JPS62293128A - Method and device for continuous measurement of temperature of molten metal - Google Patents

Method and device for continuous measurement of temperature of molten metal

Info

Publication number
JPS62293128A
JPS62293128A JP61137097A JP13709786A JPS62293128A JP S62293128 A JPS62293128 A JP S62293128A JP 61137097 A JP61137097 A JP 61137097A JP 13709786 A JP13709786 A JP 13709786A JP S62293128 A JPS62293128 A JP S62293128A
Authority
JP
Japan
Prior art keywords
temperature
molten metal
molten steel
lance
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61137097A
Other languages
Japanese (ja)
Inventor
Koji Matsunari
松成 浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61137097A priority Critical patent/JPS62293128A/en
Publication of JPS62293128A publication Critical patent/JPS62293128A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • G01J5/004Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids by molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • G01J5/051Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path using a gas purge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure the temperature of molten metal securely and continuously by correcting the temperature measured value of molten steel whose temperature is measured by a radiation thermometer through an optical fiber provided in a lance. CONSTITUTION:When the temperature of the molten steel 2 in a converter 1 is measured during blowing, oxygen is injected from the injection port 4a of the lance 4 for blowing and the thermocouple 8 of a sublance 9 is dipped in the molten steel 2 at the same time. At this time, the tip part of the optical fiber 6 is protected by the oxygen which passes through its periphery at a very fast speed against a splash, etc., generated on the surface of the molten steel 2, and also cooled. Then, light emitted by the molten steel 2 is transmitted to the radiation thermometer 7 through the optical fiber 6 to measure the temperature, which is sent out to a correcting computing element 11. Thermoelectromotive force corresponding to the temperature of the molten steel 2 generated at the thermocouple 8 is sent out to the computing element 11 through a converter l0. The computing element 11 corrects the emissivity of the temperature measurement output of the thermometer 7 with the temperature measurement output of the converter 10 to display the real temperature of the molten steel 2 on a display device 12.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、ランスから噴出させるガスにより容器内で各
種化学反応を誘起させ、選択的に不純物元素を除去して
昇温する転炉のガス吹錬に供され、溶湯の温度を連続的
に測定する溶湯の連続測温方法及びその装置に関するも
のである。
[Detailed description of the invention] 3. Detailed description of the invention [Industrial application field] The present invention induces various chemical reactions in a container with gas ejected from a lance to selectively remove impurity elements. The present invention relates to a continuous temperature measurement method and apparatus for continuously measuring the temperature of molten metal that is subjected to gas blowing in a converter whose temperature increases.

〔従来技術〕[Prior art]

従来、精錬炉等の容器内に収容された溶湯の測温は、操
業者の手作業による測温、或いはサブランス内に設けら
れた熱電対を溶湯に浸漬することによる測温等が行われ
ている。しかし、このような溶湯の測温方法は、間欠的
な測温方法であり、連続的に溶湯温度を知ることができ
ないばかりか、前者の方法にあっては、作業性にも問題
を有することになる。
Conventionally, the temperature of molten metal stored in a container such as a smelting furnace has been measured manually by the operator, or by immersing a thermocouple installed in a sublance into the molten metal. There is. However, this method of measuring the temperature of molten metal is an intermittent temperature measurement method, and not only is it not possible to continuously determine the temperature of the molten metal, but the former method also has problems with workability. become.

