JPS62285046A - Qualitative/quantitative analysis of element - Google Patents

Qualitative/quantitative analysis of element

Info

Publication number
JPS62285046A
JPS62285046A JP61128762A JP12876286A JPS62285046A JP S62285046 A JPS62285046 A JP S62285046A JP 61128762 A JP61128762 A JP 61128762A JP 12876286 A JP12876286 A JP 12876286A JP S62285046 A JPS62285046 A JP S62285046A
Authority
JP
Japan
Prior art keywords
ray
elements
sample
characteristic
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61128762A
Other languages
Japanese (ja)
Inventor
Teruji Hirai
平居 暉士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61128762A priority Critical patent/JPS62285046A/en
Publication of JPS62285046A publication Critical patent/JPS62285046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To determine the density of elements of components in an unknown sample accurately, by solving a simultaneous equation prepared by multiplying intensity data of characteristic X-ray for each of elements of components in an unknown sample as obtained by this measurement and intensity data of characteristic X-ray generated from each of all elements as obtained from a calibration measurement by the density of each element (unknown). CONSTITUTION:A wavelength scanning type X-ray spectroscope is used to measure and stare the intensity of X-ray at the wavelength position of characteristic X-ray for each of elements of all components in a sample with respect to a single sample of each of elements of one component in the sample. Such a calibration measurement is done for each of elements of all components beforehand. The X-ray intensity value of each of elements of respective components obtained at the wavelength position of characteristic X-ray of one element of components in the sample to be measured is multiplied by density value of each of elements of the components (unknown analysis value to be obtained) and the values obtained are totalized. An equation is prepared at a wavelength position of each of elements of all components to be measured in such a manner that the total thus obtained (a set value of X-ray intensity of each of elements of all components at the wavelength position of characteristic X-ray of elements of components to be measured) will be equal to the X-ray intensity measured at the wavelength position of characteristic X-ray of each of elements of components to be measured. The density of elements in the sample is calculated by solving the simultaneous equation thus prepared.

Description

【発明の詳細な説明】 3、発明の詳細な説明 イ、産業上の利用分管 本発明は、X線マイクロアナライザ(EPMA)とか蛍
光X線分析装置などで、波長走査型X線分光器を用いて
元素の定量分析或は定性分析を行う方法に関する。
[Detailed description of the invention] 3. Detailed description of the invention A. Industrial use The present invention relates to a method for quantitative or qualitative analysis of elements.

口、従来の技術 X線マイクロアナライザ(EPMA)や蛍光X線装置な
どで、波長走査型X線分光器を用いて元素の定量分析及
び定性分析を行う場合、分光器を一定速度で波長走査し
、各波長点での検出値を用いて、レコーダのチャート紙
上に波長スペクトルを記録し、波長表などを用いてスペ
クトルの解析を行い、各元素の存在や半定量値を知る方
法や、コンピュータによって指定された元素に対して定
められた1つのピーク(Kα線、Lα線)の測定を順次
行い、その検出値によって指定元素の定量分析を行う方
法が用いられている。前者は比較的正確な分析結果が得
られるが、−波長位置においての検出時間は一定時間必
要とするので、全波長域での検出には非常に長時間掛か
る上に波長表にない特性X線(非図表線−サテライト線
)や分光器固有のピークがあったりして解析が難しい。
Conventional technology When performing quantitative and qualitative analysis of elements using a wavelength scanning X-ray spectrometer, such as an X-ray microanalyzer (EPMA) or a fluorescent X-ray device, the spectrometer scans the wavelength at a constant speed. , record the wavelength spectrum on a recorder's chart paper using the detected values at each wavelength point, analyze the spectrum using a wavelength table, etc., and find out the presence and semi-quantitative value of each element. A method is used in which one peak (Kα ray, Lα ray) determined for a designated element is sequentially measured, and the detected value is used for quantitative analysis of the designated element. The former method allows relatively accurate analysis results to be obtained, but - since the detection time at each wavelength position requires a certain amount of time, detection in the entire wavelength range takes a very long time, and it also produces characteristic X-rays that are not included in the wavelength table. (non-chart line - satellite line) and spectrometer-specific peaks, making analysis difficult.

後者はコンピュータ等によって、自動分析が行えるが、
判定が甘く、多元素が混在している試料では正確な分析
情報が得られないと云った問題点を抱えている。
The latter can be automatically analyzed using computers, etc.
The problem is that the judgment is not easy and accurate analysis information cannot be obtained for samples containing multiple elements.

