JP5786668B2 - Method for producing unfired carbon-containing agglomerated mineral - Google Patents

Method for producing unfired carbon-containing agglomerated mineral Download PDF

Info

Publication number
JP5786668B2
JP5786668B2 JP2011249813A JP2011249813A JP5786668B2 JP 5786668 B2 JP5786668 B2 JP 5786668B2 JP 2011249813 A JP2011249813 A JP 2011249813A JP 2011249813 A JP2011249813 A JP 2011249813A JP 5786668 B2 JP5786668 B2 JP 5786668B2
Authority
JP
Japan
Prior art keywords
mass
carbon
blast furnace
raw material
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011249813A
Other languages
Japanese (ja)
Other versions
JP2013104108A (en
Inventor
小暮 聡
聡 小暮
謙一 樋口
謙一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011249813A priority Critical patent/JP5786668B2/en
Publication of JP2013104108A publication Critical patent/JP2013104108A/en
Application granted granted Critical
Publication of JP5786668B2 publication Critical patent/JP5786668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、鉄鉱石を原料の一部として使用した場合による高炉用の非焼成含炭塊成鉱の製造方法に関する。   The present invention relates to a method for producing an unfired carbon-containing agglomerated ore for a blast furnace when iron ore is used as a part of the raw material.

従来、製鉄所は、各種集塵装置等から回収される多種の含鉄、含炭ダストを配合し、セメント系の時効性バインダーを添加して混錬、成型して非焼成のペレットやブリケットを製造し、高炉原料として使用してきた。   Conventionally, steel mills mix various types of iron-containing and carbon-containing dust collected from various dust collectors, add cement-based aging binders, knead and mold to produce non-fired pellets and briquettes It has been used as a blast furnace raw material.

これらの高炉用非焼成含炭塊成鉱は、高炉内で、高炉シャフト部の熱保存帯と還元反応平衡帯におけるガス条件と温度条件下で反応を受け劣化するので、順調な高炉操業のためには、一定の熱間圧潰強度が必要である。   These unfired carbon-containing agglomerated ores for blast furnace are deteriorated by reaction under the gas condition and temperature condition in the thermal preservation zone and the reduction reaction equilibrium zone of the blast furnace shaft part in the blast furnace. Requires a certain hot crushing strength.

また、これらの高炉用非焼成含炭塊成鉱は、内装するカーボンにより高炉内の還元反応を起こす結果、還元率が向上するため、高炉操業時の還元材比の低減のため、内装カーボンの増量が図られてきた。   In addition, these unburned carbon-containing agglomerated ores for blast furnaces cause a reduction reaction in the blast furnace due to the carbon contained in the blast furnace. As a result, the reduction rate is improved. Increases have been made.

以上のことにより、高炉用非焼成含炭塊成鉱は、内装カーボン量が多く、かつ、熱間圧潰強度が高いものが望まれる。   From the above, it is desired that the unfired carbon-containing agglomerated ore for blast furnace has a large amount of interior carbon and high hot crushing strength.

高炉操業における還元材比を低減させる方法として、「含酸化鉄原料とカーボン系炭材を配合しバインダーを加えて混錬、成型、養生してなるカーボン内装非焼成塊成鉱において、鉄鉱石類の被還元酸素を還元し金属鉄とするために必要な理論炭素量の80〜120質量%のカーボンを含有し、かつ常温での圧潰強度7850kN/m2 以上となるようにバインダーを選択して混錬、成型、養生してなることを特徴とする高炉用のカーボン内装非焼成塊成鉱。」の発明が提案されている(特許文献1)。 As a method to reduce the ratio of reducing materials in blast furnace operation, “Ore ores in carbon-incorporated non-fired agglomerated minerals that are kneaded, molded, and cured by adding a binder and adding iron-containing raw materials and carbon-based carbon materials. The binder is selected so that it contains 80 to 120% by mass of the theoretical carbon necessary to reduce the oxygen to be reduced to metallic iron, and the crushing strength at room temperature is 7850 kN / m 2 or more. The invention of a carbon-incorporated non-fired agglomerated blast furnace for blast furnaces characterized by kneading, molding and curing has been proposed (Patent Document 1).

この方法によれば、一般に還元ガスの温度とガス組成(ηCO=CO2/(CO+CO2))との関係から、酸化鉄の還元反応の進行が制約される高炉シャフト部の熱保存帯と還元反応平衡帯においても、900〜1100℃の温度領域で、非焼成塊成鉱中の酸化鉄は、内装するカーボンにより還元反応を起こす結果、還元率が向上するため、高炉操業時の還元材比の低減効果が期待できる。 According to this method, the thermal preservation zone and reduction of the blast furnace shaft part, in which the progress of the reduction reaction of iron oxide is generally restricted from the relationship between the temperature of the reducing gas and the gas composition (ηCO = CO 2 / (CO + CO 2 )). Even in the reaction equilibrium zone, in the temperature range of 900 to 1100 ° C., the iron oxide in the uncalcined agglomerate undergoes a reduction reaction due to the carbon incorporated therein, and as a result, the reduction rate is improved, so the ratio of reducing materials during blast furnace operation The reduction effect can be expected.

しかしながら、この方法では、非焼成塊成鉱に内装するC含有量は、酸化鉱を還元し金属鉄とするために必要な理論炭素量(以下、C当量ということもある)で120質量%以下(全カーボン含有量(T.C)は約15質量%以下に相当する)に制限され、これ以上C含有量を増加すると、非焼成塊成鉱の熱間圧潰強度が損なわれるという問題がある。   However, in this method, the C content contained in the non-fired agglomerated mineral is 120% by mass or less in terms of the theoretical carbon amount (hereinafter sometimes referred to as C equivalent) necessary for reducing the oxide ore into metallic iron. (The total carbon content (TC) corresponds to about 15% by mass or less), and if the C content is further increased, the hot crushing strength of the unfired agglomerated minerals is impaired. .

又、高炉法やDR法(直接還元法)に使用される炭材内装非焼成ブリケットの還元後の強度の低下を目的に、「成型、乾燥後の空隙率を15〜25%であるとする炭材内装非焼成ブリケット」の提案がある(特許文献2)。   In addition, for the purpose of reducing the strength after reduction of the unfired briquette containing carbonaceous materials used in the blast furnace method and DR method (direct reduction method), “the porosity after molding and drying is 15 to 25%. There is a proposal of “carbon material interior non-fired briquette” (Patent Document 2).

