JPS62290833A - Carbonaceous material-containing non-calcined briquette - Google Patents

Carbonaceous material-containing non-calcined briquette

Info

Publication number
JPS62290833A
JPS62290833A JP13220286A JP13220286A JPS62290833A JP S62290833 A JPS62290833 A JP S62290833A JP 13220286 A JP13220286 A JP 13220286A JP 13220286 A JP13220286 A JP 13220286A JP S62290833 A JPS62290833 A JP S62290833A
Authority
JP
Japan
Prior art keywords
briquette
carbonaceous material
strength
porosity
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13220286A
Other languages
Japanese (ja)
Inventor
Hideo Koizumi
小泉 秀雄
Teruyasu Doi
土井 暉庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13220286A priority Critical patent/JPS62290833A/en
Publication of JPS62290833A publication Critical patent/JPS62290833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To provide a carbonaceous material-contg. non-calcined briquette which is decreased with the lowering in the strength in the reduction stage and is improved with the quality required for a blast furnace, etc., by adjusting the molding and voids of the non-calcined briquette contg. the carbonaceous material in metallic ore to a specific value range. CONSTITUTION:Metallic ore powder consisting of iron one such as hematite and magnetite and the carbonaceous materials such as powder coke or coal which contains carbon at the highest possible ratio and contains less harmful components such as sulfur are compound at a prescribed ratio. A binder such as lime cement and water and further added to such compd. and after the compd. is mixed and kneaded by using a mixing and kneading of a roll type, double spiral type, etc., the compd. is briquetted by a double roll type briquetting machine. A pillow shape or almond shape is most preferable for the shape of the briquette and the volume thereof is adequately 3-10cc. The molded briquette is formed to maintain the necessary strength such as dropping strength and crushing strength and the voids in the dry state is adjusted to 15-25%, by which the objective carbonaceous material-contg. non-calcined briquette is obtd.

Description

【発明の詳細な説明】 3、発明の詳細な説明 「産業上の利用分野] 本発明は炭材内装非焼成ブリケットに関し、さらに詳し
くは、鉄、クロム、マンガン等の金属鉱石から鉄、クロ
ム、マンガン等の金属を還元製錬する場合に使用する炭
材内装非焼成ブリケットに関する。
Detailed Description of the Invention 3. Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a carbonaceous interior non-fired briquette, and more specifically, it relates to a non-fired briquette with a carbonaceous interior, and more specifically, it is made from metal ores such as iron, chromium, manganese, etc. This invention relates to a non-fired briquette with a carbonaceous interior used in the reduction smelting of metals such as manganese.

5従来技術] 一般的に、鉄鉱石の還元ブC:セスと1−で現在実5[
)1化されているしのとして、旨炉法、Dfl法(直接
ノス元法また:よ、41元鉄製浩l去)があり、開発中
の主なものとして、溶融還元製鉄法がある。
5 Prior Art] In general, iron ore reduction process C: Seth and 1- are currently used to reduce iron ore to 5[
) Examples of methods that have been unified include the iron furnace method and the Dfl method (also known as the direct nosing method), and the main method currently under development is the smelting reduction method.

このような方法において使[[]5れる原料鉱石:よ、
高炉の場合は焼結鉱、ベレット、塊鉱石が使用され、直
接還元法の場合はベレット、塊鉱石が主として使用され
、溶融還元法の場合は粉鉱石をそのまま使用するか、あ
るいは、ベレットまたは塊鉱石が使用される場合がある
The raw material ore used in this method:
In the case of a blast furnace, sintered ore, pellets, and lump ore are used; in the case of the direct reduction method, pellets and lump ore are mainly used; in the case of the smelting reduction method, fine ore is used as is, or pellets or lumps are used. Ore may be used.

これらの他に、高炉、直接還元用として非焼成ベレット
、炭材内装非焼成ベレットが一部で使用されているが、
これは製鉄所内で発生するダスト類の処理を幻象として
いる場合が多く、非焼成ベレット、炭材内装非焼成ベレ
ットが全鉄鉱石に占めろ割合は極めて少ない。
In addition to these, unfired pellets and carbonaceous interior unfired pellets are used in some parts for blast furnaces and direct reduction.
This is often an illusion due to the processing of dust generated within steel mills, and unfired pellets and unfired pellets with carbonaceous material make up an extremely small proportion of total iron ore.

