JPS58166203A - Method and device for measuring thickness of coating film on inside surface of coated pipe for nuclear fuel - Google Patents

Method and device for measuring thickness of coating film on inside surface of coated pipe for nuclear fuel

Info

Publication number
JPS58166203A
JPS58166203A JP4981582A JP4981582A JPS58166203A JP S58166203 A JPS58166203 A JP S58166203A JP 4981582 A JP4981582 A JP 4981582A JP 4981582 A JP4981582 A JP 4981582A JP S58166203 A JPS58166203 A JP S58166203A
Authority
JP
Japan
Prior art keywords
conductor
coating film
coil
thickness
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4981582A
Other languages
Japanese (ja)
Inventor
Atsushi Emori
江森 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP4981582A priority Critical patent/JPS58166203A/en
Publication of JPS58166203A publication Critical patent/JPS58166203A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • G01B7/105Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance for measuring thickness of coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To enable the measurement of film thickness by inserting a probe having a coil into a coated pipe, generating eddy current in the body and coating film of the coated pipe of conductor and detecting the eddy current of the conductor due to change in the thickness of the coating film. CONSTITUTION:When AC is flowed to a coil 2 from a high frequency power source 1 and the coil is brought near a conductor M, eddy current 4 is generated in the conductor M. Since the current 4 changes with the distance from the coil and the thickness and the material quality of the conductor M, the thickness of the conductor and the thickness of the coating film can be measured by detecting the change in the eddy current. Two methods depending upon the state of an object are as follows; 1, in the case of measuring the non-conductor film on the conductor, the probe is brought into contact with the object, and the distance between the coil and the conductor changes with a change in the thickness of the non-conductor film, then the eddy current changes as well, and the thickness of the non-conductor film can be detected from said change. 2, in the case of measuring the conductor film on the conductor, and if there is a difference between the conductivities of both conductors, the eddy current flows more through the film as the thickness of the film increases and conversely when the thickness of the film is thin, the eddy current flows more in the base metal; therefor, the measurement of the film thickness is made possible by comparing the same with standard data.

Description

【発明の詳細な説明】 コーティング膜を有する被覆管を対象とし、その被覆管
内面のコーティング膜厚を定量的に非破壊測定するのに
適した測定方法ならびに装置に関するO 現在、核燃料を収納する被覆管は、外部を流れる冷却材
、減速材に対し非反応性であり、かつ内部の放射性核分
裂生成ガスに対し非反応性で外部への漏出を防止する機
能が求められるところから通常、ジルコニウム又はその
合金で構成されており、運転中の化学反応に対処するこ
とが出来るが、その反面、核燃料ペレットと、被覆管の
相互作用(po工作用)により被覆管の脆い割れ目が核
***反応時の熱により生じ友核燃料の割れ目と、ライナ
ーの交差する部分又は核燃料ペレットの端部に応力集中
により生じ破損することが屡々ある。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a measuring method and apparatus suitable for quantitatively and non-destructively measuring the coating film thickness on the inner surface of a cladding tube having a coating film. The pipes are usually made of zirconium or zirconium because they are required to be non-reactive with the coolant and moderator flowing outside, and non-reactive with the radioactive fission product gas inside, preventing leakage to the outside. It is composed of an alloy and can handle chemical reactions during operation, but on the other hand, due to the interaction between the nuclear fuel pellets and the cladding (for PO work), brittle cracks in the cladding can be caused by the heat of the nuclear fission reaction. Frequently, breakage occurs due to stress concentration at the intersection of the generated nuclear fuel and the liner or the end of the nuclear fuel pellet.

この破損は、通常、一般的理由として、ペレットは燃焼
時に熱応力により、鼓形の変形を生じ、ペレットのコー
ナ一部が被覆管にスティックする状態になり被覆管に応
力が生じる。このとき、ペレットから放出されたへロゲ
ン系元素が要因となってSaC(応力腐食割れ)を生じ
、燃料棒が破損するものと云われている。
The common reason for this breakage is that the pellets undergo an hourglass-shaped deformation due to thermal stress during combustion, causing some of the corners of the pellets to stick to the cladding tube, creating stress in the cladding tube. At this time, it is said that the herogen-based elements released from the pellets cause SaC (stress corrosion cracking) and damage the fuel rod.