この方法によれば、炭材内装非焼成ブリケットの高炉における還元時の強度低下を抑制できる効果がある程度期待できる。   According to this method, it can be expected to some degree that the carbon material-incorporated non-fired briquette can suppress a reduction in strength during reduction in a blast furnace.

しかしながら、炭材内装非焼成ブリケットの成型、乾燥後の空隙率は、原料や炭材の性状、粒度により影響され、空隙率を15〜25%の範囲にコントロールするのは難しく、原料等の制約を受けるという問題がある。   However, the porosity after molding and drying of the carbonaceous material-incorporated non-fired briquette is affected by the properties and particle size of the raw material and the carbonaceous material, and it is difficult to control the porosity within the range of 15 to 25%. There is a problem of receiving.

又、全鉄原料の粒度、微粉状炭材の配合割合を調整し、かつ、微粉状炭材のメジアン径を調整することにより、高炉用原料ペレットとして要求される50kg/cm2(4900kN/m2)以上の冷間強度を維持するとともに、高炉操業時の還元材比を大幅に低減できるだけの十分な炭素含有量を有し、還元後の圧潰強度7kg/cm2(690kN/m2)以上を有する、非焼成含炭ペレット製造方法が提案されている(特許文献3)。 In addition, by adjusting the particle size of all iron raw materials, the blending ratio of fine powdered carbon materials, and adjusting the median diameter of fine powdered carbon materials, 50 kg / cm 2 (4900 kN / m) required as raw material pellets for blast furnaces. 2 ) While maintaining the above cold strength, it has a sufficient carbon content to greatly reduce the ratio of reducing material during blast furnace operation, and the crushing strength after reduction is 7 kg / cm 2 (690 kN / m 2 ) or more There has been proposed a method for producing non-fired carbon-containing pellets (Patent Document 3).

この方法によれば、全原料中の粒度を2mm以下とし、全原料中炭素含有割合(T.C)が15〜25質量%となるように微粉状炭材の配合割合を調整し、炭材のメジアン径を100〜150μmとすることにより、還元後圧潰強度が良好であり、高い還元材比低減効果を有する非焼成含炭塊成鉱を製造することができる。   According to this method, the blending ratio of the fine carbonaceous material is adjusted so that the particle size in all raw materials is 2 mm or less, and the carbon content ratio (TC) in all raw materials is 15 to 25% by mass. By setting the median diameter of 100 to 150 μm, it is possible to produce a non-fired carbon-containing agglomerated mineral having good crushing strength after reduction and having a high reducing material ratio reducing effect.

しかしながら、この方法では、全原料中の粒度を2mm以下とし、炭材のメジアン径を100〜150μmとしなければならず、原料と炭材の両面からの制約があり、又、早強セメントを10質量%以上添加することとなると、この非焼成含炭塊成鉱を高炉にて使用する量を増加させた場合、高炉に投入されるスラグ量も増加する問題がある。また、早強セメントは400〜500℃で脱水反応(吸熱反応)が進行するため、セメント10質量%を添加した含炭塊成鉱の過剰使用は高炉内の温度を低下させ、高炉内装入物の昇温遅れ、還元遅れが生じる問題がある   However, in this method, the particle size in all the raw materials must be 2 mm or less, the median diameter of the carbonaceous material must be 100 to 150 μm, there are restrictions from both the raw material and the carbonaceous material, and 10 If more than mass% is added, when the amount of the unfired carbon-containing agglomerated ore used in the blast furnace is increased, the amount of slag charged into the blast furnace also increases. In addition, since the early strong cement undergoes a dehydration reaction (endothermic reaction) at 400 to 500 ° C., excessive use of a carbon-containing agglomerated mineral with 10% by mass of cement lowered the temperature in the blast furnace, and the blast furnace interior contains There is a problem that the temperature rise delay and reduction delay occur

したがって、高炉用非焼成含炭塊成鉱に内装する炭材の粒径を変更することなく、還元後圧潰強度が良好であり、還元効率を向上させることができる技術が求められる。 Therefore, there is a need for a technique that has good post-reduction crushing strength and can improve the reduction efficiency without changing the particle size of the carbonaceous material contained in the unfired carbon-containing agglomerated blast furnace.

特開2003−342646号公報JP 2003-342646 A 特開昭62−290833号公報JP 62-290833 A 特開2008−95177号公報JP 2008-95177 A

高炉用非焼成含炭塊成鉱は、還元効率を向上させるために、内装カーボン量を多くし、かつ、高炉操業に悪影響を与えないために熱間圧潰強度が高いものが望まれる。
これらを満たすためには、全原料中の粒度を2mm以下とし、炭材のメジアン径を100〜150μmとし、かつ、早強セメントを10質量%以上添加することが求められる。しかし原料と炭材の条件に制約があることや、強度面では、所定以上の冷間圧潰強度を持たせるために添加した水硬性バインダーが、高炉内では分解してしまい、熱間圧潰強度の維持の役に立たないことや、水硬性バインダーは高炉内の脱水反応(吸熱反応)により、過剰な使用は高炉内の温度を低下させ、高炉内装入物の昇温遅れ、還元遅れが生じるという課題がある。
The unfired carbon-containing agglomerated ore for blast furnace is desired to have a high hot crushing strength in order to increase the amount of interior carbon in order to improve the reduction efficiency and not adversely affect the blast furnace operation.
In order to satisfy these requirements, it is required that the particle size in all raw materials is 2 mm or less, the median diameter of the carbonaceous material is 100 to 150 μm, and that 10% by mass or more of early-strength cement is added. However, there are restrictions on the conditions of the raw material and the carbonaceous material, and in terms of strength, the hydraulic binder added to give a cold crushing strength higher than a predetermined level decomposes in the blast furnace, and the hot crushing strength is high. There is a problem that it is not useful for maintenance, and hydraulic binders cause dehydration reaction (endothermic reaction) in the blast furnace, and excessive use lowers the temperature in the blast furnace, resulting in delays in temperature rise and reduction in the contents of the blast furnace interior. is there.