ハ、発明が解決しようとする問題点 本発明は、多元素が混在している試料では正確な分析情
報が得られないと云った問題点を解消し、高次線、サテ
ライト線のみならず一次線の重なりによる影響等も除去
して、非常に高□度の分析情報を比較的短時間で得られ
るようにすることを目的とする。
C. Problems to be Solved by the Invention The present invention solves the problem that accurate analysis information cannot be obtained from samples containing a mixture of multiple elements. The purpose is to eliminate the effects of overlapping lines, etc., and to be able to obtain extremely high-quality analysis information in a relatively short time.

二0問題点解決のための手段 波長走査型X線分光器を用いて行う元素の定性・定量分
析法において、試料の1つの成分元素の単体試料に対し
て、走査型分光器で波長走査を行って、試料の全成分元
素の特性X線波長位置でX線強度を測定し記憶する較正
測定を全成分元素について行っておき、測定試料の一つ
の成分元素の特性X線波長位置におけるX線強度値に該
成分元素濃度値(求めようとしている未知分析値)を掛
番薔な値の合計即ち一つの測定成分元素の特性X線波長
位置における全成分元素のX線強度の集合値と同測定成
分元素の特性X線波長位置における測定X線強度が等し
と置いた方程式を、全測定成分元素の特性波長位置にお
いて作成し、そのようにして作成された連立方程式の解
を求めることにより、試料の元素濃度を算出するように
した。
20 Means for Solving Problems In the qualitative and quantitative analysis of elements using a wavelength scanning X-ray spectrometer, wavelength scanning is performed on a single sample of one component element of the sample using a scanning spectrometer. Calibration measurements are performed on all component elements in which the X-ray intensity is measured and stored at the characteristic X-ray wavelength position of all component elements of the sample, and the X-ray intensity at the characteristic X-ray wavelength position of one component element of the measurement sample is measured. Multiply the intensity value by the concentration value of the component element (unknown analysis value to be determined).The sum of the values, that is, the set value of the X-ray intensities of all the component elements at the characteristic X-ray wavelength position of one measured component element. By creating an equation in which the measured X-ray intensities at the characteristic X-ray wavelength positions of the measured component elements are equal, at the characteristic wavelength positions of all the measured component elements, and finding solutions to the simultaneous equations created in this way. , the elemental concentration of the sample was calculated.

ホ2作用 分析しようとする試料についてのX線の測定において、
検出される各成分元素の特性X線位置におけるX線強度
は、その波長において試料に含まれる各元素から放出さ
れるX線強度の集合強度であると考えられる。そして、
試料に含まれる各元素が一つの成分元素(目的元素)の
特性X線強度に影響するのは、各元素単体試料から放出
される成分元素の特性X線と同波長のX線の強度とその
元素の分析しようとする試料中の濃度の積に比例すると
考えられるから、試料の1つの成分元素の単体試料に対
して、走査型分光器で波長走査を行って、試料の全成分
元素の特性X線波長位置でX線強度を測定し記憶する較
正測定を全成分元素について行い、全成分元素について
、夫々全成分元素の特性X線波長位置のX線強度データ
を作成しておき、本測定による未知試料の各成分元素の
特性X線強度データと、上記の較正測定で得られた各元
素が発生する全元素の特性X線強度データに各元素濃度
(未知数)を掛けて作成した連立方程式を解くことによ
り、未知試料の各成分元素濃度を求めることができる。
In the measurement of X-rays for the sample to be analyzed,
The X-ray intensity at the characteristic X-ray position of each detected component element is considered to be the collective intensity of the X-ray intensities emitted from each element contained in the sample at that wavelength. and,
Each element contained in a sample affects the characteristic X-ray intensity of one component element (target element) due to the intensity of X-rays with the same wavelength as the characteristic X-rays of the component element emitted from a single sample of each element Since it is considered to be proportional to the product of the concentration of the element in the sample to be analyzed, wavelength scanning is performed on a single sample of one component element in the sample using a scanning spectrometer to determine the characteristics of all the component elements in the sample. Calibration measurements are performed for all component elements in which the X-ray intensity is measured and stored at X-ray wavelength positions, and X-ray intensity data at the characteristic X-ray wavelength positions of all component elements are created for each component element. Simultaneous equations created by multiplying the characteristic X-ray intensity data of each component element of the unknown sample and the characteristic X-ray intensity data of all elements generated by each element obtained in the above calibration measurement by each element concentration (unknown quantity). By solving, the concentration of each component element in the unknown sample can be determined.

