JPS62288553A - Detection of surface flaw - Google Patents

Detection of surface flaw

Info

Publication number
JPS62288553A
JPS62288553A JP13203286A JP13203286A JPS62288553A JP S62288553 A JPS62288553 A JP S62288553A JP 13203286 A JP13203286 A JP 13203286A JP 13203286 A JP13203286 A JP 13203286A JP S62288553 A JPS62288553 A JP S62288553A
Authority
JP
Japan
Prior art keywords
image
inspected
mask
average brightness
mask image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13203286A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamamoto
和寛 山本
Arata Nemoto
新 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP13203286A priority Critical patent/JPS62288553A/en
Publication of JPS62288553A publication Critical patent/JPS62288553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To easily discriminate the residual part of a material to be inspected without preparing a large number of standard patterns, by forming the mask image of the standard pattern of the material to be inspected on the basis of a surface image at each time of inspection. CONSTITUTION:The surface image of a material 1 to be inspected having difference between the average brightness of a removed part (a) of said material 1 and that of the residual part (b) thereof is obtained and subjected to binarization and small area removal processing to form a mask image while a surface flaw is detected on the basis of the mask image and the surface image. Further, a surface image having difference between the average brightness of the removed part (a) of the material 1 to be inspected and that of the residual part (b) thereof but having no difference between the average brightness of the removed part (a) of the material 1 to be inspected and that of the periphery of the residual part (b) thereof is obtained to form a mask image. By this method, the respective mask images are formed on the basis of the surface images of a part to be inspected and the surface flaw of a punched product is detected on the basis of the mask images and the surface images.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明はICのリードフレーム中間材等の打抜き製品、
または蛍光表示管に使われるリード及び電極材等のエツ
チング処理製品における表面欠陥を検出する方法に関す
る。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a punched product such as an intermediate material for an IC lead frame,
The present invention also relates to a method for detecting surface defects in etched products such as leads and electrode materials used in fluorescent display tubes.

〔従来技術〕[Prior art]

ICのリードフレームは基板材たる金属条を所要パター
ンに打抜き、またはエツチング処理して形成している。
The lead frame of an IC is formed by punching or etching a metal strip serving as a substrate material into a desired pattern.

そしてこのリードフレームの中間材等、平面の一部が除
去されている打抜製品またはエツチング処理製品に光を
照射してその反射光の輝度レベルを分析して表面欠陥を
検出するのであるが、この場合にあっては、残存部(つ
まり検査対象部)と除去部とを弁別する必要がある。
Then, light is irradiated onto a punched or etched product from which a portion of the flat surface has been removed, such as an intermediate material for a lead frame, and the brightness level of the reflected light is analyzed to detect surface defects. In this case, it is necessary to distinguish between the remaining part (that is, the part to be inspected) and the removed part.

而して打抜きによって、残存部の周縁に形成される端部
だれは照射光を反射して形成される残存部に対して斜め
の部分に伴う輝部となる。一方残存部中の欠陥は光照射
にて輝部となるから、前記端部だれの部分の輝部と欠陥
に因る輝部とを区別する必要がある。
By punching, the edge sagging formed at the periphery of the remaining portion becomes a bright portion accompanying the portion oblique to the remaining portion formed by reflecting the irradiated light. On the other hand, since the defect in the remaining portion becomes a bright portion when irradiated with light, it is necessary to distinguish between the bright portion of the sagging end portion and the bright portion due to the defect.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで検査対象部を弁別するのに、予めm8じた検査対
象部の標準パターンに検査対象部を照合する方法がある
が、対象が多品種にわたる場合は数多くの標準パターン
が必要となり、また位置合せも困難であるので、この方
法は実際上不可能である。また残存部(検査対象部)と
除去部とに平均輝度差(残存部の平均輝度と除去部の平
均輝度との差)があっても、表面欠陥部と除去部とに平
均輝度差がない場合は、表面欠陥を除去部と誤認識して
欠陥を見落すという問題点がある。従って種々の研究は
なされているが、打抜製品の表面欠陥を検出する有効な
方法は未だに確立されていない。
Therefore, in order to discriminate the parts to be inspected, there is a method of comparing the part to be inspected with a standard pattern of the part to be inspected, which has been prepared in advance by m8. This method is also difficult, so this method is practically impossible. Also, even if there is an average brightness difference between the remaining part (part to be inspected) and the removed part (difference between the average brightness of the remaining part and the average brightness of the removed part), there is no difference in average brightness between the surface defect part and the removed part. In this case, there is a problem that a surface defect is mistakenly recognized as a removed part and the defect is overlooked. Therefore, although various studies have been carried out, an effective method for detecting surface defects in punched products has not yet been established.