炭+4内装ベレットまたはブリケットの開発J5ろいは
実用化の状況は次の通りである。
The status of the development of charcoal + 4 interior pellets or briquettes and the practical application of J5 Roi is as follows.

印し、高炉用の炭材内装ベレットか開発5れて一部実用
化されているが、全鉄鉱石に占めろ割合は弾めて小さい
(鉄と鋼Vol  67、S l 04、同Vol 6
9.5780、同Vol 70 5102およびS 8
25)。また、直接a元法を対象として炭材内装非焼成
ベレットに関する病礎研究か実飄中て、5ろことか、鉄
とff、4Vol 68 、 S 28、同Vol 6
9.5768、同Vol 70.5824、同Vol 
72.S97に記載されている。
Although carbon-filled pellets for blast furnaces have been developed and partially put into practical use, their proportion in the total iron ore is extremely small (Tetsu to Hagane Vol. 67, Sl 04, Vol. 6).
9.5780, Vol 70 5102 and S 8
25). In addition, we have conducted fundamental research on unfired pellets with carbonaceous interior for the direct a method, 5th grade, iron and ff, Vol. 68, S. 28, Vol. 6.
9.5768, same Vol 70.5824, same Vol
72. It is described in S97.

また、海外では、MTU−PTC法等があり、このMT
U−PTC法はMichigan Technolog
yUniVerSityとPe1let Techno
logy Corp、が開発中のものであり、炭材内装
非焼成ベレットを高炉、キュポラ、直接3元用として供
給するものである。
In addition, overseas, there are MTU-PTC laws, etc., and this MT
The U-PTC method is developed by Michigan Technology
yUniVerSity and Pe1let Techno
This project is being developed by Logy Corp. and will supply unfired pellets with carbonaceous interior for use in blast furnaces, cupolas, and direct ternary applications.

本発明者は先に重質油の熱分解プロセスと組合わせた方
法による炭材内装非焼成ベレット、炭材内装非焼成ブリ
ケットを開発し、また、炭材内装非焼成ブリケットを5
00℃以下の低温で硬化させる方法および炭材内装非焼
成ブリケットの製造方法について既に出願を完了してい
る。
The present inventor has previously developed a carbon-based non-fired pellet and a carbon-based non-fired briquette by combining a heavy oil pyrolysis process, and also developed a carbon-based non-fired briquette.
Applications have already been filed for a method for curing at a low temperature of 00° C. or lower and a method for producing non-fired briquettes with carbon material interior.

炭材内装非焼成ベレットおよび炭材内装非焼成ブリケッ
トは、これ以外の鉄鉱石類に比較して還元速度が著しく
速いという利点があるが、問題も多く未だ本格的な実用
化がなされていない。この問題点の一つとして炭材内装
非焼成ベレットまたはブリケットは還元時の気孔率(空
隙率)が著しく高く、従って、還元時の強度が昔しく低
下することが挙げられる。そして、従来においては気孔
率を調整するという技術は開発されていない。
Unfired pellets with carbonaceous material and unfired briquettes with carbonaceous material have the advantage of a significantly faster reduction rate than other iron ores, but they have many problems and have not yet been put into practical use. One of the problems is that unfired pellets or briquettes containing carbonaceous material have a significantly high porosity (porosity) during reduction, and therefore, their strength during reduction deteriorates over time. Conventionally, no technology for adjusting porosity has been developed.

なお、クロム、マンガンとうの製錬方法は、高炉等シャ
フト炉やロータリーキルンを使用する場合には、鉄鉱石
の技術の応用が可能であり、炭材内装非焼成ベレットお
よびブリケットを使用することができる。
In addition, when using a shaft furnace such as a blast furnace or a rotary kiln, the smelting method for chromium and manganese can be applied to iron ore technology, and unfired pellets and briquettes with carbonaceous material can be used. .

[発明が解決しようとする問題点コ 本発明は上記に説明したような炭材内装非焼成ベレット
およびブリケットの多くの研究、または、従来使用され
ていた炭材内装非焼成ベレットおよびブリケットの問題
点に鑑み、本発明者が鋭き研究を行い、検討を重ねた結
果、事前処理鉱の一つである炭材内装非焼成ブリケット
の還元時の強度低下を軽減し、高炉等で要求される品質
の向上を図ることができる炭材内装非焼成ブリケットを
開発したのである。
[Problems to be Solved by the Invention] The present invention is based on many studies on carbon-incorporated non-fired pellets and briquettes as explained above, or the problems of conventionally used carbon-incorporated non-fired pellets and briquettes. In view of this, the present inventor has conducted in-depth research and as a result of repeated consideration, it has been possible to reduce the strength loss during reduction of unfired briquettes with a carbonaceous interior, which is one of the pre-treated ores, and to achieve the quality required for blast furnaces, etc. We have developed a non-fired briquette with a carbonaceous interior that can improve the performance.