そこで、このような不都合を解消するために、特開昭6
0−165526公報に開示された「精錬炉の溶融物測
温装置」、或いは特開昭60−105929公報に開示
された「溶融金属の測温方法j等が先に提案されている
。前者は、精錬炉の炉壁適所に貫通口を穿設してこの貫
通口にガス吹込用導管を挿入して固定し、この導管に光
フアイバーケーブルの端面を臨ませて配備し、光フアイ
バーケーブルを介して光学式温度測定器により炉内の溶
融物の温度を測定するようにしたものである。一方、後
者は、第4図に示すように、タンディツシュ20内の溶
湯21に消耗型熱電対22を浸漬して測温すると共に、
中空状の耐熱管23を介して放射温度計24にて溶湯を
測温し、これら各測温値を補正演算して溶湯の温度を連
続的に測定するものである。
Therefore, in order to eliminate such inconvenience,
``Method for measuring temperature of molten metal in a smelting furnace'' disclosed in Japanese Patent Application Laid-open No. 0-165526 and ``Method for measuring temperature of molten metal J'' disclosed in Japanese Patent Application Laid-open No. 60-105929 were previously proposed. A through-hole is drilled in the furnace wall of the refining furnace at an appropriate location, a gas injection conduit is inserted and fixed into this through-hole, and the end face of the optical fiber cable is placed facing this conduit, and the optical fiber cable is inserted through the refining furnace. The temperature of the molten material in the furnace is measured using an optical temperature measuring device.On the other hand, in the latter method, as shown in FIG. In addition to soaking and measuring temperature,
The temperature of the molten metal is measured by a radiation thermometer 24 through a hollow heat-resistant tube 23, and each of these measured temperature values is corrected and calculated to continuously measure the temperature of the molten metal.

ところが、上記従来の構造では、一定の条件下において
連続的に溶湯の測温を行い得るものの、前者は、第5図
に示すようにパージ用ガスに酸素(02)以外のガスを
用いたときには、炉壁25に設けられたガス吹込用の貫
通口26にマツシュルーム27と称される生成物が生じ
、このマツシュルーム27に妨害されて溶湯28の温度
が測定不可能となる。また、後者は、耐熱管23に溶損
による消耗が生じ、吹錬中における溶湯の測温が不可能
となる等の欠点を有していた。
However, although the conventional structure described above allows the temperature of the molten metal to be measured continuously under certain conditions, as shown in FIG. A product called a pine mushroom 27 is generated in the gas injection through-hole 26 provided in the furnace wall 25, and the molten metal 28 is obstructed by the pine mushroom 27, making it impossible to measure the temperature of the molten metal 28. Furthermore, the latter has the disadvantage that the heat-resistant tube 23 is consumed due to melting damage, making it impossible to measure the temperature of the molten metal during blowing.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来の問題点を考慮してなされたもので
あって、確実に連続的な測温を行うことができる溶湯の
連続測温方法及びその装置の提供を目的とするものであ
る。
The present invention has been made in consideration of the above-mentioned conventional problems, and aims to provide a method and device for continuous temperature measurement of molten metal that can reliably and continuously measure temperature. .

〔発明の構成〕[Structure of the invention]

本第1発明に係る溶湯の連続測温方法は、上記の目的を
達成するために、ランスから噴出されるガスにより精錬
される溶湯の温度を連続的に測定する溶湯の連続測温方
法において、溶湯に消耗型の熱電対を浸漬して測温する
と共に、ランス内に設けた光ファイバーを通じて放射温
度計にて溶湯を測温し、この測温値を上記熱電対の測温
値により補正演算して溶湯の温度を測定するように構成
したことを特徴とするものである。
In order to achieve the above object, the continuous temperature measurement method for molten metal according to the first aspect of the present invention is a continuous temperature measurement method for molten metal that continuously measures the temperature of molten metal refined by gas ejected from a lance. A consumable thermocouple is immersed in the molten metal to measure the temperature, and a radiation thermometer is used to measure the temperature of the molten metal through an optical fiber installed in the lance, and this temperature value is corrected and calculated using the temperature value measured by the thermocouple. The device is characterized in that it is configured to measure the temperature of the molten metal.

