JPS6229364B2 - - Google Patents

Info

Publication number
JPS6229364B2
JPS6229364B2 JP54025379A JP2537979A JPS6229364B2 JP S6229364 B2 JPS6229364 B2 JP S6229364B2 JP 54025379 A JP54025379 A JP 54025379A JP 2537979 A JP2537979 A JP 2537979A JP S6229364 B2 JPS6229364 B2 JP S6229364B2
Authority
JP
Japan
Prior art keywords
nitrogen
plasma
silicon nitride
flow
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54025379A
Other languages
Japanese (ja)
Other versions
JPS55116604A (en
Inventor
Ensei Ko
Kunio Senda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2537979A priority Critical patent/JPS55116604A/en
Publication of JPS55116604A publication Critical patent/JPS55116604A/en
Publication of JPS6229364B2 publication Critical patent/JPS6229364B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon

Description

【発明の詳細な説明】 本発明は微粉状の窒化珪素(Si3N4)を製造する
方法、特に高純度のα型微粉状窒化珪素を製造す
るに適した方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing finely divided silicon nitride (Si 3 N 4 ), particularly a method suitable for producing highly purified α-type finely divided silicon nitride.

窒化珪素焼結体は熱衝撃性に優れ、高温時にお
ける機械的強度が大きいなど高耐火性の材料であ
り、ガスタービンブレード材、切削用バイトなど
多くの用途もつている。特に高純度のα型窒化珪
素微粉末を焼結させたものは極めて高い強度を有
している。
Silicon nitride sintered bodies are highly refractory materials with excellent thermal shock resistance and high mechanical strength at high temperatures, and have many uses such as gas turbine blade materials and cutting tools. In particular, those made by sintering high-purity α-type silicon nitride fine powder have extremely high strength.

従来からこのような焼結体の出発原料である微
粉状窒化珪素の製法は、シリコンまたはシリカ粉
末と炭素粉末との混合物を窒素気流中で1300〜
1700℃で加熱し窒化させる方法(例えば特開昭47
―7211号、特開昭52―5700号、特開昭53―102300
号各公報)、あるいはシランガスと窒素の水素化
合物を800〜1900℃の温度範囲で気相反応させて
得る方法(特開昭53―13033号公報)などが提案
されていた。しかしいずれの方法においても極め
て長い加熱時間を要し、特に前者の方法では得ら
れる粉末は粗く純度も低い。
Conventionally, the manufacturing method for finely powdered silicon nitride, which is the starting material for such sintered bodies, involves heating a mixture of silicon or silica powder and carbon powder to 1300 to
A method of heating at 1700℃ and nitriding (for example, JP-A-47
-7211, JP-A-52-5700, JP-A-53-102300
(Japanese Unexamined Patent Publication No. 13033/1983), or a method in which a hydrogen compound of silane gas and nitrogen is reacted in a gas phase at a temperature range of 800 to 1900°C (Japanese Patent Application Laid-Open No. 13033/1983) has been proposed. However, both methods require extremely long heating times, and in the former method in particular, the powder obtained is coarse and has low purity.

本発明は従来法とは異つた新規な方法により微
粉状の窒化珪素を得るものであり、特に高純度の
α型微粉状窒化珪素を製造するに適した方法を提
供するものである。このような本発明の特徴は、
液状またはガス状の珪素化合物を高温の窒素プラ
ズマ流に吹込んで窒素と反応させて微粉状の窒化
珪素を製造する方法に存する。
The present invention provides a method for obtaining finely divided silicon nitride by a novel method different from conventional methods, and is particularly suitable for producing highly pure α-type finely divided silicon nitride. The features of the present invention are as follows:
The method consists in producing finely powdered silicon nitride by blowing a liquid or gaseous silicon compound into a high-temperature nitrogen plasma stream and reacting with nitrogen.

本発明の方法によれば、極めて微細な粒径を持
ち、かつほぼ球形のα型窒化珪素を得ることがで
きるので、これを出発原料とした焼結体は非常に
優れた高温用材料としての特性を持つ。
According to the method of the present invention, it is possible to obtain α-type silicon nitride with extremely fine grain size and approximately spherical shape, so a sintered body using this as a starting material is an excellent material for high-temperature use. have characteristics.