本発明は、高炉用非焼成含炭塊成鉱に内装する炭材の粒径を変更することなく、熱間圧潰強度が良好であり、還元効率を向上させる高炉用非焼成含炭塊成鉱の製造方法を提供することを目的とする。   The present invention is a blast furnace non-calcined carbon-containing agglomerated mineral with good hot crushing strength and improved reduction efficiency without changing the particle size of the carbonaceous material contained in the non-fired carbon-containing agglomerated mineral for blast furnace. It aims at providing the manufacturing method of.

本発明者は、高炉用の非焼成含炭塊成鉱に配合する鉄含有鉱石の銘柄と、その配合割合をコントロールすることで熱間圧潰強度が良好、かつ、焼結鉱の還元効率が向上することを見出した。   The present inventor has improved the hot crushing strength and the reduction efficiency of sintered ore by controlling the iron-containing ore brand to be blended with the unfired carbon-containing agglomerated ore for blast furnace and the blending ratio. I found out.

本発明は、この知見に基づいて上記の課題を解決するためになされたものであり、その要旨とするところは、以下のとおりである。   The present invention has been made to solve the above-mentioned problems based on this finding, and the gist thereof is as follows.

(1)微粉状酸化鉄と、微粉状炭材と、バインダーを有する原料に水分を添加して混合、造粒することにより、高炉用非焼成含炭塊成鉱を製造する方法であって、
前記微粉状酸化鉄のうちのピソライト系鉄鉱石の割合が、前記原料の全質量に対し、18質量%以上、56質量%以下であり、ペレットフィードの割合が、前記原料の全質量に対し、18質量%以上56質量%以下であることを特徴とする非焼成含炭塊成鉱の製造方法。
(2)微粉状酸化鉄と、微粉状炭材と、バインダーを有する原料に水分を添加して混合、造粒することにより、高炉用非焼成含炭塊成鉱を製造する方法であって、
前記微粉状酸化鉄の粒径は、前記微粉状酸化鉄の全量に対し、125μm以下が40質量%を越え、
125μm以下のピソライト系鉄鉱石の割合が、前記原料の全質量に対し、16質量%以上、51質量%以下であることを特徴とする非焼成含炭塊成鉱の製造方法。
(3)前記高炉用非焼成含炭塊成鉱が、前記原料の全質量に対し、10質量%以上の前記微粉状炭材を有する非焼成含炭ペレット及び非焼成含炭ブリケットのいずれかであることを特徴とする前記(1)又は前記(2)に記載の非焼成含炭塊成鉱の製造方法。
(1) A method for producing a non-fired carbon-containing agglomerated mineral for a blast furnace by adding water to a raw material having a finely divided iron oxide, a finely divided carbonaceous material, and a binder, and mixing and granulating.
The proportion of pisolite-based iron ore in the pulverized iron oxide is 18% by mass or more and 56% by mass or less with respect to the total mass of the raw material, and the ratio of pellet feed is based on the total mass of the raw material, A method for producing a non-fired carbon-containing agglomerated mineral, characterized by being 18% by mass or more and 56% by mass or less .
(2) A method for producing a non-fired carbon-containing agglomerated blast furnace for blast furnace by adding water to a raw material having a finely divided iron oxide, a finely powdered carbonaceous material, and a binder, and mixing and granulating.
The particle size of the pulverized iron oxide is such that 125 μm or less exceeds 40% by mass with respect to the total amount of the pulverized iron oxide,
A method for producing a non-fired carbon-containing agglomerated mineral, wherein the proportion of pisolite-type iron ore of 125 μm or less is 16% by mass or more and 51% by mass or less with respect to the total mass of the raw material.
(3) The non-fired carbon-containing agglomerated ore for blast furnace is either a non-fired carbon-containing pellet or a non-fired carbon-containing briquette having 10% by mass or more of the pulverized carbonaceous material relative to the total mass of the raw material. The method for producing a non-fired carbon-containing agglomerated mineral as described in (1) or (2) above.

本発明は、高炉用の非焼成含炭塊成鉱に内装する炭材の粒径を変更することなく、熱間圧潰強度が良好であり、還元効率を向上する高炉用非焼成含炭塊成鉱の製造方法を提供することができる。   The present invention is a blast furnace non-fired carbon-containing agglomeration that has good hot crushing strength and improves reduction efficiency without changing the particle size of the carbonaceous material contained in the non-fired carbon-containing agglomerated mineral for blast furnace. A method for producing the ore can be provided.

高炉用の非焼成含炭塊成鉱の反応後の試料断面を示す図。(A)はピソライト系鉱石の場合、(B)はピソライト系鉄鉱石以外の酸化鉄の場合である。The figure which shows the sample cross section after reaction of the non-baking carbon-containing agglomerate for blast furnaces. (A) is a case of a pisolite-type ore, and (B) is a case of iron oxides other than a psolite-type iron ore. 高炉用の非焼成含炭塊成鉱の熱間圧潰強度の測定装置を示す図。The figure which shows the measuring apparatus of the hot crushing strength of the non-baking carbon-containing agglomerated mineral for blast furnaces. 高炉用の非焼成含炭塊成鉱の熱間圧潰強度の測定条件を示す図。The figure which shows the measurement conditions of the hot crushing strength of the non-baking carbon-containing agglomerated mineral for blast furnaces.

非焼成含炭塊成鉱は、高炉内では、高炉シャフト部の熱保存帯と還元反応平衡帯におけるガス条件と温度条件下で反応を受け劣化するが、順調な高炉操業のためには、一定の熱間圧潰強度の維持が必要である。反応後の熱間圧潰強度としては、非焼成含炭ペレット(直径約10〜15mm)では、700kN/m以上が好ましく、非焼成含炭ブリケット(約20〜25cc)では、100N/サンプル以上が好ましい。 Unfired carbon-containing agglomerated ore deteriorates in the blast furnace due to the reaction under the gas and temperature conditions in the thermal preservation zone and the reduction reaction equilibrium zone of the blast furnace shaft, but for steady blast furnace operation, it remains constant. It is necessary to maintain the hot crushing strength. The hot crushing strength after the reaction is preferably 700 kN / m 2 or more for non-fired carbon-containing pellets (diameter of about 10 to 15 mm), and 100 N / sample or more for non-fired carbon-containing briquettes (about 20 to 25 cc). preferable.

