JPS6228975B2 - - Google Patents

Info

Publication number
JPS6228975B2
JPS6228975B2 JP55113779A JP11377980A JPS6228975B2 JP S6228975 B2 JPS6228975 B2 JP S6228975B2 JP 55113779 A JP55113779 A JP 55113779A JP 11377980 A JP11377980 A JP 11377980A JP S6228975 B2 JPS6228975 B2 JP S6228975B2
Authority
JP
Japan
Prior art keywords
polyolefin resin
film
radical generator
molding
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55113779A
Other languages
Japanese (ja)
Other versions
JPS5738837A (en
Inventor
Shuzo Matsura
Keiichi Kawaguchi
Tooru Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP11377980A priority Critical patent/JPS5738837A/en
Publication of JPS5738837A publication Critical patent/JPS5738837A/en
Publication of JPS6228975B2 publication Critical patent/JPS6228975B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリオレフインフイルムの製造方法に
関するものであり、更に詳しくは、ポリエチレン
に量のラジカル発生剤を添加してインフレーシヨ
ン成型することにより安定にかつ高速で成型を可
能にし、しかも高強度の管状フイルムを得る方法
に関するものである。 一般にポリエチレンはインフレーシヨン法ある
いはTダイ法等の成型方法によりフイルム成型さ
れているが、近年成型機械の改良、作業の効率化
等から、成型速度が高速化する傾向にある。 しかるに、高速で成型すればするほど特にイン
フレーシヨン法では押出された溶融体が固化する
過程で不安定となり、安定な管状物が得られにく
くなり、均一なフイルムが得られない。 更にひどい場合はこの管状物の安定度が極度に
悪くなりついにはインフレーシヨン成型不能とな
るに至る。 この原因としてはポリエチレンの溶融張力(以
下MTと略す)の大きさが主たるものであるが、
これが大きいほど前記のような不安定な挙動は起
りにくい。しかるにあまり大きくなりすぎると薄
肉フイルム成型時溶融体がちぎれ、再び管状物が
得られずインフレーシヨン成型が不能となる。従
つて前記の如く高速でインフレーシヨン成型を安
定に行い、かつ高強度のフイルムを得るために
は、原料ポリエチレンの溶融張力を適正に保つこ
とが必要となる。 本発明者らは鋭意検討の結果、ポリエチレンに
ラジカル発生剤を添加し、これを分解し、ポリエ
チレンと反応せしめるとポリエチレンの溶融張力
が増大し、前記の如く高速インフレーシヨン成型
に十分耐え得る樹脂が得られるようになるが、こ
のラジカル発生剤の添加量が非常に少量の適正量
でないと、即ち、多すぎる場合はポリエチレンの
MTが高くなりすぎ再び前記のような不利益をも
たらすようになる他、フイルム強度、特に横方向
引裂強度が大巾に低下することを発見し、本発明
に到達した。 即ち本発明の要旨は、ポリオレフイン樹脂とラ
ジカル発生剤を混合し、ラジカル発生剤を分解し
てポリオレフイン樹脂と反応させながら、あるい
は反応させたのち、インフレーシヨン成型してフ
イルムを製造するに際し、ポリオレフイン樹脂と
して、マグネシウム及びチタンを含有するチーグ
ラー系触媒を用いて製造されたエチレン単独重合
体又はエチレンと他のα―オレフインとの共重合
体を用い、ラジカル発生剤の添加量を、ポリオレ
フイン樹脂に対し0.001〜0.0045重量%の範囲と
することを特徴とするポリオレフインフイルムの
製造方法に存する。 本発明を詳細に説明するに、ポリオレフイン樹
脂としては、エチレン単独重合体またはエチレン
を主体とするエチレンと他のα―オレフインとの
共重合体が挙げられる。コモノマーとしては、プ
ロピレン、ブテン―1等が挙げられる。また、ポ
リオレフイン樹脂としては、マグネシウムおよび
チタンを含有する高活性のチーグラー系触媒を用
いて製造されたものがよく、例えばシリカ・クロ
ム系のいわゆるフイリツプス系触媒により得られ
たポリエチレンに本発明を適用しても期待した結
果は得られない。具体的にはマグネシウムジアル
コラート、塩化マグネシウム等のマグネシウム化
合物にチタンの塩化物、ハロアルコラート、アル
コラート等を担持又は反応させた固体触媒成分と
有機アルミニウム化合物とからなる触媒系を用い
て常法に従い重合して得られたポリオレフイン樹
脂が挙げられる。ポリオレフイン樹脂の密度はと
くに制限はないが、一般に0.90〜0.97g/cm3の範
囲のものが用いられる。メルトインデツクスは、
ASTMD―1238―65Tに記載された方法に準じて
測定した値で、0.01〜5g/10分の範囲から選ば
れるが、高強度フイルムとするには、0.01〜0.1
g/10分の範囲内から選ぶことが好ましい。 次にラジカル発生剤は、半減期1分となる温度
が130℃以上300℃以下のものが好ましく、例えば
α―α′ビス(t―ブチルパーオキシイソプロピ
ル)ベンゼン、2,5―ジメチル―2.5ジ(t―
ブチルパーオキシ)ヘキサン、2,5ジメチル―
2,5ジ(t―ブチルパ―オキシ)ヘキシン―3
等が挙げられる。 ラジカル発生剤の添加量は、ポリオレフイン樹
脂に対し0.001〜0.0045重量%の範囲から選ばれ
る。0.001重量%より少いと成型安定性は無添加
のものと殆ど変らず、0.0045重量%をこえると薄
肉フイルム成型時の管状物がやぶれたり、フイル
ムの横方向引裂強度等の強度が低下したりする悪
影響が生じる。しかるにこの添加量は0.001〜