また本第2発明に係る溶湯の連続測温装置は、上記の目
的を達成するために、ランスから噴出されるガスにより
精錬される溶湯の温度を連続的に測定する溶湯の連続測
温装置において、溶湯に浸漬して測温を行う消耗型の熱
電対と、ランスのガス噴射口に先端部を固定してランス
内に配設され、後端部が放射温度計と接続された光ファ
イバーと、この光ファイバーを通じて得た溶湯の放射光
によって溶湯の測温を行う放射温度計と、上記熱電対の
測温値により放射温度計の測温値を補正演算して溶湯の
温度を測定する補正演算器とを備え、溶湯の連続的な測
温を行うことができるように構成したことを特徴とする
ものである。
Further, in order to achieve the above object, there is provided a continuous temperature measuring device for molten metal according to the second invention, which continuously measures the temperature of the molten metal refined by the gas ejected from the lance. , a consumable thermocouple that measures temperature by immersing it in molten metal, and an optical fiber whose tip is fixed to the gas injection port of the lance and placed inside the lance, and whose rear end is connected to a radiation thermometer. A radiation thermometer that measures the temperature of the molten metal using the radiant light of the molten metal obtained through the optical fiber, and a correction calculator that measures the temperature of the molten metal by correcting the temperature value of the radiation thermometer using the temperature value measured by the thermocouple. The device is characterized in that it is configured to be able to continuously measure the temperature of the molten metal.

〔実施例1〕 本発明の一実施例を第1図及び第2図に基づいて説明す
れば、以下の通りである。
[Example 1] An example of the present invention will be described below based on FIGS. 1 and 2.

溶湯の連続測温装置は、第1図に示すように、溶鋼2が
収容された転炉1内に、下端部にガス噴射口4aを有す
る吹錬用ランス4が挿入されている。この吹錬用ランス
4には高圧の酸素(0□)を供給するための図示しない
酸素供給手段が接続されている。上記の溶鋼2上には溶
融スラグ3が生じている。上記吹錬用ランス4内には計
装エアー配管5が配設され、さらにこの計装エアー配管
5内部には光ファイバー6が配設されている。光ファイ
バー6の先端部は、上記吹錬用ランス4のガス噴射口4
aにおける中心部付近に固定されており、後端部は放射
温度計7に接続されている。
As shown in FIG. 1, the continuous temperature measurement device for molten metal includes a blowing lance 4 having a gas injection port 4a at its lower end inserted into a converter 1 containing molten steel 2. This blowing lance 4 is connected to an oxygen supply means (not shown) for supplying high pressure oxygen (0□). Molten slag 3 is generated on the molten steel 2 described above. An instrumentation air pipe 5 is disposed within the blowing lance 4, and an optical fiber 6 is disposed within the instrumentation air pipe 5. The tip of the optical fiber 6 is connected to the gas injection port 4 of the blowing lance 4.
It is fixed near the center at point a, and the rear end is connected to the radiation thermometer 7.

また、転炉1には先端部に熱電対8が配設されたサブラ
ンス9が設けられており、熱電対8は変換器10と接続
されている。上記放射温度計7及び変換器10は、放射
温度計7の測温出力を変換器10の測温出力により補正
演算する補正演算器11と接続され、この補正演算器1
1は温度表示を行う表示器12と接続されている。
Further, the converter 1 is provided with a sub-lance 9 having a thermocouple 8 disposed at its tip, and the thermocouple 8 is connected to a converter 10 . The radiation thermometer 7 and the converter 10 are connected to a correction calculator 11 that corrects the temperature measurement output of the radiation thermometer 7 using the temperature measurement output of the converter 10.
1 is connected to a display 12 that displays temperature.

