JPS6228674A - Method and instrument for noncontact measurement of conductivity of semiconductor wafer - Google Patents

Method and instrument for noncontact measurement of conductivity of semiconductor wafer

Info

Publication number
JPS6228674A
JPS6228674A JP16930685A JP16930685A JPS6228674A JP S6228674 A JPS6228674 A JP S6228674A JP 16930685 A JP16930685 A JP 16930685A JP 16930685 A JP16930685 A JP 16930685A JP S6228674 A JPS6228674 A JP S6228674A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
conductivity
measurement
wafer
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16930685A
Other languages
Japanese (ja)
Inventor
Kiyoo Katagiri
片桐 清男
Akinori Mutsukawa
六川 明徳
Tatsu Nishizawa
西沢 龍
Kanji Matsuhashi
貫次 松橋
Hiroshi Imaike
宏 今池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinkawa Electric Co Ltd
Shin Etsu Engineering Co Ltd
Original Assignee
Shinkawa Electric Co Ltd
Shin Etsu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinkawa Electric Co Ltd, Shin Etsu Engineering Co Ltd filed Critical Shinkawa Electric Co Ltd
Priority to JP16930685A priority Critical patent/JPS6228674A/en
Priority to DE19863625819 priority patent/DE3625819A1/en
Publication of JPS6228674A publication Critical patent/JPS6228674A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2831Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To improve the measuring accuracy of the conductivity of a semiconductor wafer, by inserting the semiconductor wafer into the measurement space between a cylindrical exciting coil and cylindrical detecting coil, both of which have initial permeabilities of 750-850 and cores having E-shaped longitudinal cross sections. CONSTITUTION:An exciting coil 4 and detecting coil 5 are provided under a condition where the coils are faced to the measurement space S of a semiconductor wafer W. Both the coils 4 and 5 are provided with cores having E-shaped longitudinal cross sections and have initial permeabilities of 750-850. Then an alternating current of 0.2-5MHz is supplied to the exciting coil 4 from an oscillator 8 and the detected voltage by the detecting coil 5 is amplified by means of an amplifier 9. The amplified detected voltage is discriminated at a wave detecting circuit 10. Therefore, the conductivity of the semiconductor wafer W can be measured surely, because a sufficient eddy electric current is produced in the wafer W at a high frequency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体ウェーハの導電率の非接触測定方法およ
びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for non-contact measurement of conductivity of semiconductor wafers.

(従来の技術) 代表例として特公昭51−49545号があり、同公報
には半導体ウェーハにうず電流を発生させ、そのうず電
流を検出して導電率を測定する非接触測定方法が提案さ
れている。
(Prior art) A typical example is Japanese Patent Publication No. 51-49545, which proposes a non-contact measurement method in which eddy current is generated in a semiconductor wafer and the eddy current is detected to measure conductivity. There is.

この非接触測定方法は、従前における接触測定方法すな
わち半導体ウェーハに複数本の探針を圧着し、その探針
を介してウェーハに電流を流し、その電流による探針間
の電圧を検出して導電率を測定する方法による問題点、
具体的には探針の圧着点でウェーハの結晶組織が破壊さ
れる恐れを解消していて、有用である。
This non-contact measurement method is based on the conventional contact measurement method, in which multiple probes are crimped onto a semiconductor wafer, a current is passed through the wafer through the probes, and the voltage between the probes due to the current is detected to determine the conductivity. Problems with the method of measuring the rate,
Specifically, it is useful because it eliminates the fear that the crystal structure of the wafer will be destroyed at the pressure point of the probe.

ところで斯る非接触測定方法は、その測定精度を上げる
ために、発振器の出力電圧を高くし、そして出力電圧が
大ぎくなるのにともないきいてくる静電容量を静電遮蔽
板で検出コイル側に伝わらぬよう遮蔽して、測定誤差が
生じないようにしているものであり、静電遮蔽板を用い
ずには静電容量の影響で測定誤差が生じる問題を有して
いる。
By the way, in such a non-contact measurement method, in order to improve the measurement accuracy, the output voltage of the oscillator is increased, and as the output voltage increases, the capacitance that increases is removed by using an electrostatic shielding plate on the detection coil side. However, without using an electrostatic shielding plate, there is a problem in that measurement errors occur due to the influence of capacitance.