そこで、近時、PO工による破損防止の有効な対策とし
て燃料棒を構成する被覆管の内面を被覆管と異なる材料
でコーティングする方法が研究されている。(特公昭5
6−14196号公報参照) ところが、かかるコーティングを行なう場合、コーテイ
ング膜の厚さの均一性が相互po工作用による局所破損
を阻止する上で頗る重要な役割を有するが、現在のとこ
ろ未だ、コーティング膜厚を非破壊で精度よく測定する
方法は実用化されていないO 従来、被覆管内面のコーティング、膜厚の測定は例えば
ある加工ロットよ)数本切断し、その断面から肉厚を測
定してデータをとっており、製品の両管端を切断し金相
試験により母管部とコーテイング膜の組織の違いを利用
しコーティング膜厚を測定し前記データとあわせて内部
の肉厚を評価する方法をとっていた。
Therefore, recently, research has been conducted on a method of coating the inner surface of the cladding tube constituting the fuel rod with a material different from that of the cladding tube, as an effective measure to prevent damage caused by PO work. (Tokuko Showa 5
(Refer to Publication No. 6-14196) However, when performing such a coating, the uniformity of the thickness of the coating film plays an important role in preventing local damage due to mutual PO machining. There is no practical method for measuring film thickness non-destructively and accurately. Conventionally, coating and film thickness on the inner surface of cladding tubes were measured by cutting several pieces (for example, from a certain processing lot) and measuring the wall thickness from the cross section. Both pipe ends of the product are cut and the coating film thickness is measured using the difference in structure between the main pipe part and the coating film using a metal phase test, and the internal wall thickness is evaluated using the above data. I had a method.

しかし、この方法は破壊試験であるため、製品には、直
接適用できず、破壊試験片から製品状態を推測するしか
なく、管中央部の管厚、偏肉は事実上、充分、検査され
ていない。又、試験片を作成するに際し、研摩時のだれ
、不正確な切断などのため、正確な試料を作成するには
熟練を要した。
However, since this method is a destructive test, it cannot be applied directly to the product, and the product condition can only be estimated from the destructive test piece. do not have. In addition, when preparing test pieces, it required skill to prepare accurate samples due to sagging during polishing and inaccurate cutting.

そこで、本出願人はかねてより上述の如き実状に対処し
コーティング膜厚の非破壊検査について検討を重ね、さ
きにライナー内管に加工前、予め、軸方向にスリット孔
を形成しておく方法とか、放射性物質を母管本体とコー
テイング膜との間に界装し、その放射能強度を測定する
ことにより・膜厚を測定する方法などを見出した。
Therefore, the present applicant has long considered the non-destructive testing of the coating film thickness in order to deal with the above-mentioned situation, and has proposed a method in which slit holes are formed in the axial direction in the liner inner tube before processing. discovered a method of measuring film thickness by intercalating a radioactive substance between the main tube body and the coating film and measuring the radioactivity intensity.

本発明は、更にそれら各測定方法と並び、被覆管内面コ
ーティング膜厚を定量的に非破壊測定する新規な測定方
法を提供せんとするもので被覆管の管本体とコーテイン
グ膜の導電率の差に着目し、管本体(母管)又はコーテ
イング膜に渦電流を生ぜじめコーティング膜厚の変化に
起因する渦電流の変化を検出し膜厚測定を図ることを目
的とするものである。
In addition to these measurement methods, the present invention also aims to provide a new method for quantitatively and non-destructively measuring the thickness of the coating on the inner surface of a cladding tube. The purpose of this method is to measure film thickness by generating eddy currents in the tube body (main tube) or coating film and detecting changes in the eddy currents caused by changes in coating film thickness.