[問題点を解決するための手段] 本発明に係る炭材内装非焼成ブリケットの特徴とすると
ころは、金属鉱石に炭材が内装されている非焼成ブリケ
ットの成形、乾燥後の空隙率が15〜25%であること
にある。
[Means for Solving the Problems] The feature of the non-fired briquette with carbonaceous material according to the present invention is that the porosity after forming and drying the non-fired briquette in which carbonaceous material is embedded in metal ore is 15. ~25%.

本発明に係る炭材内装非焼成ブリケットについて以下詳
細に説明する。
The carbonaceous interior unfired briquette according to the present invention will be described in detail below.

金属鉱石としての鉄鉱石は、赤鉄鉱、磁鉄鉱、磁鉄鉱が
使用され、また、炭材は通常使用されている粉コークス
、石炭等で極力炭素量が多く、かつ、硫黄等の有害成分
の少ないしのが好ましい。
The iron ore used as a metal ore is hematite, magnetite, and magnetite, and the carbonaceous material is commonly used coke powder, coal, etc., which has as much carbon as possible and has little harmful components such as sulfur. is preferable.

鉄鉱石および炭材は粉状のものを使用するが、一部粒度
の粗いしのが含まれる場合は適当な粉砕機により粉砕し
て使用するか、目標粒度は京料性状や製造工程によって
異なり、例えば、325メソンユ(4・1μm)より細
かいらのの割合が20〜70%、最大粒度が1〜2mm
とする。
Iron ore and carbonaceous materials are used in powder form, but if they contain coarse particles, they must be crushed using an appropriate crusher, or the target particle size will vary depending on the properties of the material and the manufacturing process. For example, the proportion of particles finer than 325 mesonyu (4.1 μm) is 20 to 70%, and the maximum particle size is 1 to 2 mm.
shall be.

このように、粒塵調整された鉄鉱石および炭材を所定の
割合に配合し、さらに、バインダーおよび水分を添加し
て充分に混合・混練を行う。この時の炭材の配合割合は
炭素量換算で5〜15%と+A− ま1こ、バインダーとしては石灰系のセメント(ポルト
ランドセメント)が最ら一般的であるが、その他、各種
の樹脂等有機化合物を使用することも可能であり、いず
れの場合ら還元工程における有害成分の少ないことが好
ましく、石灰系セメントの場合、石膏含有量の少ないこ
とが望ましい。そして、バインダーおよび水分の添加量
は使用するバインダーや製造条件によって異なるが、石
灰系セメントの場合5%前後、水分添加量は4〜6%が
適正範囲である。
In this way, the iron ore and the carbonaceous material whose particle dust has been adjusted are blended in a predetermined ratio, and then a binder and water are added and thoroughly mixed and kneaded. The blending ratio of carbonaceous material at this time is 5 to 15% in terms of carbon content.The most common binder is lime-based cement (Portland cement), but there are also various resins, etc. It is also possible to use organic compounds; in each case it is preferred that there be a low content of harmful components in the reduction step, and in the case of lime-based cements, a low gypsum content is desirable. The amount of binder and water added varies depending on the binder used and manufacturing conditions, but in the case of lime-based cement, the appropriate range is around 5%, and the amount of water added is 4 to 6%.

混合・混練装置は、ロール型、ダブルスパイラル型、回
転羽根型環一般的な装置でよい。
The mixing/kneading device may be a roll type, double spiral type, or rotating vane type device.

次いて、混合・混練された原料は、成形工程に送られ、
ダブルロール型ブリケット製造機によりブリケットを製
造する。製造されたブリケットの形状は枕形またはアー
モンド型が最も好ましく、容積は3〜l0ccI)<適
当である。
Next, the mixed and kneaded raw materials are sent to the molding process,
Briquettes are manufactured using a double roll briquette making machine. The shape of the produced briquettes is most preferably pillow-shaped or almond-shaped, and the volume is suitably 3 to 10 ccI).