本発明は斯かる事情に鑑みてなされたものであり、その
目的とするところは、打抜製品たる被検査材の除去部と
残存部とで平均輝度差がある表面画像を得て、それに対
して2値化、小面積除去処理を行ってマスク画像を作成
することにより、表面欠陥部に基づく穴空きが埋められ
たマスク画像が得られ、被検査材の標準パターン(マス
ク画像)が検査の都度作成され、多数の標準パターンを
準備する必要がなくて残存部(検査対象部)の弁別が可
能であり、画像処理にてマスク画像が被検査材の画像と
合成されて検査対象部の位1合せの必要がな(、また、
被検査材を挟んで2方向から被検査材に光を照射して被
検査材の除去部と残存部の周縁とで輝度差のない被検査
材の表面画像を得ることにより、残存部の周縁の輝部の
影響を排除して、残存部の輝部から表面欠陥を検出でき
る方法を提案することにある。
The present invention was made in view of the above circumstances, and its purpose is to obtain a surface image with an average brightness difference between the removed part and the remaining part of a material to be inspected, which is a punched product, and to By performing binarization and small area removal processing to create a mask image, a mask image in which holes caused by surface defects are filled can be obtained, and the standard pattern (mask image) of the inspected material can be used for inspection. It is created each time, so it is not necessary to prepare a large number of standard patterns, and it is possible to distinguish the remaining parts (parts to be inspected).The mask image is synthesized with the image of the inspected material through image processing, and the position of the part to be inspected is determined. There is no need for one match (, also,
By irradiating light onto the inspected material from two directions with the inspected material in between, it is possible to obtain a surface image of the inspected material with no difference in brightness between the removed portion of the inspected material and the periphery of the remaining portion. The object of the present invention is to propose a method that can detect surface defects from the remaining bright areas by eliminating the influence of the remaining bright areas.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る表面欠陥検出方法は、一部が除去され、除
去部と残存部とが混在する平面パターンを有する被検査
材の表面欠陥を検出する方法において、前記被検査材の
除去部の平均輝度と残存部の平均輝度との間に差を有す
る表面画像を得、該表面画像を2値化、小面積除去処理
してマスク画像を作成し、該マスク画像と前記表面画像
とに基づき表面欠陥を検出することを特徴とし、更に、
被検査材の除去部の平均輝度と残存部とのip均輝度と
の間に差を有し、被検査材の除去部の平均輝度と残存部
の周縁の平均輝度との間に差がない表面画像を得てマス
ク画像を作成することを特徴とする。
The surface defect detection method according to the present invention is a method for detecting a surface defect of a material to be inspected which has a planar pattern in which a portion of the material to be inspected has been removed and a removed portion and a remaining portion are mixed. A surface image having a difference between the brightness and the average brightness of the remaining area is obtained, the surface image is binarized, a small area removal process is performed to create a mask image, and the surface image is created based on the mask image and the surface image. It is characterized by detecting defects, and further,
There is a difference between the average brightness of the removed part of the inspected material and the IP average brightness of the remaining part, and there is no difference between the average brightness of the removed part of the inspected material and the average brightness of the periphery of the remaining part. The method is characterized in that a surface image is obtained and a mask image is created.

〔作用〕[Effect]

本発明方法においては、検査対象部の各表面画像に基づ
いて夫々のマスク画像を作成し、該マスク画像と前記表
面画像とに基づき打抜製品等の表面欠陥を検出する。
In the method of the present invention, each mask image is created based on each surface image of the part to be inspected, and surface defects in a punched product or the like are detected based on the mask image and the surface image.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づき説明する。 The present invention will be explained below based on drawings showing embodiments thereof.

