JPH0812080B2 - X-ray spectroscopy analyzer - Google Patents

X-ray spectroscopy analyzer

Info

Publication number
JPH0812080B2
JPH0812080B2 JP59281007A JP28100784A JPH0812080B2 JP H0812080 B2 JPH0812080 B2 JP H0812080B2 JP 59281007 A JP59281007 A JP 59281007A JP 28100784 A JP28100784 A JP 28100784A JP H0812080 B2 JPH0812080 B2 JP H0812080B2
Authority
JP
Japan
Prior art keywords
ray
wavelength
sample
concentration
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59281007A
Other languages
Japanese (ja)
Other versions
JPS61155917A (en
Inventor
啓義 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59281007A priority Critical patent/JPH0812080B2/en
Publication of JPS61155917A publication Critical patent/JPS61155917A/en
Publication of JPH0812080B2 publication Critical patent/JPH0812080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Description

【発明の詳細な説明】 イ.産業上の利用分野 測定には部品寸法を測定して寸法のばらつきを調べる
と云うように個々の測定結果が単一データよりなる(上
例なら寸法値)測定と、或る量の時間的変化を調べると
か、或る量の場所による変化を調べると云った、測定結
果が或る量の大きさとその測定が行われた座標値の二種
のデータよりなる測定とに分類することができる。後者
の測定の例としてX線分光分析がある。X線分光分析装
置では座標となる量は波長とかエネルギーであり、測定
装置出力(検出器出力或はそれに対数変換等の変換を施
したもの)は試料の成分濃度を表わし、これが波長とか
エネルギーの関数の形で得られ、このような測定の結果
の表示は例えば記録計の用紙の送り方向を波長等の横軸
座標にして測定装置出力を縦軸方向に記録することで行
つている。
DETAILED DESCRIPTION OF THE INVENTION Industrial application Measurement is to measure the size of a part and check the variation of the size. Each measurement result consists of a single data (dimension value in the above example) and a certain amount of change over time. , Or measuring the change due to a certain amount of place, the measurement results can be classified into two types of data, that is, the magnitude of the certain amount and the coordinate value at which the measurement is performed. An example of the latter measurement is X-ray spectroscopy. In an X-ray spectroscopic analyzer, the quantity that becomes the coordinates is the wavelength or energy, and the output of the measuring device (detector output or what has been subjected to conversion such as logarithmic conversion) represents the component concentration of the sample, and this represents the wavelength or energy. It is obtained in the form of a function, and the result of such measurement is displayed, for example, by recording the output of the measuring device in the vertical axis direction with the paper feed direction of the recorder as the horizontal axis coordinate such as wavelength.

本発明は上述したX線分光分析装置に関し、特にその
測定結果の表示方法に関するものである。
The present invention relates to the above-mentioned X-ray spectroscopic analyzer, and more particularly to a method of displaying the measurement result.

ロ.従来技術 従来、X線分光分析装置の分析を行っているときの出
力は、X線波長を横軸にとって縦軸にX線強度をそのま
ま出力して記録するという方法が用いられていた。しか
しX線分光分析装置は一般に波長とかエネルギー等の横
軸座標値によつて総合的感度が異り、感度は横軸座標値
の関数になつているので、従来の表示方法は測定しよう
とする物質濃度に上記関数を掛算したものが表示されて
いて、真の試料成分濃度は記録から直ちには判らない。
測定結果の検討に当つては、測定記録に感度特性等の補
正を行つたデータを用いるのであるが、測定記録の目視
判断で分析対象の大体の特徴を把握してから詳細な検討
に入ると云うことは広く日常的に行われている所であ
る。所が上述したように従来の表示方式では測定装置出
力がそのまゝ表示されているので、幾つかのピークの間
の真の大小関係が目視だけでは判明せず、錯誤によつて
大小関係を誤つて認識し以後の検討が誤つた先入観に導
かれて、検討に手間取つたり、時には誤つた結論を引出
してしまうと云うことがあつた。
B. 2. Description of the Related Art Conventionally, as an output when an X-ray spectroscopic analyzer is used for analysis, a method has been used in which the horizontal axis is the X-ray wavelength and the vertical axis is the X-ray intensity as it is and recorded. However, an X-ray spectroscopic analyzer generally has a different total sensitivity depending on the abscissa coordinate value such as wavelength or energy, and the sensitivity is a function of the abscissa coordinate value. Therefore, the conventional display method tries to measure. The substance concentration multiplied by the above function is displayed, and the true sample component concentration is not immediately known from the record.
In the examination of the measurement results, the data obtained by correcting the sensitivity characteristics etc. is used for the measurement record.However, if the detailed features are examined after grasping the general characteristics of the analysis target by visual judgment of the measurement record. Saying is a place that is widely practiced on a daily basis. However, as described above, in the conventional display method, the output of the measuring device is displayed as it is, so the true magnitude relationship between some peaks cannot be found only by visual inspection. It was sometimes said that he was erroneously recognized and led to his preconceptions that the subsequent examination was erroneous, which took time to examine and sometimes drew wrong conclusions.