0.0028重量%であることが上記効果が特に大きい
のでより好ましい。 本発明においては、ポリオレフイン樹脂とラジ
カル発生剤を混合し、ラジカル発生剤を分解しポ
リオレフイン樹脂と反応させながら、あるいは反
応させたのち、インフレーシヨン成形してフイル
ムを製造する。 ここでラジカル発生剤の添加方法であるが、こ
れには特に制限はなく、例えば、 (1) インフレーシヨン成形時にポリオレフイン樹
脂とラジカル発生剤を同時にフイードする。 (2) 押出機、バンバリーミキサー等の混練機を使
用してポリオレフイン樹脂にラジカル発生剤を
反応せしめた後ペレツト化し該ペレツトを使用
してインフレーシヨン成形する。 (3) ラジカル発生剤を多量に含んだマスターバツ
チをあらかじめ作り、このマスターバツチとポ
リオレフイン樹脂をブレンドしインフレーシヨ
ン成形する。 また、ラジカル発生剤そのものはそのままある
いは溶剤に溶かして使用される。 しかして、押出樹脂温度は150℃から250℃の範
囲にあることが好ましい。この温度が150℃未満
であると肌荒れの現像が生じ、平滑なフイルムを
得ることが困難となり、250℃を超えるとMTが
低くなり成型が不安定となる。 ダイ形状は溶融樹脂が均一となるものであれば
特に制限はない。ブロー比は2以上であることが
好ましい。この値が2未満であると、フイルムの
縦方向への分子鎖配向が大きくなるため、この方
向の引裂強度が低下するため強度バランスのよい
フイルムが得られない。 フロストライン高さは10cmから100cmの間の値
とするのが好ましい。この値が10cm未満であると
溶融樹脂の緩和が十分行われず縦方向の強度の低
いフイルムを与えるし、100cmをこすと押出され
た樹脂が冷却されて、安定な管状物を形成するこ
とが困難となり好ましくない。 フイルム引取速度は押出機の口径が更に大きく
なると50m/分より更に高い値をとりうる。フイ
ルムはその使用される分野によつて5μから250
μの範囲の厚さに亘ることができる。上記の成型
条件は特に引取速度と管状物の安定性に着目した
もので、本発明における成型条件は、これに限定
されるものではない。 以下に実施例をもつて本発明をさらに詳細に説
明するが、ここで用いた管状フイルムの成形条件
を次に記す。成型はインフレーシヨン成形法によ
る。 成型機 ―モダンマシナリー社製空冷インフレ
ーシヨンフイルム装置 押出機 ―モダンマシナリー50mmφデルサー 成型条件―押出機温度設定 シリンダー1 200℃ シリンダー2 200℃ ダイヘツド 200℃ ダイ1 200℃ ダイ2 200℃ ダイ 50mmφスパイラルダイ ダイキヤツプ 1mm ブロー比 4 フロストライン高さ 50cm 引取速度 50〜20m/分 フイルム厚み 10μ 得られたフイルムの強度は エルメンドルフ引裂強度―JIS P8116 ダートドロツプインパクト―ASTM D1709 に準じて試験した。 またポリエチレンの物性値は MI(メルトインデツクス)―ASTM D1238
65T FR(フローレシオ)―三菱化成法 MI測定用装置およびMI測定用ノズルを用
いて、106dyne/cm2と105dyne/cm2の2応
力時の流出量を求め、その比をとつた値で
溶融ポリエチレン流動時の非ニユートン性
の尺度。 MT(メルトテンシヨン)―三菱化成法。 東洋精機製メルトテンシヨンテスターを用
い、温度230℃、ノズルL/D=5/1、ノズ
ル流入角60度、押出量0.44g/分、引取速
度94cm/分、ドラフト比1.28の時のストラ
ンドの張力。 にて測定した。 実施例 1 マグネシウムジエチラート5gに四塩化チタン
50c.c.を加え130℃で2時間撹拌する。その後n―
ヘキサンで固体部を洗浄し、乾燥粉末を得る。こ
の粉末はMg10.1重量%、Ti17.4重量%を含んで
いた。 この粉末を用いてMI=830のポリエチレン及
びMI=0.003のエチレン―ブテン―1共重合体ブ
テン―1含量3重量%のものの2種類を造る。
(詳細は特願昭53―134121号参照) 、を夫々5Kgずつとり十分に粉末を混合し
同時に0.19gの2,5ジメチル―2,5ジ(t―
ブチルパーオキシ)ヘキサンを添加し、均一に混
合する。得られた粉末をバンバリーミキサーに仕
込み窒素置換を十分行い、200r.p.m.シエアレー
ト420sec-1で250℃において3分間混練する。得
られたものはMI=0.03FR=120であつた。これを
前記の条件でインフレーシヨン成型し下記の如き
結果を得た。成型はきわめて安定に行うことがで
きた。 引取速度― 50m/分 ブロー比― 4 厚 み― 10μ エルメンドルフ引裂強度 縦方向―9.5Kg/cm 横方向―100Kg/cm ダートドロツプインパクト―410g 比較例 1 実施例1においてラジカル発生剤を用いない以
外は全く同様にしてインフレーシヨン成型を行つ
たところ管状物のゆれがはげしく均一なフイルム
が得られなかつた。 実施例 2 マグネシウムジエチラート20mmol、トリノル
マルブトキシモノクロルチタン10mmol、ブタノ
ール40mmolを加熱均一とし、ベンゼン150c.c.を加
えて均一溶液とする。60℃にてエチルアルミニウ
ムセスキクロリド87mmolを添加し、固体を得
る。この固体をn―ヘキサンで洗浄し、粉末とす
る。この粉末はMg11.8重量%、Ti10.7重量%を
含有した。 この粉末とトリエチルアルミニウムを組合せた
触媒を用い、90℃にてn―ヘキサン溶媒を使用
し、オートクレーブ気相の水素/エチレンの分圧
比が4.5となるようにしエチレンの吸収量が3Kg
になつたところで温度を70℃にすると共に気相部
をパージする。次いで70℃で気相の水素/エチレ
ンの分圧比及びブテン―1/エチレンの分圧比が
夫々0.06及び0.11になるようにエチレン―ブテン
―1の共重合を行う。エチレンの吸収量が3Kgに
なつたところでエタノールを加え重合を停止す
る。6Kgのポリエチレン粉末が得られた(詳細に
ついては特願昭54―137470号参照)。 この粉末に表―1に示したようなラジカル発生
剤及び量を加え均一にし単軸押出機を用いてペレ