本発明は、非焼成含炭塊成鉱の製造に要する鉄含有原料の配合に特徴がある。すなわち、微粉状酸化鉄に、熱間圧潰強度の発現に寄与するものと、寄与しないものとがあることを発見し、還元率と熱間圧潰強度が共に良好な非焼成塊成鉱を得るのに必要な両者の配合比率を特定した。各原料の種類と使用比率、及びその設定根拠については後述する。
ここに、微粉状酸化鉄及び微粉状炭材において、ともに微粉状としているのは、ペレタイジングまたはブリケッティングにより成型が可能な粒度であって、例えば2mm以下を意味する。特に、微粉状酸化鉄の粒径は、粒径1mm以上の比率が5%未満であることが好ましく、炭材原料に比べてその配合比率が多いことから成型性に重要な影響を及ぼし、その比率が5%を超えると円滑に造粒を行えなくなることに由来する。
かかる配合に調整した微粉状酸化鉄、微粉状炭材及びバインダーを配合して配合原料とし、それに水分を添加して混合、造粒、養生することにより、所期の目的を達成する高炉用非焼成含炭塊成鉱が製造できる。ここに、前混合、造粒、養生する造粒設備は、特に限定する必要はなく、配合原料の混錬、加水、造粒、製品篩の機能を有するものであればよく、混錬機、造粒機などは、特に限定されるものではない。
The present invention is characterized by the blending of iron-containing raw materials required for the production of unfired carbon-containing agglomerated minerals. In other words, it was discovered that fine powdered iron oxides contributed to the development of hot crushing strength and those that did not contribute, and obtained a non-fired agglomerated mineral with good reduction rate and hot crushing strength. The mixing ratio required for both was specified. The type and use ratio of each raw material and the basis for setting will be described later.
Here, in the pulverized iron oxide and the pulverized carbonaceous material, the pulverized state is a particle size that can be molded by pelletizing or briquetting, and means, for example, 2 mm or less. In particular, the particle size of the finely divided iron oxide is preferably less than 5% in the ratio of the particle size of 1 mm or more, and has a large blending ratio compared to the carbonaceous material, and thus has an important influence on the moldability. When the ratio exceeds 5%, the granulation cannot be performed smoothly.
A mixture of pulverized iron oxide, pulverized carbonaceous material and binder adjusted to such a blend is used as a blended raw material, and water is added to it to mix, granulate, and cure, thereby achieving the intended purpose. A calcined carbon-containing agglomerated mineral can be produced. Here, the granulation equipment for premixing, granulation, and curing is not particularly limited, and any kneading machine, kneading, mixing, granulation, and product sieve function may be used. A granulator etc. are not specifically limited.

本発明に掛る高炉用非焼成含炭塊成鉱には、例えば、非焼成含炭ペレット、非焼成含炭ブリケット等がある。ペレットとしては、例えば、ディスクペレタイザーにより球状に成型するものがあり、ブリケットとしては、くぼみの型を備え相対する一対の成型ロールで成型する左右対称のピロー型ブリケットやアーモンド形ブリケットがあるがこれらに限定されるものではない。   Examples of the non-fired carbon-containing agglomerated blast furnace according to the present invention include non-fired carbon-containing pellets and non-fired carbon-containing briquettes. Examples of pellets include those that are formed into a spherical shape by a disk pelletizer, and examples of briquettes include symmetric pillow-type briquettes and almond-type briquettes that have a hollow mold and are formed by a pair of opposed forming rolls. It is not limited.

〔ピソライト系鉄鉱石〕
熱間圧潰強度の発現に寄与する酸化鉄は、ローブリバー鉱石やヤンディー鉱石などのピソライト系鉄鉱石とする。図1に高炉用の非焼成含炭塊成鉱の反応後の試料断面を示す。(A)はピソライト系鉱石の場合、(B)はピソライト系鉄鉱石以外の酸化鉄の場合である。図1で、白色部分は金属鉄、暗灰色部分は炭材を示す。
この強度発現機構は、図1に示す還元後の非焼成含炭塊成鉱の観察から、次のように推察される。
図1(A)のピソライト系鉱石(図はローブリバー鉱石で例示)の場合は、加重をかけて、反応温度を上昇させたとしても、鉱石の粒子形状を維持し、粒子形状を保った金属鉄が生成する。この場合、金属鉄同士が強固に結合したメタルネットワークを作り熱間圧潰強度が上昇する。
図1(B)のピソライト系鉄鉱石以外の酸化鉄(図はブラジル産PFで例示)の場合は、反応温度の上昇過程において、荷重を掛けることで破壊が起こり、酸化鉄の粒子径が微細になる。粒子径が微細になることで炭材との接触面積が広くなり、反応が効率良く起こるために還元効率(焼結鉱の還元率)が上昇する。しかし粒子が全て微細であると、図1(B)に示すように金属鉄同士のメタルネットワークを形成せずに、熱間圧潰強度は著しく低下する。つまり熱間圧潰強度と還元効率の両者を高めるためには、両者の適切な配合が重要である。
[Pisolite iron ore]
Iron oxides that contribute to the development of hot crushing strength are pisolite iron ores such as lobe river ore and yandi ore. FIG. 1 shows a cross section of a sample after reaction of an unfired carbon-containing agglomerated blast furnace. (A) is a case of a pisolite-type ore, and (B) is a case of iron oxides other than a psolite-type iron ore. In FIG. 1, a white part shows metallic iron and a dark gray part shows a carbonaceous material.
This strength development mechanism is inferred from the observation of the non-fired carbon-containing agglomerated mineral after reduction shown in FIG.
In the case of the pisolite ore shown in FIG. 1 (A) (the figure is an example of a lobe river ore), even if the reaction temperature is increased by applying a weight, the particle shape of the ore is maintained and the particle shape is maintained. Iron is produced. In this case, a metal network in which metallic irons are firmly bonded together is formed, and the hot crushing strength is increased.
In the case of iron oxides other than the pisolite-based iron ore shown in Fig. 1 (B), the breakage occurs when a load is applied in the process of increasing the reaction temperature, and the iron oxide particle size is fine. become. As the particle diameter becomes finer, the contact area with the carbonaceous material becomes wider, and the reaction occurs efficiently, so the reduction efficiency (reduction rate of sintered ore) increases. However, if the particles are all fine, the hot crushing strength is remarkably reduced without forming a metal network between metal irons as shown in FIG. In other words, in order to increase both the hot crushing strength and the reduction efficiency, it is important to mix them appropriately.