成形されたブリケットの性状は落下強度、下漬強度等の
必要な強度を保持させろと共に乾燥状態における空隙率
を15〜25%に調整する。
The properties of the formed briquettes are adjusted to maintain necessary strengths such as drop strength and submerged strength, and to adjust the porosity in the dry state to 15 to 25%.

空隙率を15〜25%とするのは、ブリケットの還元さ
れた状態におけろ強、度低下を極力抑えるのに空隙率を
小さくすることが有効であり、一方、被還元性を確保す
るためにはある程度高くする必要があり、この両者を満
足ずろ範囲として空隙率は15〜25%の範囲が適正で
ある。
The reason for setting the porosity to 15 to 25% is that it is effective to reduce the porosity in order to minimize the decrease in strength and strength of the briquettes in the reduced state, and on the other hand, to ensure reducibility. It is necessary to increase the porosity to some extent, and assuming that both of these conditions are satisfied, the appropriate porosity is in the range of 15 to 25%.

しかして、一般的に鉄鉱石は還元されると酸素が除去さ
れて空隙率が増大ずろが、炭材内装非焼成ブリケットの
場合はバインダーや一部の炭材が揮発、反応によって除
かれるため還元による空隙率の増大が特に著しく、その
ために強度か大幅に低下するという問題がある。そして
、還元された状態での空隙率増大を最小限に抑えるため
、成形後の空隙率を低くすることが有効である。
Generally, when iron ore is reduced, oxygen is removed and the porosity increases, but in the case of unfired briquettes with carbonaceous material, the binder and some of the carbonaceous material are volatilized and removed by reaction, so the porosity increases. There is a problem in that the increase in porosity due to porosity is particularly significant, resulting in a significant decrease in strength. In order to minimize the increase in porosity in the reduced state, it is effective to lower the porosity after molding.

この空隙率は原料鉱石や炭材の性状、粒度および水分添
加量によって変化するが、ブリケット製造機の運転条件
によって調節することが可能であり、運転条件としては
ロール圧、ロール間隙、ロール回転速度と原料供給速度
の比等が影響し、特に、ロール圧の影響が大きい。
This porosity varies depending on the properties of the raw material ore and carbon material, particle size, and amount of water added, but it can be adjusted by the operating conditions of the briquette making machine, and the operating conditions include roll pressure, roll gap, and roll rotation speed. The ratio of the raw material supply speed and the raw material supply rate, etc. have an influence, and the influence of the roll pressure is particularly large.

このようにして製造された炭材内装非焼成ブリケットは
、適当な養生により硬化させた後、高炉、直接還元炉等
の還元装置で使用する。養生方法としては大気中に放置
するか、また、急速便化が必要な場合は温度(約100
°C)、湿度を調節して行う。
The thus produced unfired briquettes containing carbonaceous material are hardened by appropriate curing and then used in a reduction device such as a blast furnace or a direct reduction furnace. The curing method is to leave it in the air, or if rapid faecalization is required, at a temperature (approximately 100℃).
°C) and humidity.

[実 施 例] 本発明に係る炭材内装非焼成ブリケットの実施例を説明
する。
[Example] An example of the carbon-based non-fired briquette according to the present invention will be described.

実施例 第1表に示す赤鉄鉱と磁選精鉱を6:4の割合で配合し
、炭材として無煙炭を10%、バインダーとして早強セ
メントを5%添加し、水分を55%に調節して、ロール
ミキサーで充分に混合・混練してからダブルロール型の
ブリケット製造機によりブリケットを製造した。
Example: The hematite and magnetic concentrate shown in Table 1 were mixed in a ratio of 6:4, 10% anthracite was added as a carbon material, 5% early strength cement was added as a binder, and the moisture content was adjusted to 55%. After thorough mixing and kneading using a roll mixer, briquettes were produced using a double roll type briquette making machine.

無煙炭はC=81%、揮発分−6%(db)であり、粒
度は赤鉄鉱、−=14μm−60%、磁選精鉱;−4・
1μm−80%、無煙炭; ] mm以下である。
Anthracite has C=81%, volatile content -6% (db), particle size is hematite, -=14 μm -60%, magnetic concentrate; -4.
1 μm-80%, anthracite; ] mm or less.

ブリケット形状は枕形、サイズ(容積)は55CC,ブ
リケット製造時のロール圧は100〜200 Kg/c
m”である。
The briquette shape is pillow-shaped, the size (volume) is 55CC, and the roll pressure during briquette production is 100-200 Kg/c
m”.