なお、渦電流を応用した厚さ測定法としては従前、板材
のメッキ厚さ測定燃料棒の酸化膜厚さ測定等に一部用い
られているが、これらの方法は何れもプローブの形状が
大きく、被覆管の内側に挿入出来ず、又プローブを被覆
管内で定圧に保持する適切な手段もなく、被覆管内面の
膜厚測定には実質上、適用することは不可能であった。
Note that thickness measurement methods that apply eddy currents have been used in the past for measuring the plating thickness of plate materials and measuring the oxide film thickness of fuel rods, but all of these methods require a large probe shape. However, since the probe cannot be inserted into the cladding tube and there is no appropriate means for maintaining the probe at a constant pressure within the cladding tube, it is practically impossible to apply the probe to the measurement of the film thickness on the inner surface of the cladding tube.

かくして本発明の特徴とするところは・その1−ティン
グ膜材が導体であるときはコーテイング膜に渦電流を生
ぜしめ、コーティング膜厚の変化に起因する当該導体渦
電流の変化を前記フィルに生スルインピーダンスの変化
として前記フ0−7で検出して膜厚を測定する測定方法
であり、他の1つは、前記測定方法に使用するに好適な
プローブを含む該方法を実施するための装置構成である
0源、(2)はプローブコイル、(3)は磁力線、(4
)は渦電流、(縛は金属などの導体を示し、一般に交流
を流したコイル(2)゛を金属などの導体(−に近付け
ると、同第1図に図示するように導体(laKは電磁誘
導により渦電流(4)を生ずる。そして、このときの渦
電流はコイルからの距離、導体の厚さ、材質などによっ
て変化する。従ってこの渦電流の変化を検出することに
よって導体の厚さ、コーティング膜厚の測定を行なうこ
とが可能となる。
Thus, the present invention is characterized by: - When the coating film material is a conductor, it produces an eddy current in the coating film, and a change in the conductor eddy current due to a change in the coating film thickness is produced in the film. The other method is to measure the film thickness by detecting it as a change in impedance using the F0-7, and the other is an apparatus for carrying out the method, which includes a probe suitable for use in the measurement method. The configuration is 0 source, (2) is the probe coil, (3) is the magnetic field line, (4
) is an eddy current, (blade indicates a conductor such as a metal, and generally speaking, when a coil (2) in which alternating current is passed is brought close to a conductor (-) such as a metal, it becomes a conductor (laK is an electromagnetic current) as shown in Figure 1. Eddy current (4) is generated by induction.The eddy current at this time changes depending on the distance from the coil, the thickness of the conductor, the material, etc.Therefore, by detecting changes in this eddy current, the thickness of the conductor, It becomes possible to measure the coating film thickness.

この場合、対象物の状態によって次の2つの方法が考え
られる。
In this case, the following two methods can be considered depending on the state of the object.

(1)  導体上の非導体膜を測定する場合コイルを含
むプローブを対象物に接触させると、非導体膜の厚さの
変化によってフィルと導体間の距離が変化するため導体
部分に生じる渦電流の大きさが変化する。従ってこの渦
電流の変化をプローブで検出し、標準試料と比較すれば
非導体膜の膜厚を知ることができる。
(1) When measuring a non-conductor film on a conductor When a probe containing a coil is brought into contact with the target object, eddy currents occur in the conductor part because the distance between the film and the conductor changes due to changes in the thickness of the non-conductor film. changes in size. Therefore, by detecting changes in this eddy current with a probe and comparing it with a standard sample, the thickness of the nonconductor film can be determined.

(2)  導体上の導体膜を測定する場合この場合、両
導体の導電率に差がなければ適用は困雛であるが、被覆
管と内面コーテイング膜とは通常、導電率に差を有して
、いるので両導体はある程度、導電率の差をもつものと
する。
(2) When measuring a conductive film on a conductor In this case, it is difficult to apply this method unless there is a difference in conductivity between the two conductors, but the cladding tube and inner coating film usually have a difference in conductivity. Therefore, it is assumed that the two conductors have a certain degree of difference in conductivity.

A1 に近い反応になり、皮膜が薄いときには、渦電流は業地
金属に多く流れ、反応は案地金属に対する反応に近くな
る。そこでこの反応の差を利用し、標準試料との比較に
よって膜厚を測定することができる。
The reaction will be similar to that of A1, and when the film is thin, more eddy current will flow to the bare metal, and the reaction will be close to that for the bare metal. Therefore, the film thickness can be measured by making use of this difference in reaction and comparing it with a standard sample.

