median diameter.As for particle size distribution measurement methods, the sieve method is used for coarse powders, and the microtrack method and sedimentation method are used for fine powders. However, the numbers herein are from the Microtrack method.

〔実施例〕〔Example〕

実施例1 ミルスケールを振動ボールミルで10時間粉砕し、空気
分級によって粗粉をカットして、平均粒径8. Oルm
の微粉を得た。
Example 1 Mill scale was ground in a vibrating ball mill for 10 hours, coarse powder was cut by air classification, and the average particle size was 8. Orm
A fine powder was obtained.

この微粉は T、Feニア3.9重量% であり、不純物としては、 5i02:0.22重量%、 MnO:0.35重量% P:0−01重量%、 S:0.01重量%、 CaO:0.05重量% を含んでいた。This fine powder T, Fe nia 3.9% by weight And as impurities, 5i02: 0.22% by weight, MnO: 0.35% by weight P: 0-01% by weight, S: 0.01% by weight, CaO: 0.05% by weight It contained.

熱処理のための粉末容器として、スチールウールを加工
して、内法が50mm立方の立方体容器を作成した。ス
チールウールの厚みは約5mmであった。粉末を容器に
充填したのち、スチールウール製の蓋をし、容器ごとコ
ークスの中に埋めた。コークスは2〜10mmに篩分け
した範囲のものを用いたため、被処理粉末とコークスと
はスチールウールで接触が防がれ、しかも、スチールウ
ール容器は通気性があるため、コークスとともに容器を
加熱することにより、容器内を還元性雰囲気とすること
ができた。加熱は500℃で9時間行なった。
As a powder container for heat treatment, a cubic container with an internal dimension of 50 mm was prepared by processing steel wool. The thickness of the steel wool was about 5 mm. After filling the powder into a container, the container was covered with a steel wool lid and buried in coke. Because the coke used was one that had been sieved to a size of 2 to 10 mm, the steel wool prevented contact between the powder to be treated and the coke, and since the steel wool container was breathable, the container was heated together with the coke. This made it possible to create a reducing atmosphere inside the container. Heating was performed at 500°C for 9 hours.

熱処理後の粉末はほとんど凝集していなかったため、そ
のまま以後の測定旋供した。その結果、M、Fe:9.
7重量%、 Fe304 : 86.3重量%、 F e O: 2−1重量%、 Fe2O3≦0.1[t% であり、その他の不純物は原料ミルケース粉とほぼ同等
であった。平均粒度は8.2 g mであった。
Since the powder after heat treatment was hardly agglomerated, it was used for subsequent measurements as it was. As a result, M, Fe: 9.
7% by weight, Fe304: 86.3% by weight, FeO: 2-1% by weight, Fe2O3≦0.1 [t%], and other impurities were almost the same as the raw material millcase powder. The average particle size was 8.2 g m.

この粉末の飽和磁化σSを求めるため、振動試料型磁化
測定装置を用い、磁界10kOe(キロエルステッド)
のもとで測定した結果、飽和磁化c s = 97.9
 e m u / gと高い値を得た。
In order to determine the saturation magnetization σS of this powder, a vibrating sample type magnetization measuring device was used, and a magnetic field of 10 kOe (kiloersted) was used.
As a result of measurement under , saturation magnetization c s = 97.9
A high value of emu/g was obtained.

次に、粉末の耐候性を調べるため、粉末10gをアルミ
ナの皿にのせ、湿度95%、温度50℃のもとで、30
日間放置し、再び飽和磁化σSを測定した。その結果、
飽和磁化σS比(放置後/放置前)は99.2%であり
、実用」−問題無い耐候性を示した。
Next, to examine the weather resistance of the powder, 10 g of the powder was placed on an alumina plate and heated for 30 minutes at a humidity of 95% and a temperature of 50°C.
After leaving it for a day, the saturation magnetization σS was measured again. the result,
The saturation magnetization σS ratio (after being left to stand/before being left to stand) was 99.2%, indicating good weather resistance for practical use.