(発明が解決しようとする問題点〉 本発明が解決しようとする問題点は、従来法の静電遮蔽
板を用いないで、尚且つ測定精度が高い有用な非接触測
定方法およびその装置とすることにある。
(Problems to be Solved by the Invention) The problems to be solved by the present invention are to provide a useful non-contact measurement method and device that does not use the electrostatic shielding plate of the conventional method and has high measurement accuracy. There is a particular thing.

(問題点を解決するための手段) 本発明が以上の問題点ずなわち方法を達成するために講
じた手段は、半導体ウェーハを、初透磁率が750〜8
50である縦断面E字形コアの筒状励磁コイルおよび筒
状検出コイル間の測定空間に挿入し、同ウェーハの導電
率を周波数0.2〜5M1l、rの範囲で測定するよう
にしたことを特徴とする。
(Means for Solving the Problems) The means taken by the present invention to achieve the above-mentioned problems, that is, the method, is to use a semiconductor wafer with an initial magnetic permeability of 750 to 8.
The conductivity of the wafer was inserted into the measurement space between the cylindrical excitation coil and the cylindrical detection coil of the E-shaped vertical cross-section core, and the conductivity of the wafer was measured in the frequency range of 0.2 to 5M1l,r. Features.

また本発明が以上の問題点すなわち装置を達成するため
に講じた手段は、半導体ウェーハの測定空間を形成する
一対の支持部と、測定空間における両支持部の対向面部
分に同一軸線上に対向配設されて、初透磁率が750〜
850で且つ11’lfr面形状がE字形コアの筒状励
磁]イルおよび筒状検出コイルと、励磁コイルに対して
0.2〜5MHXの交流電流を供給して、導電率を計測
する測定要素とからなる構成としたことを特徴とする。
In addition, the means taken by the present invention to achieve the above-mentioned problems, that is, an apparatus, is such that a pair of support parts forming a measurement space for a semiconductor wafer and opposing surfaces of both support parts in the measurement space are arranged so as to face each other on the same axis. The initial permeability is 750~
A measurement element that measures conductivity by supplying an alternating current of 0.2 to 5 MH It is characterized by having a configuration consisting of.

(実施例) 以下本発明の実施の一例を詳細に説明する。(Example) An example of implementing the present invention will be described in detail below.

図中(A)は非接触測定装置であり、この非接触測定装
置(A)は支持体(1)に一対の支持部(2)(3)を
互いに所定の間隔をおいて対向した平行状に設け、両支
持部(2)(3)の間隙に半導体ウェーハ(W)の測定
空間(S)を形成し、この測定空間(S)にお1ノる両
支持部(2)(3)先端側の対向面部分(2a)  (
3a)には励磁コイル〈4)と検出コイル(5ンを同一
軸線上に対向ざVて配設している。
In the figure, (A) is a non-contact measurement device, and this non-contact measurement device (A) has a support body (1) and a pair of support parts (2) and (3) arranged in parallel with each other facing each other at a predetermined distance. A measurement space (S) for the semiconductor wafer (W) is formed in the gap between both support parts (2) and (3), and one support part (2) and (3) is provided in this measurement space (S). Opposing surface part on the tip side (2a) (
In 3a), an excitation coil (4) and a detection coil (5) are arranged facing each other on the same axis.

励磁コイル(4)および検出コイル(5)は縦断面形状
がE字形のコアを有し、初透磁率が750〜850で、
この初透磁率は下限値を下回ると半導体ウェーハ内にう
ず電流が発生しにくくて測定精度が悪くなり、これを避
けるには断面積を大ぎくすれば良いものの、その結果は
磁束が発散してしまい、ウェーハ内に磁束が十分に貫通
できず、ウェーハ内のうず電流の発生が少なくて測定精
度が悪(なる問題を生じる。
The excitation coil (4) and the detection coil (5) have a core with an E-shaped vertical cross section, and have an initial magnetic permeability of 750 to 850.
If this initial magnetic permeability is below the lower limit, eddy currents are less likely to occur within the semiconductor wafer, resulting in poor measurement accuracy.To avoid this, it is possible to increase the cross-sectional area, but as a result, the magnetic flux diverges. As a result, the magnetic flux cannot sufficiently penetrate into the wafer, resulting in less eddy current generation within the wafer and poor measurement accuracy.