本発明の方法に用いられる液状またはガス状の
珪素化合物は、窒素プラズマ流へ吹込まれる際液
状またはガス状である珪素化合物ならば特に制限
はない。例えばSiX4(XはF、Cl、Br又はI)、
Si2X6(XはCl、Br又はI)、又はSiI2のようなハ
ロゲン化珪素、またはモノシラン(SiH4)、ジシ
ラン(Si2H6)、トリシラン(Si3H8)、テトラシラ
ン(Si4H10)のような水素化珪素が使用される。
これらは容易に高純度に精製され得るので、シリ
コンやシリカ粉末を用いるときのように原料の純
度に帰因する窒化珪素の純度低下の問題を生じな
い。
The liquid or gaseous silicon compound used in the method of the present invention is not particularly limited as long as it remains liquid or gaseous when blown into the nitrogen plasma stream. For example, SiX 4 (X is F, Cl, Br or I),
silicon halides such as Si 2 _ _ 4 H 10 ) is used.
Since these can be easily purified to high purity, there is no problem of a decrease in the purity of silicon nitride due to the purity of the raw material, unlike when using silicon or silica powder.

窒素プラズマ流を発生させるには種々の公知の
方法が使用され得るが、大別すると窒素ガス及び
又はヒドラジン、アンモニアのような窒素形成ガ
ス雰囲気中に置かれた正負電極間に直流高電圧を
かけて両電極間にアーク放電を行なわせて窒素プ
ラズマ流を得る方法(以下これをDC法という)、
及び窒素ガス及び又は窒素形成ガス流を高周波電
磁場中に流し、高周波誘導加熱して窒素プラズマ
流を得る方法(以下RF法という)の2つに分け
られる。本発明の方法は上記のいずれの方法をも
とることができる。しかし、電極材よりの不純物
混入の問題がないこと、及び珪素化合物の高温滞
留時間の調整の容易さなどから、RF法の方がよ
り好ましい。窒素プラズマ流を形成するためのガ
ス源は上記のような窒素ガス及び又は窒素形成ガ
スのみではなく、これにアルゴン、ヘリウムなど
の他のガス体を併用してもよい。この場合にはプ
ラズマを安定化する効果がある。
Various known methods can be used to generate a nitrogen plasma flow, but they can be broadly classified as applying a high DC voltage between positive and negative electrodes placed in an atmosphere of nitrogen gas and/or a nitrogen-forming gas such as hydrazine or ammonia. A method of obtaining a nitrogen plasma flow by causing an arc discharge between both electrodes (hereinafter referred to as the DC method),
There are two methods: and a method in which nitrogen gas and/or nitrogen-forming gas flow is passed through a high-frequency electromagnetic field and high-frequency induction heating is performed to obtain a nitrogen plasma flow (hereinafter referred to as RF method). The method of the present invention can be any of the above methods. However, the RF method is more preferable because there is no problem of impurity contamination from the electrode material, and the high temperature residence time of the silicon compound can be easily adjusted. The gas source for forming the nitrogen plasma flow is not limited to the nitrogen gas and/or nitrogen forming gas as described above, but may also be used in combination with other gases such as argon and helium. In this case, there is an effect of stabilizing the plasma.

珪素化合物を窒素プラズマ流中に吹込むには、
加圧して噴射するのが便利であるが、窒素、水素
あるいは他の不活性ガスをキヤリアとして用いそ
れに同伴させて吹込んでもよい。吹込位置はプラ
ズマ流の温度分布によつて調整しなければならな
い。これはDC法又はRF法のいずれを用いるかに
よつてプラズマ流の形状、温度分布に差があるこ
と、窒素流量、圧力、印加電力によつてそれらが
変化すること、そして目的物である窒化珪素の性
状に反応温度が大きく影響することによるもので
ある。
To blow silicon compounds into a nitrogen plasma stream,
Pressurized injection is convenient, but nitrogen, hydrogen, or other inert gas may be used as a carrier and entrained in the injection. The blowing position must be adjusted according to the temperature distribution of the plasma stream. This is because there are differences in the shape of the plasma flow and temperature distribution depending on whether the DC method or the RF method is used, and that these change depending on the nitrogen flow rate, pressure, and applied power, and the fact that the target material is nitriding. This is because the reaction temperature greatly influences the properties of silicon.