上記の構成において、吹錬中における転炉1内の溶鋼2
の温度を連続的に測定する場合には、吹錬用ランス4の
ガス噴射口4aから酸素供給手段より送出される酸素を
噴出させると同時に、サブランス9の熱電対8を溶鋼2
中に浸漬する。上記ガス噴射口4aから噴出される高圧
の酸素により、第2図に示すように、溶鋼2上の溶融ス
ラグ3は側方に排除され、溶鋼2の吹錬が行われる。こ
のときには、光ファイバー6の先端部は、その周囲を超
高速で通過する酸素によって溶湯2表面から発生するス
プラッシュ及びフエーム等から保護されると同時に、冷
却される。溶鋼2から放射された放射光は光ファイバー
6を通じて放射温度計7に伝達され、溶鋼2の温度が測
定される。そして、その測温出力が補正演算器11に送
出される。一方、熱電対8に生じた溶鋼2の温度に相当
する熱起電力は変換器10を介して補正演算器11に送
出される。補正演算器11では、変換器10から送出さ
れる測温出力により、放射温度計7の測温出力における
放射率を補正して、真の溶!2の温度を表示器12に表
示させる。以上の過程により、溶鋼2を吹錬しながら溶
m2の測温が連続的に行われる。
In the above configuration, the molten steel 2 in the converter 1 during blowing
When continuously measuring the temperature of the molten steel 2, the thermocouple 8 of the sub-lance 9 is connected to the molten steel 2.
immerse in it. As shown in FIG. 2, the molten slag 3 on the molten steel 2 is removed to the side by the high-pressure oxygen ejected from the gas injection port 4a, and the molten steel 2 is blown. At this time, the tip of the optical fiber 6 is protected from splashes, flames, etc. generated from the surface of the molten metal 2 by the oxygen passing around it at an extremely high speed, and at the same time is cooled. Radiant light emitted from the molten steel 2 is transmitted to the radiation thermometer 7 through the optical fiber 6, and the temperature of the molten steel 2 is measured. Then, the temperature measurement output is sent to the correction calculator 11. On the other hand, the thermoelectromotive force generated in the thermocouple 8 and corresponding to the temperature of the molten steel 2 is sent to the correction calculator 11 via the converter 10. The correction calculator 11 corrects the emissivity in the temperature measurement output of the radiation thermometer 7 using the temperature measurement output sent from the converter 10, and calculates the true temperature value! 2 on the display 12. Through the above process, the temperature of the molten steel m2 is continuously measured while blowing the molten steel 2.

〔実施例2〕 本発明の他の実施例を第3図に基づいて以下に説明する
。尚、前記実施例1と同一の機能を有する部材には同じ
符号を付記してその説明を省略する。
[Embodiment 2] Another embodiment of the present invention will be described below based on FIG. Incidentally, members having the same functions as those in the first embodiment are given the same reference numerals, and their explanations will be omitted.

本実施例は、本出願人が先に提案した「ガス精練容器内
溶湯の連続分光分析法」を実施するための構成と、本発
明に係る前記第1図に示した構成とを組み合わせたもの
である。即ち、第1図に示した構成に加えて、光フアイ
バー6内に導かれた光を分割して取り出すハーフミラ−
13、このハーフミラ−13と分光分析H14及びレー
ザー発振器15とを接続する光ファイバー6a、光ファ
イバー6aを通じて得た光により溶鋼2の成分を分析す
る分光分析器14、レーザー発振器15、分光分析器1
4の出力を受け、この出力に適当な補正を加えて溶鋼2
の成分を表示する計算機16、及びこの計算機16と補
正演算器11との出力を受けて吹錬動作の制御を行う吹
錬制御部17を設けた構成である。吹錬用ランス4のガ
ス噴射口4aからは高圧の酸素が噴出されると同時に、
レーザー発振器15にて発生され、光ファイバー6a・
6を通じて伝達されたレーザー光が放射される。
This example is a combination of the configuration for implementing the "continuous spectroscopic analysis method of molten metal in a gas scouring vessel" previously proposed by the applicant and the configuration shown in FIG. 1 according to the present invention. It is. That is, in addition to the configuration shown in FIG. 1, a half mirror that splits and takes out the light guided into the optical fiber 6
13. Optical fiber 6a connecting this half mirror 13 with spectroscopic analysis H14 and laser oscillator 15, spectroscopic analyzer 14 that analyzes the components of molten steel 2 using light obtained through optical fiber 6a, laser oscillator 15, spectroscopic analyzer 1
Receive the output of 4, make appropriate corrections to this output, and make molten steel 2.
This configuration includes a computer 16 that displays the components of the air, and a blowing control section 17 that receives outputs from the computer 16 and the correction calculator 11 and controls the blowing operation. At the same time, high-pressure oxygen is ejected from the gas injection port 4a of the blowing lance 4.
It is generated by the laser oscillator 15, and is connected to the optical fiber 6a.
The laser light transmitted through 6 is emitted.