第1図は本発明方法を実施するための装置の模式図であ
り、図中1はリードフレームの中間材たる被検査材であ
り、第2図にその表面形状5第3図にその拡大断面を示
す。この中間材は素材ストリップを打抜かれたあと検査
工程へ送られてきたものである。第2図において図中白
い部分が除去部たる打抜き部、黒い部分が残存部(検査
対象部)であり、被検査材lは打抜き部(ア)、残存部
(イ)、残存部(イ)の周縁に打抜き時に形成された残
存部(イ)に対して斜めの端部だれ(つ)が混在する平
面パターンを有する。
Fig. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention. In the figure, 1 is a material to be inspected which is an intermediate material of a lead frame, Fig. 2 shows its surface shape, and Fig. 3 shows its enlarged cross section. shows. This intermediate material was sent to the inspection process after the material strip was punched out. In Fig. 2, the white part is the punched part to be removed, and the black part is the remaining part (part to be inspected). The periphery of the sheet has a planar pattern in which there are sagging edges diagonal to the remaining portion (a) formed during punching.

また被検査材lは第1図中、外部光を遮断する暗箱11
内を図示しない駆動系の作用により第1図表裏方向に搬
送されている。
The material to be inspected l is shown in FIG. 1 in a dark box 11 that blocks external light.
The paper is transported in the front and back directions in FIG. 1 by the action of a drive system (not shown).

暗箱11内には被検査材lを挟む位置で、被検査材lの
斜め上方に2個のストロボ2a、 2b、被検査材1の
下方に1個のストロボ3が設けてある。またそのレンズ
側端部が暗箱11内に臨ませてあり、被検査材lの表面
画像を得るテレビカメラ4が被検査材1上方に適長離隔
させて設けてあり、ストロボ3による打抜き部への透過
脇明により、打抜き部と残存部とには平均輝度差が与え
られ、ストロボ2a、 2bによる残存部(検査対象部
)への照明により打抜き部と残存部の周縁とには輝度差
がない被検査材1の表面画像(打抜き部、残存部の周縁
、つまり端部だれ、及び表面欠陥部は輝度が高レベルで
あり、残存部は輝度が低レベルである画像)がテレビカ
メラ4にて得られるようになっている。
Inside the dark box 11, two strobes 2a and 2b are provided diagonally above the material 1 to be inspected, and one strobe 3 is provided below the material 1 to be inspected, at positions sandwiching the material 1 to be inspected. In addition, its lens side end faces into the dark box 11, and a television camera 4 for obtaining a surface image of the inspected material 1 is installed at an appropriate distance above the inspected material 1, and is directed to the punched part by the strobe 3. An average brightness difference is given between the punched part and the remaining part by the transmitted side light, and a difference in brightness is given between the punched part and the periphery of the remaining part by illumination of the remaining part (inspection target part) by the strobes 2a and 2b. A surface image of the inspected material 1 (an image in which the punched portion, the periphery of the remaining portion, that is, the edge droop, and the surface defect portion have a high brightness level, and the remaining portion has a low brightness level) is captured by the television camera 4. It is now possible to get it.

また20はテレビカメラ4にて得られた表面画像を処理
する画像処理装置であり、画像処理装置20はテレビカ
メラ4にて得られる表面画像を記録する表面画像記録器
5、その記録された表面画像を2値化、小面積除去処理
してマスク画像を得るマスク画像作成器6、表面画像記
録器5に記録された表面画像をマスク画像に基づいて強
調する欠陥強調器7を具備している。
20 is an image processing device that processes the surface image obtained by the television camera 4; the image processing device 20 includes a surface image recorder 5 that records the surface image obtained by the television camera 4; It is equipped with a mask image creator 6 that binarizes the image and performs small area removal processing to obtain a mask image, and a defect highlighter 7 that emphasizes the surface image recorded in the surface image recorder 5 based on the mask image. .

更に欠陥強調器7には、欠陥強調器7の画像に基づき表
面欠陥を検出する欠陥検出器8が接続されている。
Furthermore, a defect detector 8 is connected to the defect enhancer 7 for detecting surface defects based on the image of the defect enhancer 7.

次に本発明方法の具体的手順について説明する。Next, the specific procedure of the method of the present invention will be explained.