RF法を例にとつて窒素プラズマ流の温度分布
の様子を説明する。窒素ガス流が周囲から高周波
によつて誘導加熱されると加熱ゾーンでは中心の
流れ程高温のプラズマ流となる。このプラズマ流
は加熱ゾーンを通過したのちは次第に温度降下す
ると共に、中心部と周辺部分の温度差も減少す
る。
The temperature distribution of a nitrogen plasma flow will be explained using the RF method as an example. When a nitrogen gas flow is inductively heated from the surrounding area by high frequency waves, in the heating zone, the center of the flow becomes a high-temperature plasma flow. After passing through the heating zone, the temperature of this plasma flow gradually decreases, and the temperature difference between the center and the periphery also decreases.

窒化珪素、特にα型微粉状窒化珪素を合成する
ための適当な温度領域はβ型結晶が生成しないよ
うな低い範囲である。従つて高純度のα型微粉状
窒化珪素を合成するには、加熱ゾーンを通過した
後の温度降下領域のプラズマ流を利用するのが好
ましい。
A suitable temperature range for synthesizing silicon nitride, especially α-type fine powder silicon nitride, is a low temperature range in which β-type crystals are not generated. Therefore, in order to synthesize high-purity α-type fine powder silicon nitride, it is preferable to utilize the plasma flow in the temperature drop region after passing through the heating zone.

反応物質の吹込みは通常プラズマ流の側面から
中に向けて行なうが、吹込まれた物質は高速のプ
ラズマ流に乗つて下流へ運ばれる。反応物質のプ
ラズマ流中での滞留時間(反応時間)を大とする
ためには、プラズマ流自体の長さを大きくするよ
うに工夫することが好ましい。一方吹込むべき珪
素化合物の吹込方向をプラズマ流の上流に向けた
り、あるいはプラズマ流の周囲から旋回流で吹込
んだり、これら両者を併用したりして滞留時間を
大きくすることもできる。
Reactants are usually injected into the plasma stream from the side, and the injected substances are carried downstream by the high-speed plasma stream. In order to increase the residence time (reaction time) of the reactant in the plasma stream, it is preferable to increase the length of the plasma stream itself. On the other hand, the residence time can be increased by directing the direction in which the silicon compound to be injected is directed upstream of the plasma flow, or by injecting it in a swirling flow from around the plasma flow, or by using both of these in combination.

生成物の窒化珪素は結晶質と非晶質とが混合し
た形で得られる場合がある。結晶質部分を高割合
で取得するには、プラズマ流中での高温領域から
下流の低温領域に移行して得られる生成物即ち窒
化珪素が受ける冷却工程を緩やかにする必要があ
る。この除冷却を行なうための一つの方法はプラ
ズマ流の下流、及びそれ以降の生成物の炉中を移
動する部分を取囲むように保温帯域を設けること
である。保温帯域は断熱材又は加熱源を有する熱
伝導材料によつて形成することができる。逆に非
晶質部分の割合いの大きい生成物を得たい場合は
急冷すればよい。この場合は前述の保温帯域の代
りに例えば急冷ジヤケツトなどを設ける。
The product silicon nitride may be obtained in a mixed form of crystalline and amorphous forms. In order to obtain a high proportion of crystalline portions, it is necessary to slow down the cooling process that the product, that is, silicon nitride, obtained by moving from the high temperature region to the downstream low temperature region in the plasma flow. One way to accomplish this cooling is to provide an insulating zone downstream of the plasma stream and surrounding the subsequent passage of the product through the furnace. The thermal zone can be formed by a thermally insulating material or a thermally conductive material with a heating source. On the other hand, if you want to obtain a product with a large proportion of amorphous parts, you can rapidly cool it. In this case, for example, a quenching jacket or the like is provided in place of the heat-insulating zone described above.