本発明測定方法は値上の如き測定原理にもとづいてフィ
ルを内蔵したプローブを使用し、これを被覆管内部に挿
入可能な構成に形成し、被覆管内部に挿入してコーティ
ング膜厚を測定するものである〇 因に、本発明測定方法が適用されるコーテイング膜の例
としては、被覆管本体をジルカロイ材とL7j場合、黒
鉛(Q、ジA/ ? ニア(ZrQJ 、銅(Our。
The measurement method of the present invention uses a probe with a built-in fill based on the measurement principle as described above, is formed into a structure that can be inserted into the cladding tube, and is inserted into the cladding tube to measure the coating film thickness. Examples of coating films to which the measurement method of the present invention is applied include a case where the cladding tube body is made of Zircaloy material and L7J, graphite (Q, Zircaloy), graphite (ZrQJ), copper (Our).

ニッケル”1) # 鉄tye)などコーテイング材と
して代表的なすべてのものが挙げられる。セしてへこれ
らコーテイング膜材の各導電率は被覆管本体のジルカロ
イ材と対比すれば下記の如くである。
All typical coating materials such as nickel (1) #iron type can be mentioned.The electrical conductivity of each of these coating film materials is as follows when compared with the Zircaloy material of the cladding body. .

以下余白 上表より明らかな如く被覆管本体とコーテイング膜材と
の間には非導体膜、導体膜を問わず、通常の場合、導電
率に差を有しており、前記2つの方法の原理にもとづい
て充分、測定可能であることが分る。
As is clear from the table above, there is usually a difference in electrical conductivity between the cladding tube body and the coating material, regardless of whether it is a non-conductor film or a conductor film. It turns out that it can be measured satisfactorily based on this.

なかでも、上記導電率の差については、好ましくは5以
上、もしくは14以下であり、余り接近してはその差の
利用は難しくなる。前記例示した各コーテイング膜材は
何れも好ましい範囲の導電率差を有する。
Among these, the difference in electrical conductivity is preferably 5 or more or 14 or less, and if they are too close, it will be difficult to utilize the difference. Each of the above-mentioned coating film materials has a conductivity difference within a preferable range.

次に上記測定を行なう方法を、その使用する装置と共に
添付図面にもとづいて説明する。
Next, a method for carrying out the above measurement will be explained based on the apparatus used and the accompanying drawings.

第□′2図は本発明膜厚測定装置のブロックダイヤダラ
ム例であり、第3図は同装置に使用するプローブの1例
を示す。
Figure □'2 shows an example of a block diamond ram of the film thickness measuring apparatus of the present invention, and Figure 3 shows an example of a probe used in the apparatus.

しかして、第2図において、発振器は交流を発生する高
周波電源であって、実際には3 MH2程度のものを用
いる。この発振器の電源には発生する高周波の乱れによ
って測定精度が低下するのを防止するtめ安定化電源を
使用する。そしてこの発振器から発生した高周波は、渦
電流検出端子であるプローブコイルに導かれ渦電流の検
出を行なう。
In FIG. 2, the oscillator is a high frequency power source that generates alternating current, and in reality, one of about 3 MH2 is used. A stabilized power source is used as the power source for this oscillator to prevent measurement accuracy from deteriorating due to generated high frequency disturbances. The high frequency waves generated from this oscillator are guided to a probe coil, which is an eddy current detection terminal, to detect eddy currents.