〔ピソライト系鉄鉱石の使用量〕
ピソライト系鉄鉱石の使用比率は、原料の全重量に対し、18質量%以上56質量%以下含有する事を特徴としている。
[Amount of use of pisolite iron ore]
The use ratio of the pisolite iron ore is characterized by containing 18% by mass to 56% by mass with respect to the total weight of the raw material.

本発明は、ピソライト系鉄鉱石を原料の全重量に対し、18質量%以上含有させることで、還元過程で生成する鉄のネットワーク化を促進することによって、非焼成含炭塊成鉱の熱間圧潰強度を向上させる事を特徴としている。また前記ピソライト系鉄鉱石を原料の全重量に対し、56質量%以下としているのはピソライト系鉱石に含有する結晶水の影響で高炉内が低温化し、還元効率が低下することを防ぐためである。
上記の使用量の条件は、前記効果を十分に得るためのものである。その根拠は実施例で後述する。
In the present invention, by containing 18 mass% or more of pisolite-based iron ore with respect to the total weight of the raw material, the network of iron produced in the reduction process is promoted, so that It is characterized by improving crushing strength. In addition, the reason why the pisolite iron ore is set to 56% by mass or less with respect to the total weight of the raw material is to prevent the inside of the blast furnace from being cooled by the influence of crystal water contained in the pisolite ore and reducing the reduction efficiency. .
The above usage amount conditions are for sufficiently obtaining the above-mentioned effects. The basis for this will be described later in Examples.

〔ピソライト系鉄鉱石以外の酸化鉄の種類〕
前記ピソライト系鉄鉱石以外の酸化鉄としては、鉄鉱石、スケールを所定の粒度に粉砕したもの、製鉄プロセスにおいて多量に発生するダストを集塵機などで回収した含鉄ダストやスラッジ等の使用ができる。鉄鉱石では、ペレットフィードを用いることがより好ましく、それによって、粉砕の手間を省くことができる。含鉄ダストやスラッジは1mm以上がほとんどなく、粒径250μm以下が全体の80%以上を占めるので、直接使用可能である。
[Types of iron oxide other than pisolite iron ore]
Examples of iron oxides other than the pisolite iron ore include iron ore, pulverized scale to a predetermined particle size, and iron-containing dust or sludge collected by a dust collector or the like that collects a large amount of dust in the iron making process. For iron ore, it is more preferable to use a pellet feed, so that the labor of grinding can be saved. Since iron-containing dust and sludge hardly have a diameter of 1 mm or more and a particle diameter of 250 μm or less accounts for 80% or more of the whole, they can be used directly.

〔微粉状酸化鉄の粒径〕
本発明者等は、微粉状酸化鉄としてピソライト系鉄鉱石以外の酸化鉄を使用する場合、粒径125μm以下の含有割合が40質量%以上になると、熱間圧潰強度が発現しないことを確認している。これに対し、本発明においては、ピソライト系鉄鉱石を用いる場合は、微粉状酸化鉄の粒径が粒径125μm以下の含有割合で40質量%を超えても、熱間圧潰強度が発現することを新たに見出した。
[Particle size of finely divided iron oxide]
When using iron oxides other than pisolite iron ore as finely divided iron oxide, the present inventors confirmed that hot crushing strength does not appear when the content ratio of particle size of 125 μm or less is 40% by mass or more. ing. On the other hand, in the present invention, when using pisolite iron ore, hot crushing strength is expressed even when the particle size of finely divided iron oxide exceeds 40% by mass with a particle size of 125 μm or less. Newly found.

〔微粉状炭材の種類と使用量〕
前記微粉状炭材としては、所定粒度に粉砕した粉コークス、粉石灰、及びコークスダスト並びに粉コークスを含有する高炉一次灰などの粉状の固形炭材などがある。
従来技術では、炭材粒度は、100〜150μmが必要であったが(段落「0014」「0017」)、本願発明では、−250μm程度でよく、炭材の粒径を小さくすることなく、冷間圧還元後圧潰強度が良好であり、還元効率を向上する高炉用非焼成含炭塊成鉱の製造方法を提供することができる。
微粉状炭材の配合量は、原料全質量に対し、10質量%以上が好ましく、これによって含炭塊成鉱中の酸化鉄を含炭塊成鉱中に内在する炭材のみで概ね還元でき、その結果迅速に還元できる。更に成型後の冷間強度を維持できるならば、15質量%以上がより好ましく、18質量%以上が特に好ましい。これは、含炭塊成鉱中の酸化鉄を還元してもなお余剰の炭素分のガス化により、高炉内にて、非焼成ペレット以外の鉄原料(例えば焼結鉱)の還元を促進し、省エネルギー化・低CO化が期待できる。残留する炭素分がその近傍存在する焼結鉱の還元を促進するためである。
[Type and amount of finely powdered carbonaceous material]
Examples of the finely powdered carbon material include powdered coke, powdered lime, coke dust, and powdered solid carbon material such as blast furnace primary ash containing powdered coke.
In the prior art, the particle size of the carbonaceous material is required to be 100 to 150 μm (paragraphs “0014” and “0017”). However, in the present invention, it may be about −250 μm, and the coldness can be reduced without reducing the particle size of the carbonaceous material. It is possible to provide a method for producing an unfired carbon-containing agglomerated blast furnace for a blast furnace that has good crushing strength after intermediate pressure reduction and improves reduction efficiency.
The blending amount of the finely divided carbonaceous material is preferably 10% by mass or more with respect to the total mass of the raw material, so that the iron oxide in the carbon-containing agglomerated mineral can be generally reduced only by the carbon material inherent in the carbon-containing agglomerated mineral. As a result, it can be reduced quickly. Further, if the cold strength after molding can be maintained, it is more preferably 15% by mass or more, and particularly preferably 18% by mass or more. This promotes the reduction of iron raw materials other than non-fired pellets (for example, sintered ore) in the blast furnace by gasifying excess carbon even if iron oxide in the carbon-containing agglomerated mineral is reduced. Energy saving and low CO 2 can be expected. This is because the remaining carbon content promotes the reduction of the sintered ore in the vicinity thereof.