さらに、粉末を液状エポキシ樹脂と混合し、押し出し性
を調べた0重量比で粉末80に対し、樹脂20の混合割
合とし、ビーカー中でスプーンを用いて混合したのち、
内径10mmのピストン(注射器)に長さ約30mmに
充填し、2 m m径の穴から手動で押し出したところ
、閉塞は起こらずに全昔押し出された。
Furthermore, the powder was mixed with a liquid epoxy resin and the extrudability was examined.The mixing ratio was 80 parts of the powder to 20 parts of the resin, and the mixture was mixed using a spoon in a beaker.
When a piston (syringe) with an inner diameter of 10 mm was filled to a length of about 30 mm and manually pushed out through a 2 mm diameter hole, the solution was completely pushed out without any blockage.

実施例2 次の実施例では、主にM 、 F e量の影響を調べた
。原料は実施例1と同じミルスケールの微粉とし、これ
をアルミナのトレーに200gのせ、管状炉で熱処理し
た。加熱は500℃とし、最初の2時間はN2 +H2
ガス中、残りの8時間はN2ガス中で、合計10時間保
持した。でき上がった粉末を乳鉢ですりつぶし、325
メツシユの篩で篩分けし、篩下歩留りを求めた。−32
5メツシユノ粉末につき、M、Fe、Fe3O4の分析
、平均粒度および飽和磁化σSの測定、また、実施例1
と同様の耐候性試験(飽和磁化σS比)と押出し試験を
行なった。第1表に、加熱初期のN2量と特性との関係
を示す。
Example 2 In the next example, the influence of the amounts of M and Fe was mainly investigated. The raw material was the same mill scale fine powder as in Example 1, and 200 g of this was placed on an alumina tray and heat treated in a tube furnace. Heating was at 500℃, with N2 + H2 for the first 2 hours.
The remaining 8 hours were held in N2 gas for a total of 10 hours. Grind the finished powder in a mortar, 325
It was sieved using a mesh sieve and the yield under the sieve was determined. -32
Analysis of M, Fe, Fe3O4, measurement of average particle size and saturation magnetization σS, and Example 1
The same weather resistance test (saturation magnetization σS ratio) and extrusion test were conducted. Table 1 shows the relationship between the amount of N2 at the initial stage of heating and the characteristics.

第1表より、M 、 F eが1重量%以上では、飽和
磁化σSがgOemu/gとなっていることがわかる。
From Table 1, it can be seen that when M and Fe are 1% by weight or more, the saturation magnetization σS is gOemu/g.

第1表の値から、M 、 F eと歩留りおよび飽和磁
化σS比との関係を示すと、第1図のようになり1歩留
りと耐候性の観点から、M 、 F eを25重優%以
内とすべきことが理解される。
From the values in Table 1, the relationship between M, Fe, yield, and saturation magnetization σS ratio is shown in Figure 1.1 From the viewpoint of yield and weather resistance, M, Fe is 25% by weight. It is understood that it should be within the range.

なお、第1表の結果によれば、本発明の粉末のように、
M 、 F eとFe3O4のいわば混合体であると、
鉄粉が単独で存在するときよりも、耐候性が改善されて
いるように見うけられる。これはM 、 F eの存在
形態にかかわることと考えられるが、詳しい機構は明ら
かでない。
According to the results in Table 1, like the powder of the present invention,
M, Fe is a so-called mixture of e and Fe3O4,
Weather resistance appears to be improved compared to when iron powder is present alone. This is thought to be related to the existence form of M and Fe, but the detailed mechanism is not clear.