次に図面に基づいて本発明の具体例を説明す
る。第1図は高周波誘導加熱(RF法)によるプ
ラズマ炉及びそれを用いた窒化珪素の製造を説明
するための図である。プラズマ炉1は上部に窒素
ガス導入口2を持ち、ここから窒素ガスは矢印の
ように導入されプラズマ発生室3内へ噴出され
る。発生室3は石英管4と上部板5及び下部板6
で構成され、石英管4の外周は水冷室7がとりま
き、その内部に高周波コイル8が巻かれている。
高周波コイル8の巻かれている領域は加熱ゾーン
である。冷却水は入口管7aから入り出口管7b
から出る。高周波コイル8は導線8a,8bによ
つて高周波発生装置9に結線されている。周波数
は通常数百KHz〜5MHzの範囲のものが使用され
る。
Next, specific examples of the present invention will be described based on the drawings. FIG. 1 is a diagram for explaining a plasma furnace using high frequency induction heating (RF method) and the production of silicon nitride using the same. The plasma furnace 1 has a nitrogen gas inlet 2 at the top, from which nitrogen gas is introduced as shown by the arrow and ejected into the plasma generation chamber 3. The generation chamber 3 includes a quartz tube 4, an upper plate 5, and a lower plate 6.
A water cooling chamber 7 surrounds the outer periphery of the quartz tube 4, and a high frequency coil 8 is wound inside the water cooling chamber 7.
The area around which the high frequency coil 8 is wound is a heating zone. Cooling water enters from the inlet pipe 7a and exits from the outlet pipe 7b.
get out of The high frequency coil 8 is connected to a high frequency generator 9 by conductive wires 8a and 8b. The frequency used is usually in the range of several hundred KHz to 5MHz.

窒素又は窒素形成ガスは加熱ゾーンを通過する
際ここで加熱された窒素プラズマ流10が形成さ
れ、その下流は下部板6に設けられた開口部11
を通りその下に直結されたチヤンバー12に延長
された尾部13を形成する。下部板6には複数の
連通孔14a,14bが設けられ、この少なくと
も1カ所から珪素化合物が導入されプラズマ流1
0中に吹込まれる。その際連通孔のプラズマ流側
の開口部は接線方向に向けて設けられ、旋回流で
吹込まれてもよい。チヤンバー12の壁面の一部
にはガス抜管15が連通しており、ガス抜管15
はバルブ16を通つてガス洗浄器17の水中に開
口している。チヤンバー12の壁面の他の部分に
は真空排気管18が連通され、それはバルブ19
を通つて真空発生器(図示していない)に結合さ
れている。
As the nitrogen or nitrogen-forming gas passes through a heating zone, a heated nitrogen plasma stream 10 is formed downstream of the opening 11 provided in the lower plate 6.
A tail portion 13 is formed extending through the chamber 12 directly below the chamber 12. A plurality of communication holes 14a and 14b are provided in the lower plate 6, and a silicon compound is introduced from at least one of these holes to form a plasma flow 1.
blown into 0. In this case, the opening of the communication hole on the plasma flow side may be provided in the tangential direction, and the plasma may be blown in with a swirling flow. A gas vent pipe 15 is connected to a part of the wall surface of the chamber 12.
is opened into the water of the gas washer 17 through the valve 16. A vacuum exhaust pipe 18 is communicated with the other part of the wall of the chamber 12, and it is connected to a valve 19.
and to a vacuum generator (not shown).