ハ.発明が解決しようとする問題点 本発明は、X線波長に対するX線分光器からのリアル
タイムの出力を、X線強度をそのままではなく半定量的
に表示して、目視によって直接元素濃度の正しい大小関
係が把握できるX線分光分析装置を提供するものであ
る。
C. DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention According to the present invention, the real-time output from the X-ray spectroscope with respect to the X-ray wavelength is displayed semiquantitatively, not as it is, and the correct elemental concentration of the elemental concentration can be directly visually determined. It is intended to provide an X-ray spectroscopic analyzer capable of grasping the relationship.

ニ.問題点解決のための手段 試料から発生するX線を波長ごとに分光してその強度
を測定し定性定量分析を行うX線分光分析装置におい
て、表示上の横軸座標となるX線波長に対応して、実用
的範囲内の各元素の一定の濃度の試料に対する測定装置
の波長感度特性を表す特性関数を予め保持する記憶手段
と、その特性関数の逆数を測定されたX線強度データに
掛算する補正演算手段と、測定されたX線強度データを
前記記憶手段に記憶された特性関数に基づいて前記補正
演算手段により補正演算することによって元素濃度の半
定量値を求め、横座標軸にX線波長をとり、縦座標軸に
前記半定量値をとって2次元的に半定量値を表示する表
示手段とを備えるようにした。
D. Means for Solving Problems In an X-ray spectroscopic analyzer that performs X-ray spectroscopic analysis to disperse X-rays generated from a sample for each wavelength and measure its intensity to perform qualitative quantitative analysis. Then, storage means for holding in advance a characteristic function representing the wavelength sensitivity characteristic of the measuring device for a sample having a constant concentration of each element within a practical range, and the reciprocal of the characteristic function are multiplied by the measured X-ray intensity data. Correction calculation means for calculating the semi-quantitative value of the element concentration by performing correction calculation on the measured X-ray intensity data by the correction calculation means based on the characteristic function stored in the storage means, and the abscissa axis indicates the X-rays. Display means for displaying the semi-quantitative value two-dimensionally by taking the wavelength and taking the semi-quantitative value on the ordinate axis is provided.