ずなわちウェーハ内に非接触でうず電流を発生させるに
は高い周波数(0,2〜5 M Hz )を要して、斯
る高周波は交流電流であることを必須とすることによる
This is because a high frequency (0.2 to 5 MHz) is required to generate an eddy current in a wafer without contact, and such high frequency must be an alternating current.

また励磁コイル(4)および検出コイル(5)は縦断面
形状がE字形のコアを有しており、これにより磁束の発
散がなくて励磁エネルギーが大で、うず電流が広範囲と
なると共にウェーハ内にうず電流を十分に発生させ得る
In addition, the excitation coil (4) and the detection coil (5) have a core with an E-shaped vertical cross section, which eliminates the divergence of magnetic flux and generates a large excitation energy. can generate sufficient eddy current.

この励磁コイル(4)および検出コイル(5)のリード
線(4a)  (5a)は、夫々支持体(1)基端の収
納ボックス(6)内へ支持部(2)(3)を挿通して導
かれ、同ボックス(6)内の測定要素(7)と接続して
いる。この測定要素(ア)の回路構成は第3図に示ず通
りで、励磁コイル(4)に0.2〜5M1lzの交流電
流を供給する発振器(8)と、検出ロイル(5)の検出
電圧を増幅するアンプ(9)と、その増幅された検出電
圧を識別して取出す検波回路(10)とからなり、高周
波で半導体ウェーハ内に十分なうず電流を発生さぼると
共にその測定するウェーハ(W)の導電率が低い場合で
も、アンプ(9)で増幅して検波回路(10)により識
別して、確実に導電率を測定可能にしている。
The lead wires (4a) and (5a) of the excitation coil (4) and detection coil (5) are inserted through the support parts (2) and (3) into the storage box (6) at the proximal end of the support body (1), respectively. It is connected to the measuring element (7) in the same box (6). The circuit configuration of this measurement element (A) is as shown in Fig. 3, and includes an oscillator (8) that supplies an alternating current of 0.2 to 5 M1lz to the excitation coil (4), and a detection voltage of the detection coil (5). It consists of an amplifier (9) that amplifies the voltage, and a detection circuit (10) that identifies and extracts the amplified detection voltage, and generates sufficient eddy current in the semiconductor wafer at high frequency, and the wafer (W) to be measured. Even if the conductivity is low, it is amplified by the amplifier (9) and identified by the detection circuit (10), making it possible to reliably measure the conductivity.

次に以上の実施例の非接触測定装置(A)による半導体
ウェーハ(W)の測定方法について詳述する。
Next, a method for measuring a semiconductor wafer (W) using the non-contact measuring device (A) of the above embodiment will be described in detail.

本発明の測定対象とされる半導体ウェーハ(W)は0.
01〜100Ωのものであり、この半導体ウェーハ(W
)を、装置(A)のON状態で測定空間(S)に挿入し
て、両コイル(4)(5)間の面範囲におけるスポット
領域での導電率を測定し、且つウェーハ(W)をX軸お
よびY軸方向に移動させて測定を繰返すことにより、ウ
ェーハ(W>のほぼ全面の導電率分布を測定する。
The semiconductor wafer (W) to be measured in the present invention is 0.
01 to 100Ω, and this semiconductor wafer (W
) is inserted into the measurement space (S) with the device (A) in the ON state, and the conductivity in the spot area in the surface area between both coils (4) and (5) is measured, and the wafer (W) is By repeating the measurement by moving in the X-axis and Y-axis directions, the conductivity distribution over almost the entire surface of the wafer (W>) is measured.

(発明の効果) したがって本発明によれば次の利点がある。(Effect of the invention) Therefore, the present invention has the following advantages.