従来から、ペレット中の酸化鉄を還元するのに必要な理論上の炭素量に対する炭素含有量の比を「炭素等量」と定義し、炭素による酸化鉄の還元度の目安としている。従来は、高炉用原料として要求される熱間圧潰強度を維持するためには、炭素含有量を15質量%(炭素等量1.2に相当)に制限せざるを得なかった(特許文献1参照)。しかし、本発明では、前記鉄含有原料に15質量%以上の微粉炭材を添加することもできる。   Conventionally, the ratio of the carbon content to the theoretical carbon amount required to reduce iron oxide in the pellet is defined as “carbon equivalent”, which is a measure of the degree of reduction of iron oxide by carbon. Conventionally, in order to maintain the hot crushing strength required as a blast furnace raw material, the carbon content has to be limited to 15% by mass (corresponding to a carbon equivalent of 1.2) (Patent Document 1). reference). However, in this invention, 15 mass% or more fine carbonaceous materials can also be added to the said iron containing raw material.

〔バインダー〕
前記バインダーとしては、原料中に含有する水分や添加水分との水和反応により硬化することにより造粒物の冷間圧潰強度を高める機能を有するバインダーがあり、水硬性バインダーとしては、高炉水砕スラグを主成分とする微粉末とアルカリ刺激剤からなる時効性バインダーや、ポルトランドセメント、アルミナセメント、高炉セメント等がある。また酸化鉄原料を分散させ密充填にすることで冷間強度を上げる有機分散剤(ポリアクリル酸ナトリウム)や水分と反応することでゲル化し原料間の空隙に入り込み、乾燥によって硬化することで冷間強度を上げるα化コーンスターチなどの有機バインダーがあるが、これらに限定されるものではない。
〔binder〕
As the binder, there is a binder having a function of increasing the cold crushing strength of the granulated product by curing by hydration reaction with moisture contained in the raw material or added moisture, and as the hydraulic binder, blast furnace granulation There are aging binders composed of fine powders mainly composed of slag and alkali stimulants, Portland cement, alumina cement, blast furnace cement and the like. In addition, the iron oxide raw material is dispersed and densely packed to react with an organic dispersant (sodium polyacrylate) or moisture that increases cold strength, and then gels by entering into the voids between the raw materials and hardens by drying. There is an organic binder such as pregelatinized corn starch that increases the inter-strength strength, but is not limited thereto.

次に、本発明の実施例について説明するが、本発明は、これに限られるものではない。   Next, examples of the present invention will be described, but the present invention is not limited thereto.

原料は、ピソライト系鉄鉱石として、−0.25mmに分級したローブリバー鉱石(RR)を用い、ピソライト系鉄鉱石以外の酸化鉄として−0.15mmのペレットフィード(PF)を用い、微粉状炭材としては−0.25mmに粉砕・分級した粉コークスを用いた。ピソライト系鉄鉱石とピソライト系鉄鉱石以外の酸化鉄と微粉状炭材にバインダーを添加し、混錬後、ディスクペレタイザーにより、ペレット(平均粒径13mm)を造粒した。それらの配合比率を表1に示す。
The raw material is lobe river ore (RR) classified to -0.25 mm as pisolite iron ore, and -0.15 mm pellet feed (PF) as iron oxide other than pisolite iron ore. As the material, powder coke crushed and classified to -0.25 mm was used. A binder was added to iron oxide other than pisolite iron ore, iron oxide other than pisolite iron ore, and fine carbonaceous material, and after kneading, pellets (average particle size 13 mm) were granulated by a disk pelletizer. Their blending ratio is shown in Table 1.

実施例1乃至実施例3は、本発明例であって、ピソライト系鉄鉱石の配合比率を原料の全重量に対し、56質量%、37質量%、及び18質量%に調整した。これに対してピソライト系鉄鉱石以外の酸化鉄の配合比率を、それぞれ、18質量%、37質量%、及び56質量%に調整した。
比較例では、ピソライト系鉄鉱石の配合比率は、本発明の規定の範囲を超えたものである74質量%のものと、ピソライト系鉄鉱石以外の酸化鉄の配合比率が74質量%のものとした。
Example 1 thru | or Example 3 is an example of this invention, Comprising: The compounding ratio of the pisolite system iron ore was adjusted to 56 mass%, 37 mass%, and 18 mass% with respect to the total weight of a raw material. On the other hand, the compounding ratio of iron oxides other than the pisolite iron ore was adjusted to 18% by mass, 37% by mass, and 56% by mass, respectively.
In the comparative example, the blending ratio of the pisolite-based iron ore is 74% by mass that exceeds the specified range of the present invention, and the blending ratio of iron oxide other than the pisolite-based iron ore is 74% by mass. did.

−0.25mmのRRには、−0.125mmが91.4%含まれている。したがって、表1で、−0.25mmのRRの配合割合が56質量%は、−0.125mmの配合割合は、51質量%(56×0.914)である。同様に、−0.25mmのRRの配合割合が37質量%、18質量%の場合は、−0.125mmの配合割合は、それぞれ、34質量%(37×0.914)、16質量%(18×0.914)である。
又、−0.15mmのPFには、−0.125mmが83%含まれている。したがって、表1で、−0.15mmのPFの配合割合が56質量%は、−0.125mmの配合割合は、46質量%(56×0.83)である。同様に、−0.15mmのPFの配合割合が37質量%、18質量%の場合は、−0.125mmの配合割合は、それぞれ、31質量%(37×0.83)、15質量%(18×0.83)である。
以上のことより、実施例1では、−0.125mmの微粉状酸化鉄は、66質量%(51+15)であり、40質量%を超える。同様に実施例2では、−0.125mmの微粉状酸化鉄は、65質量%(34+31)であり、実施例3では、−0.125mmの微粉状酸化鉄は、62質量%(16+46)でああり、それぞれ40質量%を超える。
The -RR of -0.25 mm contains 91.4% of -0.125 mm. Therefore, in Table 1, the blending ratio of RR of −0.25 mm is 56 mass%, and the blending ratio of −0.125 mm is 51 mass% (56 × 0.914). Similarly, when the blending ratio of RR of −0.25 mm is 37 mass% and 18 mass%, the blending ratio of −0.125 mm is 34 mass% (37 × 0.914) and 16 mass%, respectively ( 18 × 0.914).
The PF of -0.15 mm contains 83% of -0.125 mm. Therefore, in Table 1, the blending ratio of −0.15 mm PF is 56 mass%, and the blending ratio of −0.125 mm is 46 mass% (56 × 0.83). Similarly, when the blending ratio of PF of -0.15 mm is 37 mass% and 18 mass%, the blending ratio of -0.125 mm is 31 mass% (37 × 0.83) and 15 mass%, respectively ( 18 × 0.83).
From the above, in Example 1, the fine powdered iron oxide of −0.125 mm is 66% by mass (51 + 15), which exceeds 40% by mass. Similarly, in Example 2, −0.125 mm finely divided iron oxide is 65 mass% (34 + 31), and in Example 3, −0.125 mm finely divided iron oxide is 62 mass% (16 + 46). Yes, each exceeds 40% by mass.