ホ.実施例 第1図は本発明のX線分光分析装置の一実施例であ
る。1はX線分光器、2はレートメータ、3は制御回路
で補正演算,X線分光器の駆動,測定結果の表示等を制御
している。4は記録計で制御回路3によつて駆動され、
測定結果の記録を行う。5は各種元素の同系列の特性X
線の強度(後で詳述)とX線分光器の波長特性の積と波
長との関係データ及びバツクグラウンドのデータを格納
したメモリでこの関係データが上述した特性関数であ
る。Sは試料でEは試料Sの構成原子を励起する電子ビ
ームであり、試料から発生したX線xがX線分光器1に
入射せしめられる。X線分光器1で分光されたX線はレ
ートメータ2に入射し、レートメータ2からはX線強度
に対応した信号が得られる。制御回路3はX線分光器1
を駆動して波長走査を行い、適宜間隔でレートメータ出
力を読込みデータメモリ6に格納する。波長走査終了後
データメモリ6内の測定装置出力のデータとメモリ5内
の対応波長における上記関係データを読出し、測定装置
出力からバツクグラウンドを引算した値をこの関係デー
タで割算し適当に定めた基準値を掛算して補正測定値と
し記録計4に出力する。もちろんデータメモリを用いな
いで、レートメータ出力を読込み直ちに補正演算を行つ
てリアルタイムで記録計に記録させてもよい。半定量的
考察においては、バックグラウンドの大きさが特別に大
きくない限りはバックグラウンドを引き算しなくても影
響は少ないからである。
E. Embodiment FIG. 1 shows an embodiment of the X-ray spectroscopic analysis apparatus of the present invention. Reference numeral 1 is an X-ray spectrometer, 2 is a rate meter, and 3 is a control circuit, which controls correction calculation, driving of the X-ray spectrometer, display of measurement results, and the like. 4 is a recorder driven by the control circuit 3,
Record the measurement results. 5 is the characteristic X of the same series of various elements
The relational data is the characteristic function described above in the memory in which the relational data between the product of the intensity of the line (detailed later) and the wavelength characteristic of the X-ray spectrometer and the wavelength and the data of the background are stored. S is a sample and E is an electron beam that excites the constituent atoms of the sample S, and the X-ray x generated from the sample is made incident on the X-ray spectroscope 1. The X-rays dispersed by the X-ray spectroscope 1 are incident on the rate meter 2, and a signal corresponding to the X-ray intensity is obtained from the rate meter 2. The control circuit 3 is the X-ray spectroscope 1
Is driven to perform wavelength scanning, and the rate meter output is read at an appropriate interval and stored in the data memory 6. After completion of the wavelength scanning, the data of the measuring device output in the data memory 6 and the above-mentioned relational data at the corresponding wavelength in the memory 5 are read out, and the value obtained by subtracting the background from the measuring device output is divided by this relational data to appropriately determine. The obtained reference value is multiplied and the corrected measurement value is output to the recorder 4. Of course, the data memory may not be used, and the output of the rate meter may be read, the correction calculation may be immediately performed, and the data may be recorded in the recorder in real time. This is because in the semi-quantitative consideration, the effect is small even if the background is not subtracted unless the size of the background is particularly large.

第2図は上記実施例による測定記録の一例を示す。こ
の図には比較のため各ピークを上述補正をしないで記録
したときのピーク高さを各ピークの上に横棒で記入し、
また補正演算に用いた特性関数を点線で示してある。こ
の特性関数は実際的には幾つかの元素の100%試料につ
いてのKα線等同系の各特性X線の実測強度を夫々の波
長位置にプロツトして求められる。補正演算は云うまで
もなく特性関数の逆数を測定装置出力に掛算するもので
ある。また関数値最大の波長における元素(この場合M
n)の濃度3%に対するKα線の強度が図の3%ライン
になるように基準値を決めているので、色々な元素の3
%濃度の試料によつて夫々のKα線を測定し、上述補正
演算を行つて表示すると、Kα線のピークは全てこの3
%ラインに略揃うことになる。第2図の場合、測定した
試料ではCaのKα線の強度は測定装置出力そのまゝより
2倍以上も大きくなり、鉄のKα線と同程度で、両者は
共に略5%程の濃度であるのに、従来の表示方法ではCa
は過少に表示され、ピーク相互の直観的な定量比較が困
難であることが分る。なお、上記の3%の濃度というの
は微量元素の実用的(経験的)濃度の例示であって、そ
の範囲は分析対象試料の主成分ではない微量元素の濃度
は数%程度であるという経験的事実に基づいて選ばれる
ものである。
FIG. 2 shows an example of the measurement record according to the above embodiment. In this figure, for comparison, enter the peak height when each peak was recorded without the above correction, using a horizontal bar above each peak,
Further, the characteristic function used for the correction calculation is shown by a dotted line. This characteristic function is actually obtained by plotting the actually measured intensities of the respective characteristic X-rays of the same system such as Kα ray for 100% samples of some elements at respective wavelength positions. Needless to say, the correction operation is to multiply the output of the measuring device by the reciprocal of the characteristic function. Also, the element at the wavelength with the maximum function value (in this case M
Since the reference value is determined so that the intensity of Kα rays for the concentration of 3% in n) is the 3% line in the figure, the 3
When each Kα ray was measured using a sample having a concentration of%, and the above-described correction calculation was performed and displayed, all the peaks of the Kα ray were at this 3
It will be almost aligned with the% line. In the case of Fig. 2, in the measured sample, the intensity of Kα ray of Ca is more than twice as high as the output of the measuring device, which is almost the same as that of iron Kα ray, and both of them have a concentration of about 5%. However, in the conventional display method, Ca
Is too small, and it is difficult to intuitively compare peaks with each other intuitively. The above-mentioned 3% concentration is an example of a practical (empirical) concentration of a trace element, and the range is such that the concentration of a trace element which is not the main component of the sample to be analyzed is about several percent. It is selected based on the facts.