第3図は、ここで渦電流検出に使用されるプローブの1
例で、内径8〜15■という比較的細い管に属する燃料
被覆管aυの内部に挿入できるよう特別に作られた渦電
流検出器である。このプローブa21hその先端にプロ
ーブコイルを収納しであるコイル収納ヘッドαJを有し
ており、このヘッドa3には被覆管αυ内面との距離を
一定に保つための接触子a4が設けられている。この接
触子a4は通常、摩耗し難いサファイアなどが用いられ
る。そしてコイル収納ヘッドQ3は一端側が支持管a5
に接続して電源側(図示せず)に接続されるようになっ
ており、支持管(15)にはプローブ(121全体を被
覆管θυ内に挿入したとき、被覆管0υ内でがたつキノ
なイZうに保持すると同時に、接触子〇(イ)が常に管
内表面に接触した状態を保つよう複数のリーフスプリン
グ(161が備えられている。
Figure 3 shows one of the probes used here for eddy current detection.
For example, this is an eddy current detector specially made to be inserted into the inside of a fuel cladding tube aυ, which is a relatively narrow tube with an internal diameter of 8 to 15 mm. This probe a21h has a coil storage head αJ that stores a probe coil at its tip, and this head a3 is provided with a contact a4 for maintaining a constant distance from the inner surface of the cladding tube αυ. This contact a4 is usually made of sapphire or the like, which is hard to wear. One end of the coil storage head Q3 is the support tube a5.
The support tube (15) is connected to the power supply side (not shown), and the support tube (15) is connected to the probe (121). At the same time, a plurality of leaf springs (161) are provided to maintain the contact element (A) in constant contact with the inner surface of the pipe.

そこで前記の如く高周波が上記プローブのプローブコイ
ルに導かれると、前述した測定原理にもとづいて導体で
ある被覆管本体、又はコーテイング膜が導体であるとき
はコーテイング膜に渦電流を生ぜしめる。
Therefore, when a high frequency wave is guided to the probe coil of the probe as described above, an eddy current is generated in the cladding tube body, which is a conductor, or in the coating film when the coating film is a conductor, based on the measurement principle described above.

しかしプローブによる渦電流の検出は、直接渦電流の電
流値を測定するのではなく、前述のような渦電流が生じ
ると、電磁誘導現象によりプローブコイル内の電流を阻
止する方向の起電力が生じるため、見掛は上、ブローブ
コイ−ルのインピーダンスが増加するのでこれを検知し
て渦電流を間接的に測定するようにしている・・。この
インピーダンス変化の検出を行なうのが第2図における
平衡回路テ、いわゆる抵抗ブリッジによって構成したも
のである。
However, eddy current detection with a probe does not directly measure the current value of the eddy current; when an eddy current as described above occurs, an electromotive force is generated in the direction of blocking the current in the probe coil due to electromagnetic induction phenomenon. As a result, the impedance of the blow coil increases, and this is detected to indirectly measure the eddy current. This impedance change is detected by the balanced circuit shown in FIG. 2, which is composed of a so-called resistance bridge.

かくしてインピーダンスの変化として検出すると、最後
に、この平衡回路からの信号を増巾検波器で増巾し、図
示のように例えばメータにアナログ表示したりあるいは
デジタル表示装置(計数管)によってデジタル表示とす
る。
Once a change in impedance is detected in this way, the signal from this balanced circuit is amplified by an amplification detector and displayed as an analog display on a meter as shown in the figure, or as a digital display using a digital display device (counter tube). do.

ところで、実際の測定に際しては、上記の如き測定に先
立って、予め同一形状の膜厚が既知である標準試料を測
定し、測定装置の較正を行なっておいて、その後、前記
手法に従ってブロー7’t IIIIJ定対象とする被
覆管に挿入し、プローブ先端のフィル包含部を被覆管内
面に定圧で接触させながら被覆管を軸方向に走査させる
By the way, in actual measurements, prior to the above measurements, a standard sample of the same shape and known film thickness is measured in advance, the measuring device is calibrated, and then the blow 7' is calibrated according to the method described above. The probe is inserted into the target cladding tube, and the cladding tube is scanned in the axial direction while the fill-containing portion at the tip of the probe is brought into contact with the inner surface of the cladding tube at a constant pressure.

そして、得られたアナログ又はデジタル表示について前
記予め測定した標準試料と比較することによって、所定
のコーティング膜厚を得・これにより測定を完了する。
Then, by comparing the obtained analog or digital display with the standard sample measured in advance, a predetermined coating film thickness is obtained and the measurement is thereby completed.