各実施例及び比較例の原料を、ディスクペレタイザーを用いて水分8〜11質量%でペレットに造粒し、製品を14日自然養生した。養生後、直径10〜15mmの製品を篩出し、その製品の反応後の熱間圧潰強度及び製造した含炭塊成鉱を使用した場合による、焼結鉱還元率を測定した。 The raw materials of each Example and Comparative Example were granulated into pellets with a moisture content of 8 to 11% by mass using a disk pelletizer, and the product was naturally cured for 14 days. After curing, a product having a diameter of 10 to 15 mm was sieved, and the hot crush strength after reaction of the product and the reduction rate of the sinter by using the produced carbon-containing agglomerated mineral were measured.

圧潰強度の測定は、JIS M8718「鉄鉱石ペレット圧潰強度試験方法」に準じて、試料1個に対して、規定の加圧速度で圧縮荷重をかけることにより、破壊した時の荷重値を測定した。   The crushing strength was measured according to JIS M8718 “Iron Ore Pellet Crushing Strength Test Method” by applying a compressive load to a single sample at a specified pressure rate to determine the load value at the time of failure. .

熱間圧潰強度は、高炉内の還元反応を荷重化で模擬できる還元試験装置を用い、高炉シャフト部の熱保存帯と還元反応平衡帯における還元ガス組成(CO;36%、CO;14%、N;50%)及び温度(900〜1200℃)とほぼ同じ条件で還元試験を実施し、反応後の非焼成含炭塊成鉱を前記圧潰強度の測定方法により測定した。
高炉内の還元反応を荷重化で模擬できる還元試験装置の詳細を図2に示す。反応内管1(Φ73mm)と反応外管2の間に所定の反応性ガスを入口3から流入し、反応管底より、反応管内に導入する。反応管の下部にアルミナボール5を敷き詰め、その上に焼結鉱450gと非焼成含炭ペレット50gから成る試料6を充填する。試料は加熱装置7により加熱され、試料温度は、熱電対8により測定する。反応後のガスは反応後ガス出口4のより反応内管1から、外部に排出される。図3に還元試験時の測定条件を示す。ガス組成と温度は、高炉のシャフト部における条件を模したものである。反応終了後に窒素冷却してから試料を取り出して圧潰強度測定試料とした。
For the hot crushing strength, a reduction test apparatus capable of simulating the reduction reaction in the blast furnace with a load is used, and the reducing gas composition (CO: 36%, CO 2 ; 14%) in the thermal preservation zone and reduction reaction equilibrium zone of the blast furnace shaft portion. , N 2 ; 50%) and a temperature test (900 to 1200 ° C.) under almost the same conditions, a reduction test was performed, and the unfired carbon-containing agglomerated mineral after the reaction was measured by the above-described method for measuring crushing strength.
FIG. 2 shows details of a reduction test apparatus that can simulate the reduction reaction in the blast furnace by applying a load. A predetermined reactive gas flows from the inlet 3 between the inner reaction tube 1 (Φ73 mm) and the outer reaction tube 2 and is introduced into the reaction tube from the bottom of the reaction tube. Alumina balls 5 are spread on the lower part of the reaction tube, and a sample 6 consisting of 450 g of sintered ore and 50 g of unfired carbon-containing pellets is filled thereon. The sample is heated by the heating device 7, and the sample temperature is measured by the thermocouple 8. The gas after the reaction is discharged to the outside from the reaction inner tube 1 through the gas outlet 4 after the reaction. FIG. 3 shows the measurement conditions during the reduction test. The gas composition and temperature simulate the conditions in the shaft portion of the blast furnace. After completion of the reaction, the sample was cooled with nitrogen and taken out as a crushing strength measurement sample.

還元後の焼結鉱の還元率の測定は、前記還元試験を実施後、焼結鉱の化学分析を行い、分析結果から算出した。 The reduction rate of the sintered ore after the reduction was calculated from the analysis result by performing a chemical analysis of the sintered ore after performing the reduction test.

実施例1乃至実施例3で分かるように、ピソライト系鉄鉱石の比率が減少するほど反応後圧潰強度が低下し、比較例2では、熱間圧潰強度が所要の700kN/mを下回った。またピソライト系鉄鉱石以外の酸化鉄の比率が増加するほど、焼結鉱の還元率が上昇し、比較例1においては、焼結鉱の還元率が著しく低下した。以上、本発明を実施した場合には、比較例と比較して熱間圧潰強度及び還元効率ともに優れた含炭塊成鉱が得られた。 As can be seen from Examples 1 to 3, the post-reaction crushing strength decreased as the proportion of pisolite-based iron ore decreased, and in Comparative Example 2, the hot crushing strength was below the required 700 kN / m 2 . Moreover, the reduction rate of the sintered ore increased as the ratio of iron oxide other than the pisolite iron ore increased, and in Comparative Example 1, the reduction rate of the sintered ore significantly decreased. As mentioned above, when this invention was implemented, the carbon-containing agglomerated mineral which was excellent in both hot crushing strength and reduction efficiency compared with the comparative example was obtained.

高炉用非焼成含炭塊成鉱に内装する炭材の粒径を変更することなく、熱間圧潰強度が良好であり、還元効率を向上させる高炉用非焼成含炭塊成鉱の製造方法を提供することができる。 A method for producing a non-fired carbon-containing agglomerated mineral for blast furnaces that has good hot crushing strength and improves reduction efficiency without changing the particle size of the carbonaceous material contained in the non-fired carbon-containing agglomerated mineral for blast furnace. Can be provided.