実施例3 次の実施例では、主に平均粒度の影響を調べた。原料と
しては、ヘマタイト微粉(平均粒度0.6JLm)およ
びミルスケールを振動ミルで粉砕し、種々の平均粒度と
したものを用いた。これを実施例2と同様に熱処理した
が、加熱初期のH2量は10%とした。熱処理後の粉末
を小型振動ミルで十分解砕したのち篩分けし、篩分は後
の測定を実施例2と同様に行い、第2表の結果を得た。
Example 3 In the next example, the influence of average particle size was primarily investigated. As raw materials, fine hematite powder (average particle size: 0.6 JLm) and mill scale were pulverized with a vibration mill to give various average particle sizes. This was heat treated in the same manner as in Example 2, but the amount of H2 at the initial stage of heating was 10%. The heat-treated powder was thoroughly crushed in a small vibrating mill and then sieved, and the sieved fraction was measured in the same manner as in Example 2, and the results shown in Table 2 were obtained.

第2表より、平均粒度がlpmを割ったものは耐候性(
σS比)が著しく劣化していること、および、平均粒度
が801Lmを゛超えるものは、押出性が劣り、樹脂等
と混合して成形することが難しいことが理解される。
From Table 2, the weather resistance (
It is understood that those with a significantly deteriorated σS ratio and an average particle size of more than 801 Lm have poor extrudability and are difficult to mix with a resin or the like and mold.

〔発明の効果〕〔Effect of the invention〕

以上示したように、本発明による強磁性粉末は、電波吸
収材や電磁遮蔽材用として優れたものである。また飽和
磁化σSが高く、耐候性があることから、その他の用途
、例えば乾式複写機のキャリアなどとしても、十分な使
用に耐えると思われる。
As shown above, the ferromagnetic powder according to the present invention is excellent for use in radio wave absorbing materials and electromagnetic shielding materials. Furthermore, since it has a high saturation magnetization σS and is weather resistant, it is thought that it can be used satisfactorily for other uses, such as as a carrier for a dry type copying machine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、強磁性粉末のM 、 F e含有量と粉末の
歩留りおよび耐候性(飽和磁化σS比)との関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the M and Fe contents of the ferromagnetic powder and the powder yield and weather resistance (saturation magnetization σS ratio).

Claims (1)

【特許請求の範囲】 1 酸化鉄を原料とし、平均粒径が1〜80μmであっ
て、金属鉄含有量とマグネタイト含有量が、 1≦x≦25、かつ y≧87−2.28x ただしx:金属鉄含有量(重量%) y:マグネタイト含有量(重量%) であることを特徴とする強磁性粉末。
[Claims] 1. Iron oxide is used as a raw material, the average particle size is 1 to 80 μm, and the metallic iron content and magnetite content are 1≦x≦25, and y≧87-2.28x, where x : Metallic iron content (weight %) y : Magnetite content (weight %) A ferromagnetic powder characterized by the following.
JP60079752A 1985-04-15 1985-04-15 Ferromagnetic powder Granted JPS61238901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60079752A JPS61238901A (en) 1985-04-15 1985-04-15 Ferromagnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60079752A JPS61238901A (en) 1985-04-15 1985-04-15 Ferromagnetic powder

Publications (2)

Publication Number Publication Date
JPS61238901A true JPS61238901A (en) 1986-10-24
JPH0149762B2 JPH0149762B2 (en) 1989-10-26

Family

ID=13698953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60079752A Granted JPS61238901A (en) 1985-04-15 1985-04-15 Ferromagnetic powder

Country Status (1)