成形直後に105±5℃の温度で約10時間乾燥後、ブ
リケットの見掛比重を水銀法により測定し、微粉砕した
ちのをピクノメーター法により真比重を測定し、この両
者から次式により空隙率を求めた。
Immediately after molding, after drying at a temperature of 105±5°C for about 10 hours, the apparent specific gravity of the briquettes was measured by the mercury method, and the true specific gravity of the finely ground briquettes was measured by the pycnometer method. The porosity was determined.

空隙率(%) −(真比重−見掛比重)xl、00/真比重また、製造
されたブリケットを大気中で20日間の養生後1.J 
I S還元試験および高温還元試験をおこない高温C元
試験後ブリケットの空隙率および圧潰強度を測定し1こ
Porosity (%) - (true specific gravity - apparent specific gravity) xl, 00/true specific gravity Also, after curing the manufactured briquettes in the atmosphere for 20 days, J
An IS reduction test and a high temperature reduction test were conducted, and the porosity and crushing strength of the briquettes were measured after the high temperature C original test.

高温還元試験は0030%、N70%のガス雰囲気中で
10℃/minの加熱速度て昇温し、1100°Cの温
度て30分間保持ずろことにより行っfこ。
The high-temperature reduction test was carried out by raising the temperature at a heating rate of 10°C/min in a gas atmosphere of 0030% and 70% N, and holding the temperature at 1100°C for 30 minutes.

以」−のfスリ定結果について、成形後乾燥状態の空隙
率と高温還元後の空隙率、王hi強度およびJIQ :
’5−rc:vql’A(E、/、、’91  M+、
−壬−i−この第1図から成形後乾燥状態の空隙率が増
大するのに伴って、高温還元後の空隙率が増大して圧潰
強度が低下し、一方、JIS還元率は」二昇することか
わかる。
Regarding the results of f-sliding, the porosity in the dry state after molding, the porosity after high-temperature reduction, hi strength and JIQ:
'5-rc:vql'A(E, /,,'91 M+,
-壬-i- This figure 1 shows that as the porosity in the dry state after molding increases, the porosity after high-temperature reduction increases and the crushing strength decreases, while the JIS reduction rate increases I know what to do.

第1表 [発明の効果] 以上説明したように、本発明に係る炭材内装非焼成ブリ
ケットは上記の構成であるから、還元時の強度低下を抑
制することができ、そして、高炉における還元製錬に炭
材内装非焼成ブリケットの使用が可能となり、従って、
高炉の還元製錬における生産性を向上させることができ
、さらに、燃料費の低減を図ることができろという効果
がある。
Table 1 [Effects of the Invention] As explained above, since the carbonaceous interior non-fired briquette according to the present invention has the above structure, it is possible to suppress a decrease in strength during reduction, and it is possible to suppress reduction in strength during reduction. It is now possible to use unfired briquettes with a charcoal interior for refining, and therefore,
This has the effect of improving productivity in blast furnace reduction smelting and further reducing fuel costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は成形後乾燥状態の空隙率と還元後空隙率、還元
後圧潰強度およびJIS還元率との関係を示す図である
FIG. 1 is a diagram showing the relationship between the porosity in a dry state after molding, the porosity after reduction, the crushing strength after reduction, and the JIS reduction rate.

Claims (1)

【特許請求の範囲】[Claims] 金属鉱石に炭材が内装されている非焼成ブリケットの成
形、乾燥後の空隙率が15〜25%であることを特徴と
する炭材内装非焼成ブリケット。
A non-fired briquette with carbon material embedded in a metal ore, which has a porosity of 15 to 25% after being molded and dried.
JP13220286A 1986-06-07 1986-06-07 Carbonaceous material-containing non-calcined briquette Pending JPS62290833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13220286A JPS62290833A (en) 1986-06-07 1986-06-07 Carbonaceous material-containing non-calcined briquette

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13220286A JPS62290833A (en) 1986-06-07 1986-06-07 Carbonaceous material-containing non-calcined briquette

Publications (1)

Publication Number Publication Date
JPS62290833A true JPS62290833A (en) 1987-12-17

Family

ID=15075781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13220286A Pending JPS62290833A (en) 1986-06-07 1986-06-07 Carbonaceous material-containing non-calcined briquette