かくして管端付近の測定だけでなく、管の全面にわたっ
て精確にコーティング膜厚の測定を行なうことが可能と
なる。
In this way, it is possible to accurately measure the coating film thickness not only in the vicinity of the tube end but also over the entire surface of the tube.

以上のように本拠明は被覆管とコーテイング膜の導電率
の差を利用し、被覆管内側にコイルを有するプローグを
挿入し、コイルに交流を流し、導体の被覆管及びコーテ
イング膜材が導体であるものについては、コーテイング
膜に渦電流を生ぜしめ・コーティング膜厚の変化に起因
する渦電流の変化をコイルに生ずるインピーダンスの変
化トシて検出して膜厚を測定する方法であり、従来、不
可能視されていた被覆管内面のコーティング膜厚ケ定量
的に非破壊で測定することができ、しかも従来の如く管
端に限らず、管の全内面にわたって測定することができ
るのでコーティング膜厚の均一性を正確に把握すること
が容易であり、燃料棒の破損防止にきわめて顕著な効果
を奏し、安全性の向上に大きく寄与することが期待され
る。
As described above, Honkei took advantage of the difference in conductivity between the cladding tube and the coating film, inserted a prong with a coil inside the cladding tube, passed an alternating current through the coil, and made the conductor's cladding tube and coating film material into conductors. Some methods measure film thickness by generating eddy currents in the coating film and detecting changes in the eddy currents caused by changes in coating film thickness by detecting changes in impedance that occur in the coil. The coating film thickness on the inner surface of the cladding tube, which was thought to be possible, can be measured quantitatively and non-destructively.Moreover, it is possible to measure the entire inner surface of the tube, not just the end of the tube as in the past, so it is possible to measure the coating film thickness on the inner surface of the cladding tube. It is easy to accurately determine the uniformity, and it is expected to have an extremely significant effect on preventing damage to fuel rods and greatly contribute to improving safety.

なお、本発明方法は、渦電流を利用することによりプロ
ーブ挿入だけで容易に測定が可能で、コーテイング膜に
スリット孔を設けたり管本体とコーテイング膜間に放射
性物質を界装するなどの加工を必要とぜず、極めて実際
的である。
Furthermore, the method of the present invention makes use of eddy currents and allows for easy measurement simply by inserting a probe, and does not require processing such as providing slit holes in the coating film or intercalating radioactive material between the tube body and the coating film. Very practical, not necessary.

又、本発明測定装置は、そのプローブをコイル収納ヘッ
ドと支持管を接続して形成し、こ第1らを被覆管内に挿
入可能とすると共に、接触子、リーフスプリングを設け
ているため被覆管内でがたつきが起ることがなく、かつ
被覆管内面との距離を正しく一定に保つことができ、定
圧接触で被覆97内の走査が円滑で、前記本発明測定方
法を実効よ〈実施する上に頗る好適である。
In addition, the measuring device of the present invention has the probe formed by connecting the coil storage head and the support tube, so that the probe can be inserted into the cladding tube, and since it is provided with a contact and a leaf spring, it is possible to insert the probe into the cladding tube. There is no rattling, the distance to the inner surface of the cladding tube can be maintained correctly and constant, and the inside of the cladding 97 can be scanned smoothly due to constant pressure contact, so that the measurement method of the present invention can be carried out effectively. This is particularly suitable.

なお、本発明測定法は、被覆管本体と、コーテイング膜
材とが導電率の点で異なったものについて適用されるも
のである。
Note that the measurement method of the present invention is applied to a case where the cladding body and the coating film material are different in electrical conductivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は渦電流発生の原理を示す図、第2図Ir本発明
測定方法を実施する膜厚測定装置のブロックダイヤグラ
ム、第3図は同装置で使用するプ「1−ブの1例を示す
使用状態正面図である。 aυ・・・被IJ%F、  (1カ・・・プローブ。 u3・・・フィル収納ヘッド、  (14J・・接触子
。 (15J ”’支持管、a6)・・・リーフスプリング
。 特許出願人   原子燃料工業株式会社代理人 弁理士
  、  オ  $   J”、’、”、”S。 ′41目 4 萼2日
Fig. 1 is a diagram showing the principle of eddy current generation, Fig. 2 is a block diagram of a film thickness measuring device that implements the Ir measurement method of the present invention, and Fig. 3 is an example of the plate used in the device. It is a front view of the state of use shown. ...Leaf spring. Patent applicant Nuclear Fuel Industry Co., Ltd. agent Patent attorney, O $ J",',","S. '41st item 4 Calyx 2nd

