JPS62283815A - Tetragonal compound represented by axti16-xmyga16+x)-yo56 and having tunnel structure - Google Patents

Tetragonal compound represented by axti16-xmyga16+x)-yo56 and having tunnel structure

Info

Publication number
JPS62283815A
JPS62283815A JP12409586A JP12409586A JPS62283815A JP S62283815 A JPS62283815 A JP S62283815A JP 12409586 A JP12409586 A JP 12409586A JP 12409586 A JP12409586 A JP 12409586A JP S62283815 A JPS62283815 A JP S62283815A
Authority
JP
Japan
Prior art keywords
heating
oxide
compound
metal oxide
decomposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12409586A
Other languages
Japanese (ja)
Other versions
JPH0242772B2 (en
Inventor
Yoshinori Fujiki
藤木 良規
Jun Watanabe
遵 渡辺
Takayoshi Sasaki
高義 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP12409586A priority Critical patent/JPS62283815A/en
Priority to US07/013,433 priority patent/US4818735A/en
Publication of JPS62283815A publication Critical patent/JPS62283815A/en
Publication of JPH0242772B2 publication Critical patent/JPH0242772B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To obtain a novel compound useful as a cationic conductor, an ion exchanger or a heat resistant heat insulator by providing a macro tunnel structure to a chain of coordination bodies in which Ti<4+> has the octahedral coordination of TiO6, M<3+> has the octahedral coordination of MO6 and Ga<3+> has the tetrahedral coordination of GaO4. CONSTITUTION:One or more kinds of alkali metallic oxides selected among K2O, Rb2O and Cs2O are mixed with titanium oxide, gallium oxide and one or more kinds of tervalent metallic compounds selected among aluminum oxide, iron oxide and chromium oxide in a ratio giving a composition represented by the formula (where A is one or more kinds of alkali metals selected among K, Rb and Cs, M is one or more kinds of tervalent metals selected among Al, Fe and Cr, X=0.1-2 and Y=0.1-10). The mixture is burned at >=1,000 deg.C to produce a novel tetragonal compound represented by the formula and having a tunnel structure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規化合物である一般式 %式% (ただし、Aはに、Rb及びCsから選ばれた1種また
は2種以上のアルカリ金属1MはAI、Fe。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a novel compound of the general formula % (wherein A is 1M of one or more alkali metals selected from Rb and Cs) , Fe.

及びCrから選ばれた1種または2種以上の3価金属、
X=0.1〜2.0 、 Y=0.l〜10を表わす)
で示される正方晶系のトンネル構造を有する化合物及び
その製造法に関する。該新規化合物は陽イオン伝導体、
イオン交換体、触媒、耐熱材及び断熱材として有用なも
のである。
and one or more trivalent metals selected from Cr,
X=0.1~2.0, Y=0. (represents l to 10)
The present invention relates to a compound having a tetragonal tunnel structure shown in and a method for producing the same. The new compound is a cation conductor,
It is useful as an ion exchanger, a catalyst, a heat-resistant material, and a heat insulating material.

発明の目的 本発明の目的は前記のような有用な新規化合物を提供す
るにある。
OBJECTS OF THE INVENTION It is an object of the present invention to provide useful new compounds as described above.

発明の構成 本発明の新規化合物は一般式 %式%( し、A、M、X、Yは前記と同じものを表わす)で示さ
れる化合物であり、Ti4+はTi○6八面体配位をと
り、M″′もMO,八面体配位をとるが、Ga3+はG
a○4四面体配位をとり、それらの配位体の連鎖が八面
体4個と四面体4個で作る大きなトンネル構造を有する
ことを特徴とする化合物で、さらに、Ti0h八面体の
X個を3価のMO6八面体で置換することにより陽イオ
ン電荷調整のためX個のA原子がトンネル中に配位した
ものである。
Structure of the Invention The novel compound of the present invention is a compound represented by the general formula % (where A, M, , M″′ also has MO, octahedral coordination, but Ga3+ has G
A compound characterized by having a○4 tetrahedral coordination and a chain of these coordinates having a large tunnel structure formed by 4 octahedrons and 4 tetrahedrons. By substituting trivalent MO6 octahedron, X A atoms are coordinated in the tunnel to adjust the cation charge.

本発明者は、さきに一般式 Ax TLa −x G a lh + X Osb 
(ただし、Aは前記と同じものを表わす)で示される新
規化合物を提供した(特願昭乙(−3oSZLF 号)
The present inventor previously described the general formula Ax TLa −x Galh + X Osb
(However, A represents the same thing as above.) (Patent Application Sho-Otsu (-3oSZLF))
.

該化合物は優れた陽イオン伝導体、イオン交換体。The compound is an excellent cation conductor and ion exchanger.

耐熱材、断熱材として優れた特性を有するものであるが
、Gaが高価であり、工業性に問題である。
Although it has excellent properties as a heat-resistant material and a heat insulating material, Ga is expensive and there are problems with industrial efficiency.

そこで、この結晶構造の中でGaの占有する配位体のう
ち、少くともGap、八面体を他の安価な3価金属で置
換できれば製造コストも低減できると考え、鋭意研究の
結果、AI、Fe、Cr、の3価金属で置換え得られる
ことを究明し得た。この知見に基いて本発明を完成した
Therefore, we thought that manufacturing costs could be reduced if at least the gaps and octahedrons among the coordination bodies occupied by Ga in this crystal structure could be replaced with other inexpensive trivalent metals, and as a result of intensive research, we found that AI, It has been found that it can be replaced with trivalent metals such as Fe and Cr. The present invention was completed based on this knowledge.