へ、実施例 第1図に本発明の一実施例を示す。第1図において、S
は試料、Eは励起線で試料Sを励起させてX線を放出さ
せる。1は走査型X線分光器で波長走査を行う。2は分
光されたX線を検出する検出器。3はゲート回路で分光
器1が一つの波長位置にセットされた時点で、測定する
時間だけ線路を開き、検出器2で検出された信号をスケ
ーラ4に移送する。スケーラ4はゲート回路3を通して
送られる信号を計数する。5はCPUで予め設定された
波長位置に順次分光器1を駆動し、その波長位置で一定
時間停止しては、その間ゲート回路3の開き、スケーラ
4を作動させ、X線強度データの取り込んでデータ処理
を行うようにしである。6は求められた各元素濃度デー
タを表示する表示装置である。
Embodiment FIG. 1 shows an embodiment of the present invention. In Figure 1, S
is a sample, and E is an excitation ray that excites the sample S to emit X-rays. 1 performs wavelength scanning with a scanning X-ray spectrometer. 2 is a detector that detects spectroscopic X-rays. Reference numeral 3 denotes a gate circuit which opens the line for the measurement time when the spectrometer 1 is set at one wavelength position, and transfers the signal detected by the detector 2 to the scaler 4. A scaler 4 counts the signals sent through the gate circuit 3. 5 drives the spectrometer 1 sequentially to wavelength positions preset by the CPU, and stops at each wavelength position for a certain period of time, during which time the gate circuit 3 is opened, the scaler 4 is activated, and X-ray intensity data is taken in. This is for data processing. 6 is a display device that displays the determined element concentration data.

以上の構成において、検出されてCPU5に記憶された
検出データの処理手法が、本発明の要部で、その処理手
法を第2図のフローチャートを用いて説明する。
In the above configuration, the processing method of the detection data detected and stored in the CPU 5 is the main part of the present invention, and the processing method will be explained using the flowchart of FIG. 2.

先ず本測定の前に、標準試料SR(原子番号jの元素単
体試料)を用いて較正測定を行う(A)。標準試料SR
を測定点にセットする(イ)。走査型分光器1を駆動し
て一つの波長位置即ち一つの成分元素(原子番号K)の
特性X線の波長位置にセットする(口)。X線を検出器
2で検出し、スケーラ4に計数されたデータ■81.を
CPU5に記憶する(ハ)。次の測定成分元素があるか
否かを判断しく二)、次の測定成分元素があれば、動作
は(ロ)に戻り、次の波長位置で上述動作を行い、全成
分元素の特性X線波長位置での測定が終了すると(ニ)
、次の標準試料があるか否かを判断しくホ)、次の標準
試料があれば、動作は(イ)に戻って、次の標準試料に
ついて上述動作を繰り返す。全標準試料の較正測定が終
了すると(ホ)、本測定に入る。
First, before the main measurement, a calibration measurement is performed using a standard sample SR (a sample of a single element with atomic number j) (A). Standard sample SR
Set at the measurement point (a). The scanning spectrometer 1 is driven and set at one wavelength position, that is, the wavelength position of the characteristic X-ray of one component element (atomic number K) (opening). X-rays are detected by the detector 2, and the data counted by the scaler 4■81. is stored in the CPU 5 (c). 2) If there is a next component element to be measured, the operation returns to (b), performs the above operation at the next wavelength position, and performs the characteristic X-ray of all component elements. When the measurement at the wavelength position is completed (d)
(e) If there is a next standard sample, the operation returns to (a) and repeats the above-mentioned operation for the next standard sample. When the calibration measurements of all standard samples are completed (e), the main measurement begins.