Country Link
JP (1) JPS61238901A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316746A (en) * 1991-02-05 1994-05-31 Kawasaki Steel Corporation High purity iron oxide and method for production hereof
KR20030015453A (en) * 2001-08-14 2003-02-25 주식회사 티베이스 An Electromagnetic Wave Attenuating Material Using The Scale Of Alloy Steel
US6827757B2 (en) 2001-11-30 2004-12-07 Jfe Steel Corporation Magnetite-iron based composite powder, magnetite-iron based powder mixture, method for producing the same, method for remedying polluted soil, water or gases and electromagnetic wave absorber
KR100921261B1 (en) * 2001-12-04 2009-10-09 토다 고교 가부시끼가이샤 Iron Particles for Purifying Contaminated Soil or Ground Water, Process for Producing the Iron Particles, Purifying Agent Comprising the Iron Particles, Process for Producing the Purifying Agent and Method of Purifying Contaminated Soil or Ground Water
WO2016075213A1 (en) * 2014-11-13 2016-05-19 Ce-Sys Engineering Gmbh Building material for shielding against electromagnetic waves, method for producing the same and use thereof
CN113145856A (en) * 2021-03-15 2021-07-23 西安交通大学 System and method for separation, reduction and storage and transportation of iron oxidation products

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316746A (en) * 1991-02-05 1994-05-31 Kawasaki Steel Corporation High purity iron oxide and method for production hereof
KR20030015453A (en) * 2001-08-14 2003-02-25 주식회사 티베이스 An Electromagnetic Wave Attenuating Material Using The Scale Of Alloy Steel
US6827757B2 (en) 2001-11-30 2004-12-07 Jfe Steel Corporation Magnetite-iron based composite powder, magnetite-iron based powder mixture, method for producing the same, method for remedying polluted soil, water or gases and electromagnetic wave absorber
KR100921261B1 (en) * 2001-12-04 2009-10-09 토다 고교 가부시끼가이샤 Iron Particles for Purifying Contaminated Soil or Ground Water, Process for Producing the Iron Particles, Purifying Agent Comprising the Iron Particles, Process for Producing the Purifying Agent and Method of Purifying Contaminated Soil or Ground Water
WO2016075213A1 (en) * 2014-11-13 2016-05-19 Ce-Sys Engineering Gmbh Building material for shielding against electromagnetic waves, method for producing the same and use thereof
CN113145856A (en) * 2021-03-15 2021-07-23 西安交通大学 System and method for separation, reduction and storage and transportation of iron oxidation products

Also Published As

Publication number Publication date
JPH0149762B2 (en) 1989-10-26

Similar Documents

Publication Publication Date Title
WO1999038174A1 (en) Bonded magnet, magnet roll and ferrite powder to be used for their preparation, and method for producing the same
US2864734A (en) Magnetic flake core and method of
CA1254378A (en) Fabrication of nuclear fuel pellets
JPS61238901A (en) Ferromagnetic powder
US3472780A (en) Low porosity nickel zinc ferrite
Weeks Magnetic phases in lunar material and their electron magnetic resonance spectra: Apollo 14
JP7082033B2 (en) Ferrite powder for bonded magnets and its manufacturing method
JP2021141151A (en) Ferrite powder for bond magnet and production method thereof
KR102393236B1 (en) soft magnetic flat powder
CN108822796A (en) A kind of method and absorbing material preparing absorbing material using nickel slag
JPH07166201A (en) Method for heat treatment of flaky soft magnetic powder
EP3832677A1 (en) Ferrite powder for bond magnet and production method therefor
US3489548A (en) Particulate powder of iron with copper contained therein
JPS6156281B2 (en)
JPS6272102A (en) Iron powder for magnetic dust core used at high frequency and manufacture thereof
CN110418775A (en) MnCoZn class ferrite and its manufacturing method
EP4349507A1 (en) Soft magnetic material and electronic component
RU2817877C1 (en) Method of producing magnetite powder
JPS6131601B2 (en)
JPH039161B2 (en)
Sorescu Mechanochemical activation of magnetite nanoparticles
KR20070032416A (en) Manufacture method of metal powder
JPH0494502A (en) High magnetic permeability material, its manufacturing method, and method for manufacturing high magnetic permeability alloy powder
JPH04293702A (en) Production of soft magnetic powder low in coercive force
JPH0438807A (en) Manufacture of strontium-ferrite magnet high in residual magnetic flux density and coercive force