搬送されてテレビカメラ4直下位置に到達した被検査材
1は、テレビカメラ4にて撮像され、その表面画像(原
画像)が得られる。テレビカメラ4にて得られた表面画
像は画像処理装置20に具備される表面画像記録器5に
入力されて表面画像が記録され、マスク画像作成器6に
′ζその表面画像は2値化、小面積除去処理されて、表
面画像に基づくマスク画像が得られる。
The inspected material 1 that has been transported and reached a position directly below the television camera 4 is imaged by the television camera 4, and a surface image (original image) thereof is obtained. The surface image obtained by the television camera 4 is input to the surface image recorder 5 included in the image processing device 20 to record the surface image, and the surface image is binarized by the mask image generator 6. A small area removal process is performed to obtain a mask image based on the surface image.

ここで画像上における2値化、小面111除去処理につ
いて具体的に説明する。テレビカメラ4にて撮像して得
られた画像は例えばII?横512画素からなり、各画
素は輝度レベルの高さにより2値化される。第4図は正
常な表面における表面画像の2値化処理後の画像の一部
を示す模式図であり、図中Oの部分は輝度が低レベルの
部分、つまり残存部(4*査対象部)を表し、■の部分
は輝度が高レベルの部分、つまり打抜き部、端部だれ又
は欠陥を表しており、各画素は0.1の何れかに区別さ
れることになる。次に第4図の如き2値化処理画像を小
面積除去処理する。
Here, the binarization and facet 111 removal processing on the image will be specifically explained. For example, the image taken by the television camera 4 is II? It consists of 512 pixels horizontally, and each pixel is binarized depending on the height of the brightness level. Figure 4 is a schematic diagram showing a part of the image after binarization processing of the surface image on a normal surface. ), and the portion marked ■ represents a portion with a high level of brightness, that is, a punched portion, an edge sag, or a defect, and each pixel is classified into one of 0.1. Next, the binarized image as shown in FIG. 4 is subjected to small area removal processing.

この小面積除去処理について説明する。まず各画素につ
いて、周囲の画素8個及び白画素の計9個の画素のうち
1の画素が何個あるかを計数する。
This small area removal process will be explained. First, for each pixel, count how many 1 pixels there are out of a total of 9 pixels, including 8 surrounding pixels and a white pixel.

第5図は第4図に示される画像に基づき、I゛の画素の
計数結果を表した画像の模式図である。次に、計数値が
設定点く例えば5点)以上である画素は1に変換し、設
定点(5点)未満の画素は0に変換する。但し第5図に
おいて、(a)、  (b)。
FIG. 5 is a schematic diagram of an image based on the image shown in FIG. 4, showing the counting results of pixels of I'. Next, pixels whose count value is greater than or equal to a set point (for example, 5 points) are converted to 1, and pixels whose count value is less than the set point (5 points) are converted to 0. However, in Figure 5, (a) and (b).

(c)、  (d)、  (e)の各画素は何れも5点
であり、1に変換される筈であるが、周囲の連結状態を
調べて逐次復元されるので、もとの0に変換される。
Each pixel in (c), (d), and (e) is 5 points, and should be converted to 1, but since it is sequentially restored by checking the surrounding connection state, it is returned to the original 0. converted.

第6図は第4図に示す画像を小面積除去処理して得たi
i像の模式図である。ここで2値化処理画像を周囲及び
自己の1の画素の個数に基づき小面積除去処理するので
、処理後の打抜き部及び残存部の形状は何れも画像上、
処理前と一致する(第4.6図参照)。
Figure 6 shows the image obtained by performing small area removal processing on the image shown in Figure 4.
It is a schematic diagram of an i-image. Here, since the binarized image is subjected to small area removal processing based on the number of surrounding and self 1 pixels, the shapes of the punched part and the remaining part after processing are as follows on the image.
Same as before treatment (see Figure 4.6).

次に小面積除去処理して得た画像の0の部分はlに、l
の部分はOに変換してマスク画像を形成する。第7図は
第6図に示す画像に基づいて得たマスク画像の模式図で
ある。
Next, the 0 part of the image obtained by small area removal processing is set to l, and l
The part is converted to O to form a mask image. FIG. 7 is a schematic diagram of a mask image obtained based on the image shown in FIG. 6.