1…反応内管、2…反応外管、3…反応性ガス入口、4…反応後ガス出口、5…アルミナボール、6…試料、7…加熱装置、8…熱電対。 DESCRIPTION OF SYMBOLS 1 ... Inner tube, 2 ... Outer tube, 3 ... Reactive gas inlet, 4 ... Post-reaction gas outlet, 5 ... Alumina ball, 6 ... Sample, 7 ... Heating device, 8 ... Thermocouple.

Claims (3)

微粉状酸化鉄と、微粉状炭材と、バインダーを有する原料に水分を添加して混合、造粒することにより、高炉用非焼成含炭塊成鉱を製造する方法であって、
前記微粉状酸化鉄のうちのピソライト系鉄鉱石の割合が、前記原料の全質量に対し、18質量%以上、56質量%以下であり、ペレットフィードの割合が、前記原料の全質量に対し、18質量%以上56質量%以下であることを特徴とする非焼成含炭塊成鉱の製造方法。
A method for producing a non-fired carbon-containing agglomerated blast furnace for a blast furnace by adding water to a fine powdered iron oxide, a fine powdered carbonaceous material, and mixing and granulating the raw material having a binder,
The proportion of pisolite-based iron ore in the pulverized iron oxide is 18% by mass or more and 56% by mass or less with respect to the total mass of the raw material, and the ratio of pellet feed is based on the total mass of the raw material, A method for producing a non-fired carbon-containing agglomerated mineral, characterized by being 18% by mass or more and 56% by mass or less .
微粉状酸化鉄と、微粉状炭材と、バインダーを有する原料に水分を添加して混合、造粒することにより、高炉用非焼成含炭塊成鉱を製造する方法であって、
前記微粉状酸化鉄の粒径は、前記微粉状酸化鉄の全量に対し、125μm以下が40質量%を越え、
125μm以下のピソライト系鉄鉱石の割合が、前記原料の全質量に対し、16質量%
以上、51質量%以下であることを特徴とする非焼成含炭塊成鉱の製造方法。
A method for producing a non-fired carbon-containing agglomerated blast furnace for a blast furnace by adding water to a fine powdered iron oxide, a fine powdered carbonaceous material, and mixing and granulating the raw material having a binder,
The particle size of the pulverized iron oxide is such that 125 μm or less exceeds 40% by mass with respect to the total amount of the pulverized iron oxide ,
The proportion of pisolite iron ore of 125 μm or less is 16% by mass with respect to the total mass of the raw material.
As mentioned above, it is 51 mass% or less, The manufacturing method of the non-baking carbon-containing agglomerated mineral characterized by the above-mentioned.
前記高炉用非焼成含炭塊成鉱が、前記原料の全質量に対し、10質量%以上の前記微粉状炭材を有する非焼成含炭ペレット及び非焼成含炭ブリケットのいずれかであることを特徴とする前記請求項1又は請求項2に記載の非焼成含炭塊成鉱の製造方法。   The non-fired carbon-containing agglomerated mineral for blast furnace is any one of non-fired carbon-containing pellets and non-fired carbon-containing briquettes having 10% by mass or more of the pulverized carbonaceous material with respect to the total mass of the raw material. The method for producing a non-fired carbon-containing agglomerated mineral according to claim 1 or 2, characterized by the above.
JP2011249813A 2011-11-15 2011-11-15 Method for producing unfired carbon-containing agglomerated mineral Active JP5786668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011249813A JP5786668B2 (en) 2011-11-15 2011-11-15 Method for producing unfired carbon-containing agglomerated mineral

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011249813A JP5786668B2 (en) 2011-11-15 2011-11-15 Method for producing unfired carbon-containing agglomerated mineral

Publications (2)

Publication Number Publication Date
JP2013104108A JP2013104108A (en) 2013-05-30
JP5786668B2 true JP5786668B2 (en) 2015-09-30

Family

ID=48623889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011249813A Active JP5786668B2 (en) 2011-11-15 2011-11-15 Method for producing unfired carbon-containing agglomerated mineral

Country Status (1)

Country Link
JP (1) JP5786668B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6992644B2 (en) * 2018-03-27 2022-01-13 日本製鉄株式会社 Method for producing uncalcined agglomerate for blast furnace and method for producing pozzolan-reactive iron-containing raw material
CN108707708A (en) * 2018-06-19 2018-10-26 东北大学 A kind of additive and its application method improving blast furnace injection coal powder mobility
JP7368726B2 (en) 2020-01-10 2023-10-25 日本製鉄株式会社 Method for producing unfired coal-containing agglomerated ore for blast furnaces

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008270A1 (en) * 2007-07-10 2009-01-15 Kabushiki Kaisha Kobe Seiko Sho Carbon composite iron oxide briquette and process for producing the same
JP5114742B2 (en) * 2007-12-28 2013-01-09 新日鐵住金株式会社 Method for producing carbon-containing unfired pellets for blast furnace
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP4842403B2 (en) * 2009-08-21 2011-12-21 新日本製鐵株式会社 Method for producing unfired carbon-containing agglomerated mineral

Also Published As

Publication number Publication date
JP2013104108A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5000402B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
WO2011021577A1 (en) Unfired carbon-containing agglomerate for blast furnaces and production method therefor
JP6056492B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP4603628B2 (en) Blast furnace operation method using carbon-containing unfired pellets
JP5803540B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP6228101B2 (en) Manufacturing method of carbon material interior ore
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
JP5114742B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
JP2015137379A (en) Non-burning carbonaceous material interior ore for blast furnace and manufacturing method therefor
KR101444562B1 (en) Unfired carbon-containing agglomerate and production method therefor
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP6326074B2 (en) Carbon material interior ore and method for producing the same
JP5825180B2 (en) Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char
JP5835144B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP5447410B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP5517501B2 (en) Method for producing sintered ore
JP2020117771A (en) Method for producing carbon-containing non-fired pellet for blast furnace
JP6939667B2 (en) Charcoal lumber interior ore and its manufacturing method
WO2021029008A1 (en) Carbon composite ore and method for manufacturing same
JPS60184642A (en) Manufacture of unfired lump ore
JP2007302956A (en) Nonfired agglomerated ore for iron manufacture
TW202113090A (en) Carbon-containing ore and manufacturing method thereof with the carbon-containing ore containing iron-containing raw materials, carbon materials and a binder
JP2019104947A (en) Ore containing carbon and production method for the same
JPH0365413B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R151 Written notification of patent or utility model registration

Ref document number: 5786668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350