ツト化した。 このペレツト化条件は下記の通りである。 押出機―大阪精機40mmφ押出機、 15VSE―40―24型 ペレツト化条件―押出機温度設定 シリンダー1 160℃ シリンダー2 200℃ シリンダー3 250℃ ダイヘツド 250℃ ダイ 240℃ 回転数 113r.p.m. 各種成型条件及び結果を表―1にまとめた。 実施例3〜8及び比較例2〜5 実施例2と全く同様の実験をラジカル発生剤の
種類、添加量及びフイルム成型法をかえて行い表
―1の如き結果を得た。
The present invention relates to a method for producing a polyolefin film, and more specifically, by adding a certain amount of a radical generator to polyethylene and performing inflation molding, it is possible to stably and quickly mold the film, and to produce a high-strength tubular shape. It concerns a method of obtaining film. Generally, polyethylene is molded into a film by a molding method such as an inflation method or a T-die method, but in recent years, molding speeds have tended to increase due to improvements in molding machines and increased work efficiency. However, the higher the molding speed, especially in the inflation method, the more unstable the extruded melt becomes during the solidification process, making it difficult to obtain a stable tubular product and making it difficult to obtain a uniform film. In even worse cases, the stability of this tubular material becomes extremely poor, and eventually inflation molding becomes impossible. The main reason for this is the magnitude of the melt tension (hereinafter abbreviated as MT) of polyethylene.
The larger this value is, the less likely unstable behavior as described above will occur. However, if it becomes too large, the melt will break during molding of a thin film, and a tubular product will not be obtained again, making inflation molding impossible. Therefore, in order to stably perform inflation molding at high speeds as described above and to obtain a high-strength film, it is necessary to maintain the melt tension of the raw polyethylene at an appropriate level. As a result of extensive studies, the present inventors found that by adding a radical generator to polyethylene, decomposing it, and reacting with the polyethylene, the melt tension of the polyethylene increases, resulting in a resin that can withstand high-speed inflation molding as described above. However, if the amount of radical generator added is not a very small appropriate amount, that is, if it is too large, the polyethylene
The present invention was achieved based on the discovery that when the MT becomes too high, the above-mentioned disadvantages occur again, and the film strength, especially the tear strength in the transverse direction, decreases significantly. That is, the gist of the present invention is to mix a polyolefin resin and a radical generator, decompose the radical generator, react with the polyolefin resin, or after the reaction, and then perform inflation molding to produce a film. As the resin, an ethylene homopolymer or a copolymer of ethylene and other α-olefins produced using a Ziegler catalyst containing