第8図は表面欠陥を有する被検査材の2値化処理ri!
jt!iの模式図であり、図中太線で囲まれる(f)及
び(g)の部分は本来残存部を示す0であるが、表面欠
陥が存在するために1である。
FIG. 8 shows the binarization process ri! of a material to be inspected that has surface defects.
jt! FIG. 2 is a schematic diagram of 1. The parts (f) and (g) surrounded by thick lines in the figure are originally 0 indicating remaining parts, but are 1 due to the presence of surface defects.

第8図の2値化処理画像に小面積除去処理を施すと、第
9図(1画素の計数値表示)、第1O図(小面積除去処
理後の画像)の如くになり、第11図に示す如きマスク
画像が得られる。従ってマスク画像では、小面積除去処
理されて表面欠陥に伴う穴空きは解消され、マスク画像
作成器6にて正 □常な表面における平面パターンのマ
スク画像が得られる(第7.11図参照)。
When small area removal processing is applied to the binarized image in Fig. 8, it becomes as shown in Fig. 9 (one pixel count value display), Fig. 1O (image after small area removal processing), and Fig. 11. A mask image as shown in is obtained. Therefore, in the mask image, small area removal processing is performed to eliminate holes caused by surface defects, and the mask image generator 6 obtains a mask image of a plane pattern on a normal surface (see Figure 7.11). .

一方、前記表面画像は欠陥強調器7 (空間フィルタ)
にも入力され、欠陥強調器7にてマスク画像に基づき表
面画像の欠陥強調画像(第4図または第8図参照)が得
られる。ここで説明を簡略化するために2値化画像を例
にあげて説明する。例えば正常な表面の場合、欠陥強調
器7にて2値化画像(第4図)にマスク画像(第7図)
を対応する各画素の積を求めて合成すると、第12図に
示す如く全ての画素が0になる。ところが表面欠陥を有
する場合、2値化画像(第8図)にマスク画像(第11
図)を、合成すると第13図の如くなり、表面欠陥を有
する部分(f)、  (g)が1となる。
On the other hand, the surface image is a defect enhancer 7 (spatial filter)
A defect-enhanced image of the surface image (see FIG. 4 or FIG. 8) is obtained by the defect-enhancing device 7 based on the mask image. Here, in order to simplify the explanation, a binarized image will be used as an example. For example, in the case of a normal surface, the defect enhancer 7 converts the mask image (Fig. 7) into a binary image (Fig. 4).
When the products of each corresponding pixel are calculated and combined, all pixels become 0 as shown in FIG. However, if there is a surface defect, the mask image (Figure 11) is added to the binarized image (Figure 8).
13) is synthesized, and the parts (f) and (g) with surface defects become 1.

最後に第12.13図の如き合成画像図に基づき、欠陥
検出器8にて表面欠陥【第13図(f)、  (g))
が検出される。
Finally, based on the composite image as shown in Fig. 12.13, the defect detector 8 detects surface defects [Fig. 13 (f), (g)].
is detected.

尚、2値化画像に限らず他の多値画像についても同様に
行なえることは勿論である。
It goes without saying that the same process can be performed not only for binary images but also for other multivalued images.

尚、本実施例では小面積除去処理について9個(3M 
3)の近傍の画素に基づき説明したが、これに限らず、
25個(5M 5)または02個(n ll−1n)(
n ?)の画素に基づき同様に処理しても良いことは勿
論である。
In addition, in this example, 9 pieces (3M
Although the explanation is based on pixels in the vicinity of 3), the present invention is not limited to this.
25 pieces (5M 5) or 02 pieces (n ll-1n) (
n? Of course, similar processing may be performed based on the pixels in ).

また、小面積除去処理は上述した方法に限らず、全画素
をラベル付けし、次にラベルの連結状態に基づき小面積
図形を除去処理しても良いことば勿論である。
Further, the small area removal processing is not limited to the above-described method, and it goes without saying that all pixels may be labeled and then small area figures may be removed based on the connected state of the labels.