次にその動作を説明する。プラズマ発生に先立
ち、先ずバルブ19を開けたチヤンバー12及び
プラズマ発生室3内を減圧して窒素ガス導入口2
からアルゴンガスを導入し内部を置換したのち、
高周波コイルに高周波電力を供給してアルゴン流
を誘導加熱してアルゴンプラズマ流を作る。次に
高周波電力を調整しながらアルゴン供給ラインか
ら窒素供給ラインへ徐々に切換え、アルゴンプラ
ズマ流を窒素プラズマ流とする。最初アルゴンガ
ス流でスタートするのはプラズマ点火の容易性か
らで、これは装置によつては必ずしも必要としな
い。窒素ガスの流量及び高周波電力を調整し窒素
プラズマ流10の長さ及びプラズマ温度を調整し
たのち連通孔14a,14bから珪素化合物を導
入する。この際窒素プラズマ流10の珪素化合物
吹込領域の温度は外部からのぞき窓を通して光高
温計などで測定しておき適当なプラズマ温度とす
る。珪素化合物の導入と同時に例えば連通孔14
bからアンモニアガスなど他の解離しやすい窒素
化合物をプラズマ流中に導入してもよい。またプ
ラズマ流のための窒素ガスの一部はアルゴンガス
としてもよい。これは窒化珪素への反応を助長す
る働きをする。安定運転時のプラズマ炉内の圧力
は減圧、大気圧、あるいはわずかの加圧のいずれ
でもよい。大気圧よりわずかに加圧の状態の場合
は反応率が増加するので有利である。生成される
窒化珪素は非常に微細な粒状物、特に球形状をな
した微粉状窒化珪素である。生成微粉状窒化珪素
は下方のチヤンバー12内に放出されてその底部
に堆積され、一部は壁面に付着する。真空排気管
18からこれを排出し途中に設けられたセパレー
タで微粉状物のみを分離回収することもできる。
一方反応ガスその他のガス体はガス抜管15を通
つて排出される。
Next, its operation will be explained. Prior to plasma generation, first, the pressure inside the chamber 12 and plasma generation chamber 3 is reduced by opening the valve 19, and the nitrogen gas inlet 2 is opened.
After introducing argon gas from inside to replace the inside,
High-frequency power is supplied to a high-frequency coil to inductively heat the argon flow to create an argon plasma flow. Next, while adjusting the high frequency power, the argon supply line is gradually switched to the nitrogen supply line, and the argon plasma flow is changed to a nitrogen plasma flow. The reason for starting with an argon gas flow is to facilitate plasma ignition, which may not be necessary depending on the device. After adjusting the flow rate of nitrogen gas and high-frequency power to adjust the length of the nitrogen plasma flow 10 and the plasma temperature, a silicon compound is introduced through the communication holes 14a and 14b. At this time, the temperature of the silicon compound injection region of the nitrogen plasma stream 10 is measured from the outside through a peephole with an optical pyrometer or the like, and the temperature is determined to be an appropriate plasma temperature. At the same time as introducing the silicon compound, for example, the communicating hole 14
Other easily dissociated nitrogen compounds such as ammonia gas may be introduced into the plasma stream from b. Also, part of the nitrogen gas for the plasma flow may be argon gas. This serves to promote the reaction to silicon nitride. The pressure inside the plasma furnace during stable operation may be reduced pressure, atmospheric pressure, or slightly increased pressure. A slightly higher pressure than atmospheric pressure is advantageous because the reaction rate increases. The silicon nitride produced is very fine particles, especially spherical fine powder silicon nitride. The generated fine powder silicon nitride is discharged into the lower chamber 12 and deposited on the bottom thereof, and some of it adheres to the wall surface. It is also possible to discharge this from the vacuum exhaust pipe 18 and separate and recover only the fine powder using a separator provided in the middle.
On the other hand, the reaction gas and other gases are discharged through the gas vent pipe 15.

次に実施例によつて本発明のより詳細な説明を
する。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 第1図のような装置を用い、原料成分として四
塩化珪素(SiCl4)を用いて微粉状窒化珪素を合成
した。使用した装置はターフア社(米国.
TAFA CO.タイプ56)のもので出力30KWであ
る。先ず系内を減圧しアルゴンガスで置換したの
ち高周波誘導加熱にてアルゴンプラズマ流を形成
させた。次に窒素ガスを徐々に導入すると共にア
ルゴンガスを減少して窒素主体のプラズマ流とし
た。プラズマの安定化のために幾分かのアルゴン
ガスの導入を継続した。この割合は導入される窒
素ガス9.6/minに対しアルゴンガス5/min
であつた。
Example 1 Fine powder silicon nitride was synthesized using an apparatus as shown in FIG. 1 and using silicon tetrachloride (SiCl 4 ) as a raw material component. The equipment used was manufactured by Tarhua Corporation (USA).
It is made by TAFA CO. Type 56) and has an output of 30KW. First, the pressure inside the system was reduced and replaced with argon gas, and then an argon plasma flow was formed by high-frequency induction heating. Next, nitrogen gas was gradually introduced and argon gas was reduced to create a nitrogen-based plasma flow. Some argon gas was continued to be introduced for plasma stabilization. This ratio is 9.6/min of nitrogen gas introduced and 5/min of argon gas introduced.
It was hot.