Country Status (1)

Country Link
JP (1) JPS62290833A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1423545A1 (en) * 2001-08-02 2004-06-02 Commonwealth Scientific And Industrial Research Organisation Iron ore briquetting
JP2008260982A (en) * 2007-04-10 2008-10-30 Kobe Steel Ltd Method for manufacturing carbonaceous-material-containing metal oxide briquette
WO2009037943A1 (en) * 2007-09-18 2009-03-26 Kabushiki Kaisha Kobe Seiko Sho Method for producing briquette with carbonaceous material incorporated therein by use of oil-containing iron-making plant dust
JP2014055788A (en) * 2012-09-11 2014-03-27 Nippon Steel & Sumitomo Metal Evaluation method for briquette moldability, and briquette manufacturing method based thereon

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1423545A1 (en) * 2001-08-02 2004-06-02 Commonwealth Scientific And Industrial Research Organisation Iron ore briquetting
EP1425427A1 (en) * 2001-08-02 2004-06-09 Commonwealth Scientific And Industrial Research Organisation Iron ore briquetting
EP1425427A4 (en) * 2001-08-02 2004-08-18 Commw Scient Andindustrial Res Iron ore briquetting
EP1423545A4 (en) * 2001-08-02 2004-08-18 Commw Scient Andindustrial Res Iron ore briquetting
AU2002322154B2 (en) * 2001-08-02 2008-01-31 Commonwealth Scientific And Industrial Research Organisation Iron ore briquetting
JP2008260982A (en) * 2007-04-10 2008-10-30 Kobe Steel Ltd Method for manufacturing carbonaceous-material-containing metal oxide briquette
WO2009037943A1 (en) * 2007-09-18 2009-03-26 Kabushiki Kaisha Kobe Seiko Sho Method for producing briquette with carbonaceous material incorporated therein by use of oil-containing iron-making plant dust
JP2009074105A (en) * 2007-09-18 2009-04-09 Kobe Steel Ltd Method for manufacturing carbonaceous-material-containing briquette by using oil-containing dust in ironworks
AU2008301824B2 (en) * 2007-09-18 2011-03-03 Kabushiki Kaisha Kobe Seiko Sho Method for producing briquette with carbonaceous material incorporated therein by use of oil-containing iron-making plant dust
US8439987B2 (en) 2007-09-18 2013-05-14 Kobe Steel, Ltd. Method of producing carbonaceous material-containing briquettes using steel mill dust containing oil
JP2014055788A (en) * 2012-09-11 2014-03-27 Nippon Steel & Sumitomo Metal Evaluation method for briquette moldability, and briquette manufacturing method based thereon

Similar Documents

Publication Publication Date Title
KR101644785B1 (en) Process for producing agglomerates of finely particulate iron carriers
US6921427B2 (en) Process for cold briquetting and pelletization of ferrous or non-ferrous ores or mineral fines by iron bearing hydraulic mineral binder
JPS6223944A (en) Refining method for nickel oxide or the like
JP2006508251A (en) Cold briquetting and cold pelletization of mineral fines using a hydraulic binder containing iron.
JPS60255937A (en) Manufacture of cold-bound briquette
CN103725875B (en) High-performance pellet
JP4022941B2 (en) Method for forming reduced iron production raw material
KR100718581B1 (en) Substituting for pig iron and manufacturing method thereof
KR101444562B1 (en) Unfired carbon-containing agglomerate and production method therefor
JPS62290833A (en) Carbonaceous material-containing non-calcined briquette
JP2009161791A5 (en)
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP2002241853A (en) Non-burning agglomerate for blast furnace
JPH0285324A (en) Operating method for sintering low in nox
JPS62278234A (en) Carbon material-containing unburnt briquette
JP3837845B2 (en) Method for producing reduced iron
JPS5926651B2 (en) Method for manufacturing non-calcined agglomerate ore
JPS6342315A (en) Smelting-reduction of ore
JPS55125240A (en) Sintering method for finely powdered starting material for iron manufacture
JP2003129140A (en) Method for manufacturing molded article designed for reducing rotary hearth
CN1621541A (en) Process for preparing pellet from high-grade ironstone by using direct dry method
JP6996268B2 (en) Charcoal interior ore and its manufacturing method
JP5825180B2 (en) Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char
JP6939667B2 (en) Charcoal lumber interior ore and its manufacturing method
JPH0365412B2 (en)