尚、本実施例では暗箱内を搬送される被検査材について
述べたが、被検査材が暗箱内に固定されていても同様に
行えることは勿論である。
In this embodiment, the material to be inspected is conveyed in a dark box, but it goes without saying that the same procedure can be performed even if the material to be inspected is fixed in the dark box.

また、本実施例では打抜製品について述べたが、エツチ
ング処理して除去部と残存部とが混在するエツチング処
理製品についても同様に行えることは勿論である。
Further, in this embodiment, a punched product has been described, but it goes without saying that the same method can be applied to an etched product in which a removed portion and a remaining portion are mixed together.

〔効果〕〔effect〕

以上詳述した如く本発明方法では表面欠陥があっても、
被検査材の標準パターンのマスク画像が検査の都度、表
面画像に基づいて形成されるので、多数の標準パターン
の準備なしに被検査材の残存部(検査対象部)の弁別が
容易に行える。また実際の被検査材に対してマスク画像
を形成するので、検査対象部の位置合せを必要としない
。更に被検査材を挟む2方向からの照射光により、被検
査材の打抜き部と残存部の周縁(端部だれ)とに輝度差
がない表面画像を得るので、残存部の周縁(端部だれ)
の輝度に伴う画像処理装設への負荷が除去出来る等本発
明は優れた効果を奏する。
As detailed above, in the method of the present invention, even if there are surface defects,
Since a mask image of the standard pattern of the material to be inspected is formed based on the surface image each time an inspection is performed, the remaining portion (part to be inspected) of the material to be inspected can be easily distinguished without preparing a large number of standard patterns. Furthermore, since the mask image is formed on the actual material to be inspected, there is no need to align the inspection target part. Furthermore, by using irradiated light from two directions sandwiching the inspected material, a surface image with no brightness difference between the punched part of the inspected material and the periphery of the remaining part (edge sag) is obtained, so the periphery of the remaining part (edge sag) is )
The present invention has excellent effects such as being able to remove the load on image processing equipment due to the brightness of the image.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための装置の模式図、第
2図は被ヰ★査材の表面形状図、第3図は同じく拡大断
面図、第4,8図は2値化処理画像の模式図、第5.9
図は夫々第4.8図に基づき1画素の計数値を表す画像
の模式図、第6.10図は夫々第4,8図に基づき小面
積除去処理して(qた画像の模式図、第7,11図は夫
々第6,10図のマスク画像の模式図、第12.13図
はマスク合成後の画像の模式図である。 ■・・・被検査材 2a、 2b、  3・・・ストロ
ボ 4・・・テレビカメラ 11・・・暗箱 20・・
・画像処理装置時 許 出願人  住友特殊金属株式会
社代理人 弁理士  河  野  登  夫茸 3 v 早 41 界 6 凹 纂 51 第 l′7  図 第 8 記 第 10図 第 q 目 第 11  図
Fig. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention, Fig. 2 is a diagram of the surface shape of the material to be inspected, Fig. 3 is an enlarged cross-sectional view, and Figs. 4 and 8 are binarization processing. Image schematic, Section 5.9
The figure is a schematic diagram of an image representing the count value of one pixel based on Figure 4.8, respectively, and Figure 6.10 is a schematic diagram of an image after small area removal processing (q) based on Figures 4 and 8, respectively. Figures 7 and 11 are schematic diagrams of the mask images in Figures 6 and 10, respectively, and Figures 12 and 13 are schematic diagrams of images after mask synthesis.■... Materials to be inspected 2a, 2b, 3...・Strobe 4...TV camera 11...Dark box 20...
・Image processing device Applicant Sumitomo Special Metals Co., Ltd. Agent Patent Attorney Noboru Kono 3 v Haya 41 Kai 6 Concave 51 Section l'7 Figure 8 Figure 10 Figure q Item 11

Claims (1)