種々な元素の特性X線は同系のもの例えばKα線につ
いてみると、その強度は励起条件を一定にすると、原子
番号の関数であり、波長が原子番号順に短かくなるの
で、濃度100%各元素試料のKα線の強度は波長の関数
として表すことができる。各元素の濃度が数%の試料を
使って特性X線の強度を求めた場合には、濃度100%の
試料を使った場合とは若干その各元素間の強度比率は異
なるものの、その強度も同様に波長の関数として表すこ
とができ、この値は濃度100%の試料を使った場合に比
べてより実用的な波長感度を表す特性関数となる。他の
系列の特性X線についても同様の関係がある。第2図に
よつて説明した実施例はこのような事実に立脚したもの
で、X線分光分析装置の測定出力に補正演算を施すこと
で、各元素の濃度を直読的に表示できるようにしたもの
である。
The characteristic X-rays of various elements are similar to each other, for example, Kα rays. Its intensity is a function of atomic number when the excitation condition is kept constant, and the wavelength becomes shorter in the order of atomic number. The intensity of Kα radiation of a sample can be expressed as a function of wavelength. When the intensity of the characteristic X-ray is obtained using a sample in which the concentration of each element is several%, the intensity ratio between each element is slightly different from that in the case of using the sample of 100% concentration, but the intensity is also Similarly, it can be expressed as a function of wavelength, and this value is a characteristic function showing a more practical wavelength sensitivity as compared with the case of using a sample with a concentration of 100%. Similar relations exist for characteristic X-rays of other series. The embodiment described with reference to FIG. 2 is based on such a fact, and the correction output is applied to the measurement output of the X-ray spectroscopic analyzer so that the concentration of each element can be displayed directly. It is a thing.

なお上例では特性関数をメモリに記憶して補正演算に
用いているが、何点かの感度データから補正値を出力す
る折線近似等による関数発生器を用いてもよい。
In the above example, the characteristic function is stored in the memory and used for the correction calculation, but a function generator based on polygonal line approximation or the like that outputs the correction value from the sensitivity data of some points may be used.

ヘ.効果 本発明によれば表示データから直観的に得られる判定
が真実と喰い違わないから、表示結果が大変見易く、正
しい半定量的認識が表示データから目視により直接得ら
れるから、以後の厳密な定量検討の方針が適切に立てら
れる。
F. Effect According to the present invention, since the determination intuitively obtained from the display data does not conflict with the truth, the display result is very easy to see, and the correct semi-quantitative recognition can be directly obtained from the display data by visual observation. Appropriate policy for consideration.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法をX線分光分析に適用した場合の装
置構成のブロツク図、第2図は測定記録の一例である。
FIG. 1 is a block diagram of an apparatus configuration when the method of the present invention is applied to X-ray spectroscopic analysis, and FIG. 2 is an example of measurement record.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料から発生するX線を波長ごとに分光し
てその強度を測定し定性定量分析を行うX線分光分析装
置において、表示上の横軸座標となるX線波長に対応し
て、実用的範囲内の各元素の一定の濃度の試料に対する
測定装置の波長感度特性を表す特性関数を予め保持する
記憶手段と、その特性関数の逆数を測定されたX線強度
データに掛算する補正演算手段と、測定されたX線強度
データを前記記憶手段に記憶された特性関数に基づいて
前記補正演算手段により補正演算することによって元素
濃度の半定量値を求め、横座標軸にX線波長をとり、縦
座標軸に前記半定量値をとって2次元的に半定量値を表
示する表示手段とを備えたことを特徴とするX線分光分
析装置。
1. In an X-ray spectroscopic analyzer for performing X-ray spectroscopic analysis of an X-ray generated from a sample for each wavelength to measure its intensity and performing a qualitative quantitative analysis, the X-ray wavelength corresponding to the abscissa on the display corresponds to A storage means for holding in advance a characteristic function representing the wavelength sensitivity characteristic of the measuring device for a sample having a fixed concentration of each element within a practical range, and a correction for multiplying the measured X-ray intensity data by the reciprocal of the characteristic function. A semi-quantitative value of the element concentration is obtained by correcting the calculated X-ray intensity data on the basis of the characteristic function stored in the storage unit by the correction calculating unit, and the X-ray wavelength is plotted on the abscissa axis. An X-ray spectroscopic analysis apparatus comprising: a display unit that takes the semi-quantitative value on the ordinate axis and displays the semi-quantitative value in a two-dimensional manner.
JP59281007A 1984-12-28 1984-12-28 X-ray spectroscopy analyzer Expired - Lifetime JPH0812080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59281007A JPH0812080B2 (en) 1984-12-28 1984-12-28 X-ray spectroscopy analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59281007A JPH0812080B2 (en) 1984-12-28 1984-12-28 X-ray spectroscopy analyzer