このレーザー光に照射された溶鋼2は蒸気化され、励起
されて発光する。この光が光ファイバー6a・6を通じ
て分光分析器14に入力され処理される。このような構
成により、溶鋼2の測温と成分分析とを同時にかつ連続
的に行うことができ、自動吹錬を行うことが可能となる
The molten steel 2 irradiated with this laser light is vaporized and excited to emit light. This light is input to the spectroscopic analyzer 14 through the optical fibers 6a and 6 and is processed. With such a configuration, temperature measurement and component analysis of the molten steel 2 can be performed simultaneously and continuously, and automatic blowing can be performed.

〔発明の効果〕 本第1発明の溶湯の連続測温方法は、以上のように、ラ
ンスから噴出されるガスにより精錬される溶湯の温度を
連続的に測定する溶湯の連続測温方法において、溶湯に
消耗型の熱電対を浸漬して測温すると共に、ランス内に
設けた光ファイバーを通じて放射温度計にて溶湯を測温
し、この測温値を上記熱電対の測温値により補正演算し
て溶湯の温度を測定する構成である。これにより、ガス
吹錬時の溶湯温度を確実にかつ連続測定することが可能
となる。
[Effects of the Invention] As described above, the continuous temperature measurement method for molten metal of the first invention includes the following steps: A consumable thermocouple is immersed in the molten metal to measure the temperature, and a radiation thermometer is used to measure the temperature of the molten metal through an optical fiber installed in the lance, and this temperature value is corrected and calculated using the temperature value measured by the thermocouple. This configuration measures the temperature of the molten metal. This makes it possible to reliably and continuously measure the temperature of the molten metal during gas blowing.

また、本第2発明の溶湯の連続測温装置は、以上のよう
に、ランスから噴出されるガスにより精錬される溶湯の
温度を連続的に測定する溶湯の連続測温装置において、
溶湯に浸漬して測温を行う消耗型の熱電対と、ランスの
ガス噴射口に先端部を固定してランス内に配設され、後
端部が放射温度計と接続された光ファイバーと、この光
ファイバーを通じて得た溶湯の放射光によって溶湯の測
温を行う放射温度計と、上記熱電対の測温値により放射
温度計の測温値を補正演算して溶湯の温度を測定する補
正演算器とを備えた構成である。これにより、ガス吹錬
時の溶湯温度を確実に連続測定することができる。従っ
て、吹錬における吹止のタイミングを的確に把握するこ
とができ、吹止の的中率が飛躍的に向上する。その結果
、吹錬時間が短縮され、さらには吹錬の自動化を図るこ
とができる等の効果を奏する。
Further, as described above, the continuous temperature measurement device for molten metal of the second invention continuously measures the temperature of the molten metal refined by the gas ejected from the lance.
A consumable thermocouple that measures temperature by immersing it in molten metal, an optical fiber whose tip is fixed to the gas injection port of the lance and placed inside the lance, and whose rear end is connected to a radiation thermometer. A radiation thermometer that measures the temperature of the molten metal using radiation light from the molten metal obtained through an optical fiber, and a correction calculator that measures the temperature of the molten metal by correcting the temperature value of the radiation thermometer based on the temperature value measured by the thermocouple. It is a configuration with. Thereby, the temperature of the molten metal during gas blowing can be reliably and continuously measured. Therefore, the timing of the blow-off during blowing can be accurately grasped, and the accuracy rate of the blow-off is dramatically improved. As a result, the blowing time is shortened, and the blowing process can be automated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成説明図、第2図は
第1図に示した転炉内の要部拡大図、第3図は本発明の
他の実施例を示す構成説明図、第4図は従来例を示す説
明図、第5図は他の従来例を示す要部説明図である。 1は転炉、2は溶鋼、4は吹錬用ランス、4aはガス噴
射口、6は光ファイバー、7は放射温度計、8は熱電対
、9はサブランス、10は変換器、11は補正演算器、
12表示器である。 特許出願人    株式会社 神戸製鋼所$1図 1パ3 第2図 $3図 第4図 $5図 (02Lスダυ
Fig. 1 is an explanatory diagram showing an embodiment of the present invention, Fig. 2 is an enlarged view of the main parts inside the converter shown in Fig. 1, and Fig. 3 is an explanatory diagram showing another embodiment of the invention. 4 are explanatory diagrams showing a conventional example, and FIG. 5 is an explanatory diagram of main parts showing another conventional example. 1 is a converter, 2 is molten steel, 4 is a blowing lance, 4a is a gas injection port, 6 is an optical fiber, 7 is a radiation thermometer, 8 is a thermocouple, 9 is a sublance, 10 is a converter, 11 is a correction calculation vessel,
12 display. Patent applicant: Kobe Steel, Ltd. $1 Figure 1 Part 3 Figure 2 Figure 3 Figure 4 Figure $5