magnesium and titanium was used, and the amount of the radical generator was adjusted based on the polyolefin resin. A method for producing a polyolefin film, characterized in that the content is in a range of 0.001 to 0.0045% by weight. To explain the present invention in detail, examples of the polyolefin resin include an ethylene homopolymer and a copolymer of ethylene and other α-olefins, which mainly consist of ethylene. Examples of comonomers include propylene, butene-1, and the like. In addition, the polyolefin resin is preferably one produced using a highly active Ziegler catalyst containing magnesium and titanium. For example, the present invention is applied to polyethylene obtained using a so-called Phillips catalyst based on silica and chromium. However, the expected result is not obtained. Specifically, polymerization is carried out using a conventional method using a catalyst system consisting of a solid catalyst component in which titanium chloride, haloalcoholate, alcoholate, etc. are supported or reacted with a magnesium compound such as magnesium dialkholate or magnesium chloride, and an organoaluminium compound. Examples include polyolefin resins obtained by There are no particular restrictions on the density of the polyolefin resin, but a density in the range of 0.90 to 0.97 g/cm 3 is generally used. The melt index is
This is a value measured according to the method described in ASTMD-1238-65T, and is selected from the range of 0.01 to 5 g/10 minutes, but for a high strength film, 0.01 to 0.1
It is preferable to select from within the range of g/10 minutes. Next, the radical generator preferably has a half-life of 1 minute at a temperature of 130°C or higher and 300°C or lower, such as α-α'bis(t-butylperoxyisopropyl)benzene, 2,5-dimethyl-2.5-dimethyl (t-
butylperoxy)hexane, 2,5 dimethyl-
2,5 di(t-butylperoxy)hexyne-3
etc. The amount of the radical generator added is selected from the range of 0.001 to 0.0045% by weight based on the polyolefin resin. If it is less than 0.001% by weight, the molding stability will be almost the same as without additives, and if it exceeds 0.0045% by weight, the tubular object will break during thin film molding, and the film's strength such as lateral tear strength will decrease. Negative effects occur. However, the amount added is 0.001~
A content of 0.0028% by weight is more preferable because the above effects are particularly large. In the present invention, a polyolefin resin and a radical generator are mixed, the radical generator is decomposed and reacted with the polyolefin resin, or after the reaction is performed, inflation molding is performed to produce a film. There are no particular restrictions on the method of adding the radical generator, for