次に50℃の加温バスに浸された容器のSiCl4
3.85ml/minの割合で0.5〜1/minのH2キヤリ
アにのせ、アンモニアガス1/minと共に連通
孔14a及び14bから導入した。この際の炉内
圧は常圧であり、高周波出力は28KW一定とし
た。チヤンバー12内にて捕集された微粉末生成
物を次に450℃で加熱することにより、含まれて
いる塩化アンモニウムを揮発除去せしめ、得られ
た残余の微粉状窒化珪素を電子顕微鏡で観察した
結果、ほぼ球状で0.3〜0.5μの粒径を有する微粒
子であつた。またこの粉体のX線回折パターン
(X線源としてCuKα)をモデル化したものは第
2図のようになり、この微粉状窒化珪素の結晶構
造としてはβ型を含まずα型のみからなることが
わかつた。
Then SiCl 4 in a container immersed in a 50℃ heating bath.
It was placed on a H 2 carrier of 0.5 to 1/min at a rate of 3.85 ml/min, and was introduced from communication holes 14a and 14b together with ammonia gas at 1/min. The pressure inside the furnace at this time was normal pressure, and the high frequency output was constant at 28KW. The fine powder product collected in chamber 12 was then heated at 450°C to volatilize and remove the ammonium chloride contained therein, and the remaining fine powder silicon nitride obtained was observed using an electron microscope. As a result, the particles were approximately spherical and had a particle size of 0.3 to 0.5μ. In addition, the modeled X-ray diffraction pattern of this powder (CuKα as the X-ray source) is shown in Figure 2, and the crystal structure of this fine powder silicon nitride consists of only the α-type and not the β-type. I found out.

実施例 2 実施例1と同様な装置及び手順で微粉状窒化珪
素を合成した。但し原料成分はシラン(SiH4)を
用い、導入する窒素ガス及びアルゴンガスは各々
10/min及び7.6/minとし、2ml/minのシ
ランを6/minのアンモニアガスと共に導入し
た。その際の炉内圧は常圧で高周波出力は30KW
一定とした。得られた微粉末を450℃の温度で加
熱し、したのち実施例1と同様な方法でこれを分
析したところ、粒径0.3〜0.5μの実質的にβ型結
晶を含まないほぼ球状のα型窒化珪素が得られた
ことがわかつた。
Example 2 Finely powdered silicon nitride was synthesized using the same equipment and procedure as in Example 1. However, the raw material component is silane (SiH 4 ), and the introduced nitrogen gas and argon gas are each
10/min and 7.6/min, and 2 ml/min of silane was introduced together with 6/min of ammonia gas. At that time, the pressure inside the furnace is normal pressure and the high frequency output is 30KW.
It was set as constant. The obtained fine powder was heated at a temperature of 450°C, and then analyzed in the same manner as in Example 1. As a result, it was found that almost spherical α particles with a particle size of 0.3 to 0.5 μ and substantially no β-type crystals were formed. It was found that type silicon nitride was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の具体例を示す説明図で
ある。第2図は本発明の方法より得られた微粉状
窒化珪素の一例のX線回折パターンをモデル化し
た図である。 1…プラズマ炉、2…窒素ガス導入口、3…プ
ラズマ発生室、4…石英管、7…水冷室、8…高
周波コイル、9…高周波発生装置、10…プラズ
マ流、12…チヤンバー。
FIG. 1 is an explanatory diagram showing a specific example of the method of the present invention. FIG. 2 is a modeled X-ray diffraction pattern of an example of fine powder silicon nitride obtained by the method of the present invention. 1... Plasma furnace, 2... Nitrogen gas inlet, 3... Plasma generation chamber, 4... Quartz tube, 7... Water cooling chamber, 8... High frequency coil, 9... High frequency generator, 10... Plasma flow, 12... Chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 窒素及び又は窒素形成ガス流に高周波誘導加
熱をして得られる窒素プラズマ流の加熱ゾーンを
通過した後の温度降下領域において、プラズマ流
の周囲から旋回流で、又は下流方向から上流方向
に向け傾斜して、ハロゲン化珪素または水素化珪
素を吹き込み、該プラズマ中の窒素と反応させて
高純度のほぼ球形の微粉状のα型窒化珪素を製造
することを特徴とする微粉状窒化珪素の製造法。
1. In the temperature drop region after passing through the heating zone of the nitrogen plasma flow obtained by high-frequency induction heating of the nitrogen and/or nitrogen-forming gas flow, from the periphery of the plasma flow in a swirling flow or from the downstream direction to the upstream direction. Production of fine powder silicon nitride, characterized in that silicon halide or silicon hydride is injected at an angle and reacted with nitrogen in the plasma to produce high purity, approximately spherical, fine powder α-type silicon nitride. Law.
JP2537979A 1979-03-05 1979-03-05 Manufacture of finely powdered silicon nitride Granted JPS55116604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2537979A JPS55116604A (en) 1979-03-05 1979-03-05 Manufacture of finely powdered silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2537979A JPS55116604A (en) 1979-03-05 1979-03-05 Manufacture of finely powdered silicon nitride