Claims (1)

【特許請求の範囲】 1、ランスから噴出されるガスにより精錬される溶湯の
温度を連続的に測定する溶湯の連続測温方法において、
溶湯に消耗型の熱電対を浸漬して測温すると共に、ラン
ス内に設けた光ファイバーを通じて放射温度計にて溶湯
を測温し、この測温値を上記熱電対の測温値により補正
演算して溶湯の温度を測定することを特徴とする溶湯の
連続測温方法。 2、ランスから噴出されるガスにより精錬される溶湯の
温度を連続的に測定する溶湯の連続測温装置において、
溶湯に浸漬して測温を行う消耗型の熱電対と、ランスの
ガス噴射口に先端部を固定してランス内に配設され、後
端部が放射温度計と接続された光ファイバーと、この光
ファイバーを通じて得た溶湯の放射光によって溶湯の測
温を行う放射温度計と、上記熱電対の測温値により放射
温度計の測温値を補正演算して溶湯の温度を測定する補
正演算器とを備えたことを特徴とする溶湯の連続測温装
置。
[Claims] 1. A method for continuous temperature measurement of molten metal that continuously measures the temperature of molten metal refined by gas ejected from a lance,
A consumable thermocouple is immersed in the molten metal to measure the temperature, and a radiation thermometer is used to measure the temperature of the molten metal through an optical fiber installed in the lance, and this temperature value is corrected and calculated using the temperature value measured by the thermocouple. A method for continuous temperature measurement of molten metal characterized by measuring the temperature of molten metal. 2. In a continuous temperature measurement device for molten metal that continuously measures the temperature of molten metal refined by gas ejected from a lance,
A consumable thermocouple that measures temperature by immersing it in molten metal, an optical fiber whose tip is fixed to the gas injection port of the lance and placed inside the lance, and whose rear end is connected to a radiation thermometer. A radiation thermometer that measures the temperature of the molten metal using radiation light from the molten metal obtained through an optical fiber, and a correction calculator that measures the temperature of the molten metal by correcting the temperature value of the radiation thermometer based on the temperature value measured by the thermocouple. A continuous temperature measurement device for molten metal, characterized by comprising:
JP61137097A 1986-06-12 1986-06-12 Method and device for continuous measurement of temperature of molten metal Pending JPS62293128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61137097A JPS62293128A (en) 1986-06-12 1986-06-12 Method and device for continuous measurement of temperature of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61137097A JPS62293128A (en) 1986-06-12 1986-06-12 Method and device for continuous measurement of temperature of molten metal

Publications (1)

Publication Number Publication Date
JPS62293128A true JPS62293128A (en) 1987-12-19

Family

ID=15190793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61137097A Pending JPS62293128A (en) 1986-06-12 1986-06-12 Method and device for continuous measurement of temperature of molten metal

Country Status (1)