example, (1) the polyolefin resin and the radical generator are fed simultaneously during inflation molding. (2) A polyolefin resin is reacted with a radical generator using a kneading machine such as an extruder or a Banbury mixer, and then pelletized, and the pellets are used for inflation molding. (3) A masterbatch containing a large amount of radical generator is prepared in advance, and this masterbatch and polyolefin resin are blended and inflation molded. Further, the radical generator itself may be used as it is or dissolved in a solvent. Therefore, the extrusion resin temperature is preferably in the range of 150°C to 250°C. If this temperature is less than 150°C, rough development will occur and it will be difficult to obtain a smooth film, and if it exceeds 250°C, MT will be low and molding will become unstable. The shape of the die is not particularly limited as long as the molten resin is uniform. It is preferable that the blow ratio is 2 or more. If this value is less than 2, the molecular chain orientation in the longitudinal direction of the film becomes large, and the tear strength in this direction decreases, making it impossible to obtain a film with good strength balance. Preferably, the frost line height is between 10 cm and 100 cm. If this value is less than 10 cm, the molten resin will not be relaxed enough, resulting in a film with low strength in the longitudinal direction, and if it is rubbed beyond 100 cm, the extruded resin will cool, making it difficult to form a stable tubular object. This is undesirable. The film take-off speed can be even higher than 50 m/min as the diameter of the extruder becomes larger. The film ranges from 5μ to 250, depending on the field in which it is used.
Thicknesses in the μ range can be covered. The above molding conditions are particularly focused on the take-up speed and the stability of the tubular product, and the molding conditions in the present invention are not limited to these. The present invention will be explained in more detail with reference to Examples below, and the conditions for forming the tubular film used here will be described below. The molding is done using the inflation molding method. Molding machine - Air-cooled inflation film device manufactured by Modern Machinery Extruder - Modern Machinery 50mmφ Delcer Molding conditions - Extruder temperature setting Cylinder 1 200℃ Cylinder 2 200℃ Die head 200℃ Die 1 200℃ Die 2 200℃ Die 50mmφ spiral die Cap: 1 mm Blow ratio: 4 Frost line height: 50 cm Take-up speed: 50 to 20 m/min Film thickness: 10 μ The strength of the obtained film was tested according to Elmendorf tear strength - JIS P8116 and dirt drop impact - ASTM D1709. The physical properties of polyethylene are MI (melt index) - ASTM D1238.