Claims (1)

【特許請求の範囲】 l 管内面に管本体と異なる導電率をもつコーテイング
膜を有する被覆管において、該被覆管内側にコイルを具
備するプローブを挿入し、該コイルに交流を流して導体
の被覆管本体又はコーテイング膜に渦電流を生ぜしめ、
コーティング膜厚の変化に起因する当該導体渦電流の変
化をコイルに生ずるインピーダンスの変化として前記プ
ローブで検出し、これを標準試料と比較することにより
、上記被覆管内面コーテイング膜の膜厚を測定すること
全特徴とする核燃料用被覆管内面コーテイング膜厚測定
法。 2 安定化電源を備えた、高周波発振器と、プローブコ
イル及び平衡回路を含み前記発振器より発振される高周
波を導き、導体の被覆管本体又はコーテイング膜に渦電
流を生ぜしめると共に、該渦電流をインピーダンス変化
に変えてその変化を検出する渦電流検出手段と、前記渦
電流検出手段の平衡回路からの信号を増巾し、表示する
増巾検波器及び表示器とからなり、前記渦電流検出手段
のプローブは被覆管内部に挿入可能で、その先端にプロ
ーブコイルを収納したコイル収納ヘッドを有し、該ヘッ
ドには被覆管内面との距離を一定に保つための接触子が
設けられそおり、一方、コイル収納ヘッドの一側端は支
持管に接続し、該支持管にiプローブを被覆管内で安定
的に保持すると同時に前記接触子を常に管内面に接触保
持させる複数のリーフスプリングが設けられていること
を特徴とする核燃料用被覆管内面コーテイング膜厚測定
装置。
[Claims] l In a cladding tube that has a coating film on the inner surface of the tube that has a conductivity different from that of the tube body, a probe equipped with a coil is inserted inside the cladding tube, and an alternating current is passed through the coil to coat the conductor. Generating eddy currents in the tube body or coating film,
A change in the conductor eddy current due to a change in coating film thickness is detected by the probe as a change in impedance occurring in the coil, and by comparing this with a standard sample, the film thickness of the inner coating film of the cladding tube is measured. This is a method for measuring the inner coating thickness of nuclear fuel cladding tubes. 2. A high-frequency oscillator equipped with a stabilized power supply, a probe coil, and a balance circuit, which guides the high-frequency waves oscillated by the oscillator, generates eddy currents in the conductor cladding body or coating film, and converts the eddy currents into impedances. The eddy current detection means includes an eddy current detection means for converting the change into a change and detecting the change, and an amplification detector and a display for amplifying and displaying the signal from the balanced circuit of the eddy current detection means. The probe can be inserted into the cladding tube, and has a coil storage head that houses the probe coil at its tip, and the head is equipped with a contact to maintain a constant distance from the inner surface of the cladding tube. , one end of the coil storage head is connected to a support tube, and the support tube is provided with a plurality of leaf springs that stably hold the i-probe within the cladding tube and at the same time keep the contactor always in contact with the inner surface of the tube. A nuclear fuel cladding tube inner coating film thickness measurement device characterized by:
JP4981582A 1982-03-26 1982-03-26 Method and device for measuring thickness of coating film on inside surface of coated pipe for nuclear fuel Pending JPS58166203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4981582A JPS58166203A (en) 1982-03-26 1982-03-26 Method and device for measuring thickness of coating film on inside surface of coated pipe for nuclear fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4981582A JPS58166203A (en) 1982-03-26 1982-03-26 Method and device for measuring thickness of coating film on inside surface of coated pipe for nuclear fuel

Publications (1)