■ 励磁コイルおよび検出コイルの初透磁率、そして測
定時の周波数について夫々最適値を設定すると共に縦断
面が1字形のコアを有する筒状に構造化された両コイル
により測定するをもって、磁束の発散がなく、ウェーハ
内にうず電流を必要十分に発生させることができて、静
電遮蔽板を不必要にした上で、非接触による特有の効果
を有しながら、尚且つ測定精度が高く′C導電率を正確
に測定することができる。
■ By setting the optimum values for the initial magnetic permeability of the excitation coil and the detection coil, and the frequency at the time of measurement, the divergence of magnetic flux is achieved by measuring with both coils structured in a cylindrical shape with a core with a single-shaped longitudinal section. It is possible to generate the necessary and sufficient eddy current within the wafer, eliminates the need for an electrostatic shielding plate, has the unique effect of non-contact, and has high measurement accuracy. Conductivity can be measured accurately.

■ 一対である励磁コイルおよび検出コイル、そして測
定要素の電気回路を含む装置全体が最小構成要素でまと
められ、製作容易であると共に経済的効果が大である。
(2) The entire device, including a pair of excitation coils and detection coils, and the electric circuit of the measuring element, is assembled with minimal components, making it easy to manufacture and having great economical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明非接触測定装置の一実施例を一部切欠し
て示す正面図。第2図は平面図。第3図は測定要素の回
路図である。 図中 (2)(3)は支持部 (2a)  (3a)は対向面部分 (4)は励磁コイル (5)は検出コイル (7)は測定要素 (S)は測定空間 (W)は半導体ウェーハ 特 許 出 願 人  信越エンジニアリング株式会社
FIG. 1 is a partially cutaway front view of an embodiment of the non-contact measuring device of the present invention. Figure 2 is a plan view. FIG. 3 is a circuit diagram of the measuring element. In the figure, (2) and (3) are the support part (2a), (3a) is the opposing surface part (4) is the excitation coil (5), the detection coil (7) is the measurement element (S), and the measurement space (W) is a semiconductor. Wafer patent applicant Shin-Etsu Engineering Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体ウェーハを、初透磁率が750〜850で
ある縦断面E字形コアの筒状励磁コイルおよび筒状検出
コイル間の測定空間に挿入し、同ウェーハの導電率を周
波数0.2〜5MHzの範囲で測定するようにしたこと
を特徴とする半導体ウェーハの導電率の非接触測定方法
(1) A semiconductor wafer is inserted into a measurement space between a cylindrical excitation coil and a cylindrical detection coil of an E-shaped core with an initial magnetic permeability of 750 to 850, and the conductivity of the wafer is measured at a frequency of 0.2 to 850. A method for non-contact measurement of conductivity of a semiconductor wafer, characterized in that measurement is performed in a range of 5 MHz.
(2)半導体ウェーハの測定空間を形成する一対の支持
部と、測定空間における両支持部の対向面部分に同一軸
線上に対向配設されて、初透磁率が750〜850で且
つ縦断面形状がE字形コアの筒状励磁コイルおよび筒状
検出コイルと、励磁コイルに対して0.2〜5MHzの
交流電流を供給して、導電率を計測する測定要素とから
なる半導体ウェーハの導電率の非接触測定装置。
(2) A pair of support parts forming a measurement space for the semiconductor wafer, and a pair of support parts disposed facing each other on the same axis on the opposing surfaces of both support parts in the measurement space, and having an initial magnetic permeability of 750 to 850 and a vertical cross-sectional shape. is a cylindrical excitation coil with an E-shaped core, a cylindrical detection coil, and a measurement element that measures the conductivity by supplying an alternating current of 0.2 to 5 MHz to the excitation coil. Non-contact measuring device.
JP16930685A 1985-07-30 1985-07-30 Method and instrument for noncontact measurement of conductivity of semiconductor wafer Pending JPS6228674A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16930685A JPS6228674A (en) 1985-07-30 1985-07-30 Method and instrument for noncontact measurement of conductivity of semiconductor wafer
DE19863625819 DE3625819A1 (en) 1985-07-30 1986-07-30 Method and device for contactlessly measuring the resistivity of semiconductor wafers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16930685A JPS6228674A (en) 1985-07-30 1985-07-30 Method and instrument for noncontact measurement of conductivity of semiconductor wafer