65T FR (flow ratio) - Using the Mitsubishi Kasei method MI measurement device and MI measurement nozzle, determine the flow rate at two stresses of 10 6 dyne/cm 2 and 10 5 dyne/cm 2 and calculate the ratio. A measure of non-Newtonianity when molten polyethylene flows. MT (melt tension) - Mitsubishi Chemical method. Using a Toyo Seiki melt tension tester, the temperature of the strand was measured at 230°C, nozzle L/D = 5/1, nozzle inlet angle 60 degrees, extrusion rate 0.44 g/min, take-up speed 94 cm/min, and draft ratio 1.28. tension. Measured at Example 1 Titanium tetrachloride in 5 g of magnesium diethylate
Add 50 c.c. and stir at 130°C for 2 hours. After that n-
Wash the solid part with hexane to obtain a dry powder. This powder contained 10.1% by weight of Mg and 17.4% by weight of Ti. Using this powder, two types of polyethylene with MI=830 and an ethylene-butene-1 copolymer with MI=0.003 having a butene-1 content of 3% by weight are prepared.
(For details, refer to Japanese Patent Application No. 134121/1984). Take 5 kg of each of , mix the powder thoroughly, and at the same time add 0.19 g of 2,5 dimethyl-2,5 di(t-
Add butylperoxy)hexane and mix evenly. The obtained powder was charged into a Banbury mixer, thoroughly purged with nitrogen, and kneaded at 250°C for 3 minutes at a shear rate of 200 rpm and 420 sec -1 . The obtained one was MI=0.03FR=120. This was inflation molded under the above conditions and the following results were obtained. The molding could be performed extremely stably. Take-up speed - 50m/min Blow ratio - 4 Thickness - 10μ Elmendorf tear strength Longitudinal direction - 9.5Kg/cm Lateral direction - 100Kg/cm Dirt drop impact - 410g Comparative example 1 Except for using no radical generator in Example 1 When inflation molding was carried out in exactly the same manner, the tubular material wobbled so much that a uniform film could not be obtained. Example 2 20 mmol of magnesium diethylate, 10 mmol of tri-n-butoxymonochlorotitanium, and 40 mmol of butanol are uniformly heated, and 150 c.c. of benzene is added to form a uniform solution. Add 87 mmol of ethylaluminum sesquichloride at 60°C to obtain a solid. This solid is washed with n-hexane and powdered. This powder contained 11.8% by weight of Mg and 10.7% by weight of Ti. Using a catalyst combining this powder and triethylaluminum, at 90℃ using n-hexane solvent, the hydrogen/ethylene partial pressure ratio in the autoclave gas phase was set to 4.5, and the amount of ethylene absorbed was 3 kg.
When the temperature reaches 70°C, purge the gas phase. Next, ethylene-butene-1 is copolymerized at 70° C. so that the gas phase hydrogen/ethylene partial pressure ratio and butene-1/ethylene partial pressure ratio are 0.06 and 0.11, respectively. When the amount of ethylene absorbed reaches 3 kg, ethanol is added to stop the polymerization. 6 kg of polyethylene powder was obtained (see Japanese Patent Application No. 137470-1987 for details). A radical generator and the amount shown in Table 1 were added to this powder to make it homogeneous and then pelletized using a single screw extruder. The pelletizing conditions are as follows. Extruder - Osaka Seiki 40mmφ extruder, 15VSE - 40-24 type Pelletizing conditions - Extruder temperature setting Cylinder 1 160℃ Cylinder 2 200℃ Cylinder 3 250℃ Die head 250℃ Die 240℃ Rotation speed 113r.pm Various molding conditions and The results are summarized in Table-1. Examples 3 to 8 and Comparative Examples 2 to 5 The same experiment as in Example 2 was conducted by changing the type of radical generator, the amount added, and the film molding method, and the results shown in Table 1 were obtained.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリオレフイン樹脂とラジカル発生剤を混合