Publications (2)

Publication Number Publication Date
JPS61155917A JPS61155917A (en) 1986-07-15
JPH0812080B2 true JPH0812080B2 (en) 1996-02-07

Family

ID=17632973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59281007A Expired - Lifetime JPH0812080B2 (en) 1984-12-28 1984-12-28 X-ray spectroscopy analyzer

Country Status (1)

Country Link
JP (1) JPH0812080B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112249U (en) * 1979-01-30 1980-08-07
JPS57172206A (en) * 1981-04-16 1982-10-23 Seiko Instr & Electronics Ltd Correcting method for drift of plating thickness gauge
DE3276673D1 (en) * 1981-11-10 1987-08-06 Sentron V O F Catheter sensor and memory unit
JPS59105104U (en) * 1982-12-29 1984-07-14 株式会社島津製作所 X-ray CT device

Also Published As

Publication number Publication date
JPS61155917A (en) 1986-07-15

Similar Documents

Publication Publication Date Title
Kalnicky et al. Field portable XRF analysis of environmental samples
JP2008268076A (en) Non-destructive discrimination method, and device
US5570406A (en) X-ray analyzer system and method of increasing response time
Birks et al. Use of a Multichannel Analyzer for Electron Probe Microanalysis.
JP2009168584A (en) Analytical curve generating method and apparatus, x-ray quantitative analysis method and apparatus, quantitative analysis method and apparatus, and asbestos quantitative analysis method and apparatus
JPH07119716B2 (en) Surface analyzer
JPH0812080B2 (en) X-ray spectroscopy analyzer
JPS5997044A (en) Simultaneous collector for diffraction data and spectral photograph data
CN114641687B (en) Fluorescent X-ray analyzer
JPH0247542A (en) Quantitative analysis using x-ray spectroscope
JP2008089325A (en) Geological age measuring method by electron probe microanalyzer
JP2995841B2 (en) Gas chromatograph mass spectrometer data processor
JP2002062270A (en) Method of displaying face analysis data in surface analyzer using electron beam
JPS59214743A (en) X-ray analyzing apparatus
JP4279983B2 (en) X-ray fluorescence analyzer
JPH0785064B2 (en) Element concentration distribution measurement method
JPS61195335A (en) Quantitative analyzing method for thin layer
JP3236838B2 (en) X-ray fluorescence analysis method and apparatus
JP2645226B2 (en) X-ray fluorescence analysis method
JPS6388434A (en) Characteristic x ray analysis
JPS6170444A (en) Concentration analyzing method in electron ray micro-analysis instrument
JPH04305149A (en) Apparatus and method for identifying and analyzing fluorescent x-ray spectrum
JPS62285046A (en) Qualitative/quantitative analysis of element
JP3377328B2 (en) X-ray fluorescence analysis method
JPS63223548A (en) Non-destructive inspecting instrument