Country Link
JP (1) JPS62293128A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044475A1 (en) * 2001-10-30 2003-05-30 Techint Compagnia Tecnica Internazionale S.P.A. Device and method for discrete and continuous measurement of the temperature of molten metal in a furnace or recipient for its production or treatment
KR100775085B1 (en) 2006-05-10 2007-11-08 주식회사 포스코 Apparatus for measuring temperature profile of continous casting slab
US7690841B2 (en) * 2005-06-09 2010-04-06 Usinas Siderurgicas De Minas Gerais S.A. Usiminas Device for continuous temperature measurement of molten steel in the tundish using optical fiber and infra-red pyrometer
WO2017169486A1 (en) * 2016-03-31 2017-10-05 大陽日酸株式会社 Melting and smelting furnace for cold iron source and operating method for melting and smelting furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044475A1 (en) * 2001-10-30 2003-05-30 Techint Compagnia Tecnica Internazionale S.P.A. Device and method for discrete and continuous measurement of the temperature of molten metal in a furnace or recipient for its production or treatment
US7140765B2 (en) 2001-10-30 2006-11-28 Techint Compagnia Tecnica Internazionale S.P.A. Device and method for discrete and continuous measurement of the temperature of molten metal in a furnace or recepient for its production or treatment
CN100416242C (en) * 2001-10-30 2008-09-03 国际技术公司及国际技术公开有限公司 Device and method for discrete and continuous measurement of the temperature of molten metal in a furnace or recipient for its production or treatment
US7690841B2 (en) * 2005-06-09 2010-04-06 Usinas Siderurgicas De Minas Gerais S.A. Usiminas Device for continuous temperature measurement of molten steel in the tundish using optical fiber and infra-red pyrometer
KR100775085B1 (en) 2006-05-10 2007-11-08 주식회사 포스코 Apparatus for measuring temperature profile of continous casting slab
WO2017169486A1 (en) * 2016-03-31 2017-10-05 大陽日酸株式会社 Melting and smelting furnace for cold iron source and operating method for melting and smelting furnace
US11053559B2 (en) 2016-03-31 2021-07-06 Taiyo Nippon Sanso Corporation Melting and refining furnace for cold iron source and method of operating melting and refining furnace

Similar Documents

Publication Publication Date Title
US9726545B2 (en) Method and apparatus for measuring the temperature of a molten metal
JP6122902B2 (en) Equipment for measuring the temperature of molten metal
US20050145071A1 (en) System for optically analyzing a molten metal bath
KR100934525B1 (en) Apparatus and method for discrete and continuous measurement of the temperature of molten metal in a furnace or vessel for producing or processing molten metal
KR100321670B1 (en) Carbon content measuring method, optical measuring device and measuring device of steel in BOF container
EP1604146A1 (en) System for optically analyzing a molten bath
JPS62293128A (en) Method and device for continuous measurement of temperature of molten metal
US5830407A (en) Pressurized port for viewing and measuring properties of a molten metal bath
US6071466A (en) Submergible probe for viewing and analyzing properties of a molten metal bath
JP3351120B2 (en) Measuring method of hot metal temperature at taphole with optical fiber thermometer
AU2014250666B2 (en) Method and apparatus for measuring the temperature of a molten metal
JPH0464419B2 (en)
JP2002146426A (en) Method for measuring temperature of molten metal by radiation
JP4788089B2 (en) Molten metal component measuring device
JPS6061633A (en) Continuously measuring apparatus of temperature of melt in refining vessel
JP2636260B2 (en) Copper purification method in refinery furnace
JP2002168851A (en) Molten metal component measuring method and control method
JP2002098685A (en) Measuring probe for component of molten metal
JPS6454319A (en) Measuring method for temperature of molten metal
JP2005315777A (en) Spark radiation measurement method and apparatus therefor
JPS6362812A (en) Detector for slag foaming in converter
JPH085464A (en) Temperature measuring device using optical fiber for high temperature liquid
Ren et al. Experimental Research of Continuous Temperature Measurement for Molten Metal Bath through Bottom‐Blowing Component
JPS62254042A (en) Continuous spectral analysis of molten metal component in gas refining container
JP2822875B2 (en) Molten metal temperature measuring device