し、ラジカル発生剤を分解してポリオレフイン樹
脂と反応させながらあるいは反応させたのち、イ
ンフレーシヨン成形してフイルムを製造するに際
し、ポリオレフイン樹脂として、マグネシウム及
びチタンを含有するチーグラー系触媒を用いて製
造されたエチレン単独重合体又はエチレンと他の
α―オレフインとの共重合体を用い、ラジカル発
生剤の添加量を、ポリオレフイン樹脂に対し
0.001〜0.0045重量%の範囲とすることを特徴と
するポリオレフインフイルムの製造方法。 2 ポリオレフイン樹脂として、メルトインデツ
クスが0.01〜0.1g/10分の範囲で密度が0.90〜
0.97g/cm3の範囲のものを使用する特許請求の範
囲第1項記載の製造方法。 3 ラジカル発生剤の添加量を、ポリオレフイン
樹脂に対し0.001〜0.0028重量%の範囲とする特
許請求の範囲第1項記載の製造方法。
[Claims] 1. When producing a film by mixing a polyolefin resin and a radical generator, decomposing the radical generator and reacting with the polyolefin resin, or after reacting with the polyolefin resin, and performing inflation molding, the polyolefin resin Using an ethylene homopolymer or a copolymer of ethylene and other α-olefins produced using a Ziegler catalyst containing magnesium and titanium, the amount of radical generator added was adjusted to the polyolefin resin.
A method for producing a polyolefin in-film, characterized in that the content is in the range of 0.001 to 0.0045% by weight. 2 As a polyolefin resin, the melt index is in the range of 0.01 to 0.1 g/10 minutes and the density is in the range of 0.90 to
The manufacturing method according to claim 1, which uses a material having a concentration of 0.97 g/cm 3 . 3. The manufacturing method according to claim 1, wherein the amount of the radical generator added is in the range of 0.001 to 0.0028% by weight based on the polyolefin resin.
JP11377980A 1980-08-19 1980-08-19 Production of polyolefin film Granted JPS5738837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11377980A JPS5738837A (en) 1980-08-19 1980-08-19 Production of polyolefin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11377980A JPS5738837A (en) 1980-08-19 1980-08-19 Production of polyolefin film

Publications (2)

Publication Number Publication Date
JPS5738837A JPS5738837A (en) 1982-03-03
JPS6228975B2 true JPS6228975B2 (en) 1987-06-23

Family

ID=14620893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11377980A Granted JPS5738837A (en) 1980-08-19 1980-08-19 Production of polyolefin film

Country Status (1)

Country Link
JP (1) JPS5738837A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829841A (en) * 1981-08-14 1983-02-22 Asahi Chem Ind Co Ltd Improve polyethylene composition
JPS5981137A (en) * 1982-11-01 1984-05-10 Mitsubishi Chem Ind Ltd Manufacture of polyolefin film
JPS59127726A (en) * 1983-01-12 1984-07-23 Asahi Chem Ind Co Ltd Laterally easily tearable inflation film
JPS60161131A (en) * 1984-01-31 1985-08-22 Mitsubishi Chem Ind Ltd Manufacture of laterally laceratable film

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103547A (en) * 1974-01-21 1975-08-15
JPS51132249A (en) * 1975-05-02 1976-11-17 Asahi Chem Ind Co Ltd A method for modifying polyethylene resin by crosslinking
JPS5282964A (en) * 1975-12-29 1977-07-11 Nippon Petrochemicals Co Ltd Method of producing tubular film
JPS5426891A (en) * 1977-08-02 1979-02-28 Mitsui Petrochem Ind Ltd Preparation of olefin copolymer
JPS5455092A (en) * 1977-10-11 1979-05-01 Sumitomo Chem Co Ltd Preparation of flexible resin