測定試料Ssを用いて本測定を行う(B)。測定試料S
Sを測定点にセットする(へ)。分光器1を駆動して一
つの成分元素の特性X線の波長位置にセットする(ト)
。特性X線を検出器2で検出し、スケーラ4で計数され
たデータIKをCPU5に記憶する(チ)。次の測定成
分元素があるか否かを判断しくす)、次の測定成分元素
があれば、動作は(ト)に戻り、次の波長位置で上述動
作を繰り返し行い、全成分元素の特性X線波長位置での
測定が終了すると(す)、較正測定で入手した標準強度
データと本測定で入手した測定強度データとを用いて下
記のような連立方程式(1)を作成する。この式は成分
元素未詳の試料の定量分析の場合の例で、成分元素は原
子番号4のBeから92のUまで全てを採上げている。
The main measurement is performed using the measurement sample Ss (B). Measurement sample S
Set S to the measurement point (to). Drive the spectrometer 1 and set it to the wavelength position of the characteristic X-ray of one component element (G)
. Characteristic X-rays are detected by the detector 2, and data IK counted by the scaler 4 is stored in the CPU 5 (H). If there is a next component element to be measured, the operation returns to (g) and repeats the above operation at the next wavelength position, and the characteristics of all component elements When the measurement at the line wavelength position is completed, the following simultaneous equations (1) are created using the standard intensity data obtained in the calibration measurement and the measured intensity data obtained in the main measurement. This formula is an example of quantitative analysis of a sample whose constituent elements are unknown, and all constituent elements from Be with atomic number 4 to U with atomic number 92 are taken.

式(1) 但し、IKは未知試料の原子番号にの元素に対応する特
性X線の検出値。
Formula (1) However, IK is the detected value of the characteristic X-ray corresponding to the element with the atomic number of the unknown sample.

W、は未知試料に含まれる原子番号jの元素の濃度値(
含有率)で、これが求めようとする値。
W, is the concentration value of the element with atomic number j contained in the unknown sample (
This is the value you are trying to find.

■に、jは原子番号jの元素標準試料(純度100%へ
の換算値)の較正測定で検出された、原子番号にの元素
の特性X線の波長位置での検出値である。
In (2), j is the detected value at the wavelength position of the characteristic X-ray of the element at the atomic number, which was detected in the calibration measurement of the standard sample of the element with the atomic number j (value converted to 100% purity).

この(1)式の解である元素jの濃度Wjを下記に示す
(2)式により求める。
The concentration Wj of element j, which is a solution to equation (1), is determined by equation (2) shown below.

式(2) 但し、分子の行列は分母の行列の第3列を未知試料の検
出値IKと交換したものである。
Equation (2) However, the numerator matrix is obtained by replacing the third column of the denominator matrix with the detected value IK of the unknown sample.

分母の行列は(1)式の左辺の係数を抽出したものであ
る。
The denominator matrix is obtained by extracting the coefficients on the left side of equation (1).

このようにして求めた元素濃度データを用いて、試料の
濃度分布像を表示装置6に表示する。
Using the element concentration data obtained in this way, a concentration distribution image of the sample is displayed on the display device 6.

本実施例では、試料の成分元素が未知である場合を想定
しているが、試料の成分が予め明らかであるときは、上
記(1)式で試料中にない元素の濃度WJは0であるか
ら、(1)式の項及び式の数は成分元素の数だけになる
。また較正測定における標準試料は単体であることが望
ましいが、単体が得られない場合、成分構成が明確であ
る試料(化合物純品等)を2種類用い、かつ成分元素の
影響については、他の成分元素単体試料のデータを用い
て補正する。
In this example, it is assumed that the constituent elements of the sample are unknown, but when the constituent elements of the sample are known in advance, the concentration WJ of the element not in the sample is 0 in equation (1) above. Therefore, the number of terms and formulas in equation (1) is only the number of component elements. In addition, it is desirable that the standard sample used in calibration measurements be a simple substance, but if a simple substance cannot be obtained, two types of samples with clear composition (such as pure compounds) should be used, and the effects of the constituent elements should be examined using other samples. Corrected using data from single component element samples.

ト、効果 本発明によれば、全波長域を連続的に走査するのではな
いから、分析所要時間は比較的短くてすみ、成分元素相
互の影響、X線ピークの重なり。
According to the present invention, since the entire wavelength range is not continuously scanned, the time required for analysis is relatively short, and the influence of component elements on each other and the overlap of X-ray peaks can be avoided.

サテライト線、高次線等による成分元素の誤認が避けら
れ、多元素が含まれる試料分析においても、正確な分析
が可能になり、一段と分析精度が向上する。
Misidentification of component elements due to satellite lines, higher-order lines, etc. can be avoided, and even when analyzing samples containing multiple elements, accurate analysis is possible, and analysis accuracy is further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図はCP
Uのフローチャート図である。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of an embodiment of the present invention.
It is a flowchart figure of U.