【特許請求の範囲】 1、一部が除去されて、その除去部と残存部とが混在す
る平面パターンを有する被検査材の表面欠陥を検出する
方法において、 前記被検査材の除去部の平均輝度と残存部の平均輝度と
の間に差を有する表面画像を得、該表面画像を2値化、
小面積除去処理してマスク画像を作成し、該マスク画像
と前記表面画像とに基づき表面欠陥を検出することを特
徴とする表面欠陥検出方法。 2、一部が打抜かれて形成される除去部と残存部とが混
在する平面パターンを有する被検査材の表面欠陥を検出
する方法において、 前記被検査材の除去部の平均輝度と残存部の平均輝度と
の間に差を有し、前記被検査材の除去部の平均輝度と残
存部の周縁の平均輝度との間に差がない表面画像を得、
該表面画像を2値化、小面積除去処理してマスク画像を
作成し、該マスク画像と前記表面画像とに基づき表面欠
陥を検出することを特徴とする表面欠陥検出方法。 3、前記表面画像を得べく、前記被検査材の検査表面を
挟む位置に、夫々少なくとも1個の照明手段が設けてあ
る特許請求の範囲第2項記載の表面欠陥検出方法。
[Claims] 1. A method for detecting a surface defect of a material to be inspected that has a planar pattern in which a portion has been removed and the removed portion and the remaining portion are mixed, comprising: Obtaining a surface image having a difference between the brightness and the average brightness of the remaining part, binarizing the surface image,
A surface defect detection method comprising: creating a mask image by performing small area removal processing, and detecting surface defects based on the mask image and the surface image. 2. In a method for detecting a surface defect of a material to be inspected which has a planar pattern in which a removed part and a remaining part are mixed, the average brightness of the removed part and the remaining part of the inspected material are Obtaining a surface image that has a difference between the average brightness and the average brightness of the removed portion of the inspected material and the average brightness of the periphery of the remaining portion;
A surface defect detection method comprising: creating a mask image by binarizing the surface image and performing small area removal processing, and detecting surface defects based on the mask image and the surface image. 3. The surface defect detection method according to claim 2, wherein at least one illumination means is provided at each position sandwiching the inspection surface of the inspected material in order to obtain the surface image.
JP13203286A 1986-06-06 1986-06-06 Detection of surface flaw Pending JPS62288553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13203286A JPS62288553A (en) 1986-06-06 1986-06-06 Detection of surface flaw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13203286A JPS62288553A (en) 1986-06-06 1986-06-06 Detection of surface flaw

Publications (1)

Publication Number Publication Date
JPS62288553A true JPS62288553A (en) 1987-12-15

Family

ID=15071902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13203286A Pending JPS62288553A (en) 1986-06-06 1986-06-06 Detection of surface flaw

Country Status (1)

Country Link
JP (1) JPS62288553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115475A (en) * 1990-06-04 1992-05-19 Motorola, Inc. Automatic semiconductor package inspection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293248A (en) * 1976-01-31 1977-08-05 Fuji Electric Co Ltd Trouble discriminator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293248A (en) * 1976-01-31 1977-08-05 Fuji Electric Co Ltd Trouble discriminator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115475A (en) * 1990-06-04 1992-05-19 Motorola, Inc. Automatic semiconductor package inspection method

Similar Documents

Publication Publication Date Title
JP2004109047A (en) Inspection method and inspection device of printed matter
JP3344995B2 (en) Tablet surface inspection device
JP2001056297A (en) Surface inspection method and device therefor
JPS62156547A (en) Detecting method for surface defect
JP3089079B2 (en) Circuit pattern defect inspection method
JP3283356B2 (en) Surface inspection method
JPS62288553A (en) Detection of surface flaw
JP2561193B2 (en) Print pattern inspection device
JP4474006B2 (en) Inspection device
JP3433333B2 (en) Defect inspection method
JPS6382358A (en) Magnetic powder-based flaw detection
JP2536745B2 (en) PCB cut condition inspection method
JP3609136B2 (en) Semiconductor device inspection method and apparatus
JPH0554107A (en) Welding state judging method with appearance inspection
JPH0845999A (en) Surface inspection method of wafer having regular pattern
JP2973153B2 (en) Coil tip shape detection device
JPH07159139A (en) Inspection for surface of workpiece
JP4457194B2 (en) Defect inspection equipment
JPH0413953A (en) Detect inspection preprocessor for electronic component molded form
JPS58200141A (en) Inspection of substrate
JPS58160853A (en) Inspecting device
JPH0516585B2 (en)
JPS60259938A (en) Equipment for defect recognition
JPS6166908A (en) Detecting method of ic lead
JPS63291172A (en) Pcb inspection method