JPS5462292A (en) * 1977-10-12 1979-05-19 Naphtachimie Sa Method of making copolymer powder
JPS54154466A (en) * 1978-03-31 1979-12-05 Union Carbide Corp Method of making film from low density ethylene hydrocarbon copolymer
JPS5523189A (en) * 1978-08-02 1980-02-19 Montedison Spa Ethylene polymer and its manufacture
JPS5554309A (en) * 1978-10-18 1980-04-21 Mitsui Petrochem Ind Ltd Preparation of ethylene copolymer
JPS5554308A (en) * 1978-10-17 1980-04-21 Nippon Oil Co Ltd Preparation of copolymer
JPS5556111A (en) * 1978-10-20 1980-04-24 Nippon Oil Co Ltd Preparation of copolymer
JPS5556110A (en) * 1978-10-20 1980-04-24 Nippon Oil Co Ltd Preparation of copolymer
JPS5558210A (en) * 1978-10-26 1980-04-30 Nippon Oil Co Ltd Production of copolymer

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103547A (en) * 1974-01-21 1975-08-15
JPS51132249A (en) * 1975-05-02 1976-11-17 Asahi Chem Ind Co Ltd A method for modifying polyethylene resin by crosslinking
JPS5282964A (en) * 1975-12-29 1977-07-11 Nippon Petrochemicals Co Ltd Method of producing tubular film
JPS5426891A (en) * 1977-08-02 1979-02-28 Mitsui Petrochem Ind Ltd Preparation of olefin copolymer
JPS5455092A (en) * 1977-10-11 1979-05-01 Sumitomo Chem Co Ltd Preparation of flexible resin
JPS5462292A (en) * 1977-10-12 1979-05-19 Naphtachimie Sa Method of making copolymer powder
JPS54154466A (en) * 1978-03-31 1979-12-05 Union Carbide Corp Method of making film from low density ethylene hydrocarbon copolymer
JPS5523189A (en) * 1978-08-02 1980-02-19 Montedison Spa Ethylene polymer and its manufacture
JPS5554308A (en) * 1978-10-17 1980-04-21 Nippon Oil Co Ltd Preparation of copolymer
JPS5554309A (en) * 1978-10-18 1980-04-21 Mitsui Petrochem Ind Ltd Preparation of ethylene copolymer
JPS5556111A (en) * 1978-10-20 1980-04-24 Nippon Oil Co Ltd Preparation of copolymer
JPS5556110A (en) * 1978-10-20 1980-04-24 Nippon Oil Co Ltd Preparation of copolymer
JPS5558210A (en) * 1978-10-26 1980-04-30 Nippon Oil Co Ltd Production of copolymer

Also Published As

Publication number Publication date
JPS5738837A (en) 1982-03-03

Similar Documents

Publication Publication Date Title
JP5596657B2 (en) Polymer blends for producing films with fewer defects
CA1317057C (en) Thermoplastic compositions, their preparation and their use in making industrial articles
JPH09118722A (en) Production of polyethylene blend in site
JPS5871904A (en) Improved linear medium-to-low density polyethylene composition
EP0757076A1 (en) Process for the extrusion of polyethylene
JPS6142736B2 (en)
JPS6228975B2 (en)
JPH0112780B2 (en)
JPH0112777B2 (en)
JPS5951905A (en) New ethylene copolymer
JPH0144209B2 (en)
JPH0112779B2 (en)
JPS596241A (en) Extrusion-coating resin composition
JP2844299B2 (en) Polypropylene composition
JP3581412B2 (en) Method for producing polyethylene resin composition for forming blown film
JPS58194936A (en) Ethylene/alpha-olefin copolymer film
JPH07173218A (en) Production of modified polyethylene and molded article
JPH05179009A (en) Production of masterbatch for modifying thermoplastic resin
JPS623864B2 (en)
JPH06263823A (en) Polypropylene with high melt strength, its production and molded object
JPH069788A (en) Production of polyethylene composition
JPH0549459B2 (en)
JPS59198121A (en) Manufacture of polyethylene film
JP2859346B2 (en) Porous film
JP5548495B2 (en) Method for producing polypropylene modified resin, polypropylene modified resin