Claims (1)

【特許請求の範囲】[Claims] 波長走査型X線分光器を用いて、試料の1つの成分元素
の単体試料に対して、試料の全成分元素の特性X線波長
位置でX線強度を測定し記憶する較正測定を全成分元素
について行っておき、測定試料の一つの成分元素の特性
X線波長位置における各成分元素のX線強度値に該成分
元素濃度値(求めようとしている未知分析値)を掛けた
値の合計(測定成分元素の特性波長位置における全成分
元素のX線強度の集合値)と上記測定成分元素の特性波
長位置における測定X線強度が等しと置いた方程式を、
全測定成分元素の特性X線波長位置において作成し、そ
のようにして作成された連立方程式の解を求めることに
より、試料の元素濃度を算出しようとしたことを特徴と
する元素の定性・定量分析法。
Using a wavelength scanning X-ray spectrometer, a calibration measurement is performed on a single sample of one component element of the sample, measuring and storing the X-ray intensity at the characteristic X-ray wavelength position of all the component elements of the sample. The total value (measured An equation that assumes that the set value of the X-ray intensities of all component elements at the characteristic wavelength position of the component element) and the measured X-ray intensity at the characteristic wavelength position of the measured component element is equal to:
Qualitative and quantitative analysis of elements characterized by attempting to calculate the elemental concentration of a sample by creating the simultaneous equations created at the characteristic X-ray wavelength positions of all measured component elements and finding solutions to the simultaneous equations created in this way. Law.
JP61128762A 1986-06-03 1986-06-03 Qualitative/quantitative analysis of element Pending JPS62285046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61128762A JPS62285046A (en) 1986-06-03 1986-06-03 Qualitative/quantitative analysis of element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61128762A JPS62285046A (en) 1986-06-03 1986-06-03 Qualitative/quantitative analysis of element

Publications (1)

Publication Number Publication Date
JPS62285046A true JPS62285046A (en) 1987-12-10

Family

ID=14992838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61128762A Pending JPS62285046A (en) 1986-06-03 1986-06-03 Qualitative/quantitative analysis of element

Country Status (1)

Country Link
JP (1) JPS62285046A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108647A (en) * 1989-05-26 1991-05-08 Seiko Instr Inc Method of correcting x-ray intensity measured with energy dispersive type x-ray microanalyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108647A (en) * 1989-05-26 1991-05-08 Seiko Instr Inc Method of correcting x-ray intensity measured with energy dispersive type x-ray microanalyzer

Similar Documents

Publication Publication Date Title
US6295333B1 (en) Fluorescent X-ray analyzer
Birks et al. Use of a Multichannel Analyzer for Electron Probe Microanalysis.
JPS62285046A (en) Qualitative/quantitative analysis of element
JP2000283933A (en) Fluorescent x-ray analyzer
JPH0247542A (en) Quantitative analysis using x-ray spectroscope
WO2021235037A1 (en) Fluorescent x-ray analyzer
JP3291251B2 (en) X-ray fluorescence analyzer
JPH0245150B2 (en)
JP3236838B2 (en) X-ray fluorescence analysis method and apparatus
JP4279983B2 (en) X-ray fluorescence analyzer
JP2568491B2 (en) Qualitative analyzer
JP2645226B2 (en) X-ray fluorescence analysis method
JPH0785064B2 (en) Element concentration distribution measurement method
JP2645227B2 (en) X-ray fluorescence analysis method
JP2000199749A (en) Fluorescence x-ray spectrometer
JP3377328B2 (en) X-ray fluorescence analysis method
JP2872926B2 (en) X-ray fluorescence analysis method
JPH0812080B2 (en) X-ray spectroscopy analyzer
JPH03285153A (en) Quantitative analyser with x-rays
JP2508604B2 (en) X-ray fluorescence analyzer
JPS6388434A (en) Characteristic x ray analysis
JP2002181740A (en) Method and apparatus for semi quantitative analysis
JP2001056305A (en) Fluorescent x-ray analyser and recording medium used therein
JPS61107142A (en) Luminous spectrum analysis for standardizing measured data
Leenanupan et al. X-Ray fluorescence analysis using the filter paper method for the determination of La, Pr and Nd in solution