Publication Number Publication Date
JPS58166203A true JPS58166203A (en) 1983-10-01

Family

ID=12841611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4981582A Pending JPS58166203A (en) 1982-03-26 1982-03-26 Method and device for measuring thickness of coating film on inside surface of coated pipe for nuclear fuel

Country Status (1)

Country Link
JP (1) JPS58166203A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673877A (en) * 1982-09-30 1987-06-16 Sumitomo Metal Industries, Ltd. Zirconium liner thickness measuring method and an apparatus therefor for a zirconium alloy tube
EP0650028A2 (en) * 1993-10-22 1995-04-26 Magnetic Analysis Corporation Method and apparatus for measurement of thickness of specimens
US6369566B1 (en) * 1999-09-27 2002-04-09 Framatone Anp Inc. Method for measuring crud thickness on nuclear fuel rods
KR100435341B1 (en) * 2001-11-09 2004-06-10 현대자동차주식회사 ozone-reduced apparatus for OBD system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673877A (en) * 1982-09-30 1987-06-16 Sumitomo Metal Industries, Ltd. Zirconium liner thickness measuring method and an apparatus therefor for a zirconium alloy tube
EP0650028A2 (en) * 1993-10-22 1995-04-26 Magnetic Analysis Corporation Method and apparatus for measurement of thickness of specimens
EP0650028A3 (en) * 1993-10-22 1996-02-28 Magnetic Analysis Corp Method and apparatus for measurement of thickness of specimens.
US6369566B1 (en) * 1999-09-27 2002-04-09 Framatone Anp Inc. Method for measuring crud thickness on nuclear fuel rods
KR100435341B1 (en) * 2001-11-09 2004-06-10 현대자동차주식회사 ozone-reduced apparatus for OBD system

Similar Documents

Publication Publication Date Title
JPH0226721B2 (en)
Van Drunen et al. Recognizing limitations in eddy-current testing
EP1817601B1 (en) Method and apparatus for measuring hydrogen concentration in zirconium alloy components in the fuel pool of a nuclear power plant
Dover et al. The measurement of surface breaking cracks by the electrical systems ACPD/ACFM
JPH0556474B2 (en)
US3636441A (en) Method of measuring crack depths in electrically conductive metal workpieces using current probes with voltage probes located between current probes by measuring the minimum potential difference between the voltage and current probes
JPS58166203A (en) Method and device for measuring thickness of coating film on inside surface of coated pipe for nuclear fuel
EP1348952B1 (en) Mutual inductance bridge for detection of degradation in metallic components
US2817060A (en) Non-destructive flaw detection apparatus
CN207379978U (en) A kind of conductivity meter based on impulse eddy current
Cecco Design and specifications of a High Saturation Absolute Eddy Current Probe with internal reference
Deeds et al. Determination of multiple properties with multiple eddy-current measurements
JPH01119756A (en) Inspecting apparatus for deterioration of metal material
JP2005274381A (en) Nondestructive inspection method and nondestructive inspection apparatus of back defect and material characteristics by electromagnetic method
JP2005164438A (en) Nondestructive inspection apparatus using teleguidance type alternate potential
Vigness et al. Eddy Current Type Flaw Detectors for Non‐Magnetic Metals
JPS59170706A (en) Method for measuring thickness of clad layer of neutron absorbing rod of zircaloy clad hafnium
Allen et al. Inspection of Small Diameter Tubing by Eddy Current Methods
Shoji et al. Development of novel NDE techniques and their significance in the COE program on the physics and chemistry of fracture and failure prevention
JPS62299757A (en) Inspecting method for long-sized tube for nuclear reactor measurement
Stubbe A measurement of the electrical conductivity of plasmas
Lassahn et al. Feasibility of eddy current measurement of ferrite content in stainless steel welds
Silva et al. Eddy current examination of the nuclear fuel elements with aluminum 1100-F cladding of IPR-R1 research reactor: An initial study
JPS62245902A (en) Method and device for measuring thickness of internal surface coating film of cladding tube of nuclear fuel
JPS6367506A (en) Method and instrument for measuring lining thickness of nuclear fuel coating tube