Publications (2)

Publication Number Publication Date
JPS55116604A JPS55116604A (en) 1980-09-08
JPS6229364B2 true JPS6229364B2 (en) 1987-06-25

Family

ID=12164212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2537979A Granted JPS55116604A (en) 1979-03-05 1979-03-05 Manufacture of finely powdered silicon nitride

Country Status (1)

Country Link
JP (1) JPS55116604A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950007A (en) * 1982-09-13 1984-03-22 Toa Nenryo Kogyo Kk Precursor for sintered silicon nitride body and manufacture of sintered silicon nitride body using it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128900A (en) * 1976-02-17 1977-10-28 Montedison Spa Plasmaarc method for producing particulate ceramic metal and similar products
JPS5377000A (en) * 1976-12-20 1978-07-07 Ppg Industries Inc Recovery of refractory hard alloy powdered products

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128900A (en) * 1976-02-17 1977-10-28 Montedison Spa Plasmaarc method for producing particulate ceramic metal and similar products
JPS5377000A (en) * 1976-12-20 1978-07-07 Ppg Industries Inc Recovery of refractory hard alloy powdered products

Also Published As

Publication number Publication date
JPS55116604A (en) 1980-09-08

Similar Documents

Publication Publication Date Title
Lee et al. Preparation of ultrafine silicon nitride, and silicon nitride and silicon carbide mixed powders in a hybrid plasma
US5356120A (en) Device for producing finely-divided metal and ceramic powder
KR19990023573A (en) Manufacturing method of high pure silicon particle
IE50240B1 (en) A method of vapour phase growth and apparatus therefor
US3625846A (en) Chemical process and apparatus utilizing a plasma
US5384306A (en) Fine-particle oxide ceramic powders
US5389585A (en) Fine non-oxide ceramic powders
KR20040025590A (en) Deposition of a solid by thermal decomposition of a gaseous substance in a cup reactor
US4950373A (en) Process for the production of disilane from monosilane
WO1993002787A1 (en) Process for the production of ultra-fine powdered materials
Akashi Progress in thermal plasma deposition of alloys and ceramic fine particles
EP0334791A1 (en) Process for the preparation of silicon nitride
JPS6229364B2 (en)
JPS5939708A (en) Manufacture of fine silicon carbide powder
JPH0352402B2 (en)
JP2003002628A (en) Apparatus and method for manufacturing silicon
JPH0127773B2 (en)
JPS5941772B2 (en) Ultrafine powder synthesis furnace
JPH01115810A (en) Production of ultrafine powder of high-purity tungsten carbide of cubic system
JP3444387B2 (en) Manufacturing method of aluminum nitride
JPS6259507A (en) Production of ultrafine powder of ti nitride and device therefor
JPS59162110A (en) Preparation of fine powder of silicon nitride
JPS6234416B2 (en)
JPS5825045B2 (en) Method for producing SiC ultrafine particles
JPS6241704A (en) Synthesis of aluminum nitride