Publications (1)

Publication Number Publication Date
JPS6228674A true JPS6228674A (en) 1987-02-06

Family

ID=15884083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16930685A Pending JPS6228674A (en) 1985-07-30 1985-07-30 Method and instrument for noncontact measurement of conductivity of semiconductor wafer

Country Status (2)

Country Link
JP (1) JPS6228674A (en)
DE (1) DE3625819A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516796A (en) * 2010-01-14 2013-05-13 エムケーエス インストゥルメンツ,インコーポレイティド Apparatus for measuring the lifetime of minority carriers and method using the apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3925685A1 (en) * 1989-08-03 1991-02-14 Telefunken Electronic Gmbh Scanning head for opto-electronic correlation measurement - picks up short EM signals from strip or coplanar measuring lead using material affected by magnetic field
DE4231392A1 (en) * 1992-09-19 1994-03-24 Daimler Benz Ag Method for determining the electronic properties of semiconductor layer structures
DE10061106B4 (en) * 2000-12-07 2004-11-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for checking electrical material properties
US6809542B2 (en) 2002-10-03 2004-10-26 Mti Instruments Inc. Wafer resistance measurement apparatus and method using capacitively coupled AC excitation signal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319874A (en) * 1975-08-21 1978-02-23 Western Electric Co Method of measuring electric conductivity of sheet without touching

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890564A (en) * 1972-07-04 1975-06-17 Okura Denki Co Ltd Apparatus for inducing eddy current in a semiconductor wafer for measuring the electric conductivity or resistivity thereof
DE2249613A1 (en) * 1972-10-10 1974-04-25 Bosch Gmbh Robert METHOD OF MEASURING THE FILM RESISTANCE OF SEMICONDUCTOR ARRANGEMENTS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319874A (en) * 1975-08-21 1978-02-23 Western Electric Co Method of measuring electric conductivity of sheet without touching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516796A (en) * 2010-01-14 2013-05-13 エムケーエス インストゥルメンツ,インコーポレイティド Apparatus for measuring the lifetime of minority carriers and method using the apparatus

Also Published As

Publication number Publication date
DE3625819A1 (en) 1987-02-12

Similar Documents

Publication Publication Date Title
JPH0315122B2 (en)
KR100478528B1 (en) A method and apparatus for inspecting tubes by eddy currents
JPS6228674A (en) Method and instrument for noncontact measurement of conductivity of semiconductor wafer
JP6452880B1 (en) Method and apparatus for inspecting flaws or defects in tubular body
WO2006059497A1 (en) Method and device for measuring critical current density of superconductor
JPH0545184B2 (en)
US4675605A (en) Eddy current probe and method for flaw detection in metals
JP2938950B2 (en) Deterioration damage detection device for metal materials
JP2001056203A (en) Non-contact displacement measuring device
JPH0353155A (en) Detector for internal defect or damage for steel material
JP2008058243A (en) Magnetic field generator and permeability measuring device using the same
JP2005315732A (en) Instrument for measuring displacement of ferromagnetic body
JPS582743A (en) Ultrasonic probe
JPH02218902A (en) Eddy current type displacement sensor
JPH01269049A (en) Method of inspecting deterioration of metallic material
JP2000055708A (en) Electromagnetic flowmeter
JPH07113788A (en) Probe coil for eddy current flaw detection
JPS58166203A (en) Method and device for measuring thickness of coating film on inside surface of coated pipe for nuclear fuel
JPS63129862U (en)
JP2000258259A (en) Strain detector
RU2006851C1 (en) Superposed electromagnetic transducer
JPH0192666A (en) Noncontact type measuring method for semiconductor wafer electric resistance
JPH10328152A (en) Electromagnetic rheometer
Mostafavi et al. Simple electromagnetic detection of variations in properties of metal surfaces
JP3321648B2 (en) Method and apparatus for judging the quality of connection of steel core aluminum stranded wire