本発明の新規物質の構造は、一般式 AX Tj+6− X G a +b + x 056
と等しい構造を有するが、組成は一般式 %式% Yは前記と同じものを表わす)で示すように異な%席で
Y=8)を占有するのみならず、Y=lO席を置換した
X分が付加されるためで、X=2の場合はY=10とな
る。なお、X=0.1より少ないと、正方品系トンネル
構造は得られない。
The structure of the new substance of the present invention is represented by the general formula AX Tj+6- X Ga +b + x 056
However, the composition is not only occupied by the general formula % (Y represents the same as above), but also by occupying a different % seat (Y = 8), but also by This is because a minute is added, and when X=2, Y=10. Note that if X is less than 0.1, a square tunnel structure cannot be obtained.

図面(第1図)に基づいて、その構造を説明すると、第
1図(alに示すように、正方品系に属し、大口径のト
ンネル構造をしている。四面体はすべてGaO&である
が、八面体の中で大口径トンネルの枠組を形成する八面
体は、TiO2とMO。
The structure is explained based on the drawing (Figure 1). As shown in Figure 1 (al), it belongs to the tetragonal product system and has a tunnel structure with a large diameter. All of the tetrahedra are GaO&, The octahedrons that form the framework of the large-diameter tunnel are TiO2 and MO.

からなり、その割合はそれぞれ70%と30%の割合で
分布している。
The percentages are distributed at 70% and 30%, respectively.

なお、大口径トンネル間のマトリックスは第1図(bl
に示すルチル構造と、第1図(C1に示すβ−ガリア構
造単位の連結からなり立っている。
The matrix between large-diameter tunnels is shown in Figure 1 (bl
It consists of a rutile structure shown in Figure 1 (C1) connected to a β-gallium structural unit.

本発明の製造法としては、焼成法とフラックス法のいず
れでもよい。焼成法では粉末状結晶体が得られ、フラッ
クス法では針状または繊維状の結晶体が得られる。
The manufacturing method of the present invention may be either a firing method or a flux method. The calcination method yields a powdered crystal, and the flux method yields an acicular or fibrous crystal.

焼成法 K z O、Rb 20及びCs t Oから選ばれた
アルカリ金属酸化物あるいは加熱により該アルカリ金属
酸化物に分解される化合物と、酸化チタンあるいは加熱
により酸化チタンに分解される化合物と、酸化ガリウム
あるいは加熱により酸化ガリウムに分解される化合物と
、酸化アルミニウム、酸化鉄及び酸化クロムから選ばれ
た三価金属化合物あるいは加熱により該三価金属酸化物
に分解される化合物とを、一般式 %式% (ただし、A、M、X、Yは前記と同じものを表わす)
で示される組成割合に混合し、該混合物を1000℃以
上の温度で焼成する。
Calcination method An alkali metal oxide selected from K z O, Rb 20 and Cs t O or a compound decomposed into the alkali metal oxide by heating, titanium oxide or a compound decomposed into titanium oxide by heating, Gallium or a compound decomposed into gallium oxide by heating, and a trivalent metal compound selected from aluminum oxide, iron oxide, and chromium oxide, or a compound decomposed into the trivalent metal oxide by heating, are expressed by the general formula %. % (However, A, M, X, Y represent the same as above)
The mixture is mixed at a composition ratio shown by , and the mixture is fired at a temperature of 1000° C. or higher.

フラックス法 に20.RbZO及びC520から選ばれたアルカリ金
属酸化物あるいは加熱により該アルカリ金属酸化物に分
解される化合物と、T iOzあるいは加熱によりTi
O2に分解される化合物と、GazO3あるいは加熱に
よりCrazy、、に分解される化合物と、AltOn
 、FezO3及びCr2O,から選ばれた三価金属酸
化物あるいは加熱により咳三価金属酸化物とを、一般式
(A 20 ) −(T i O□)5(Mz ox)
c (G a z Oz)+ (ただし、A、Mは前記
と同じ、a、  b=0.1〜2.O,c、  d =
0.1〜1.0を表わす)で示される組成割合に混合し
たものを結晶原料とし、一方M003あるいは加熱によ
りMoO3に分解される化合物と、K、Rb。
20 for flux method. An alkali metal oxide selected from RbZO and C520 or a compound decomposed into the alkali metal oxide by heating, and TiOz or TiOz by heating.
A compound that decomposes into O2, a compound that decomposes into GazO3 or Crazy by heating, and AltOn.
, FezO3 and Cr2O, or a trivalent metal oxide selected from the group consisting of the general formula (A 20 ) -(T i O□)5(Mz ox)
c (G az Oz) + (A, M are the same as above, a, b = 0.1 to 2. O, c, d =
0.1 to 1.0) is used as a crystal raw material, and on the other hand, M003 or a compound decomposed into MoO3 by heating, K, and Rb.

及びCsから選ばれたアルカリ金属酸化物あるいは加熱
により該アルカリ金属酸化物に分解される化合物とを、
一般式Az 0−n(MoO,)(ただし、Aは前記と
同じ、n=1〜2を表わす)で示される組成割合に混合
したものをフラックス原料とし、結晶原料とフラックス
原料とをモル百分率が30対70〜11t90の割合に
なるように混合し、該混合物を1200〜1400°C
で加熱溶融し、該溶融体を900〜1000°Cまで徐
冷して単結晶を育成する。
and an alkali metal oxide selected from Cs or a compound that is decomposed into the alkali metal oxide by heating,
The flux raw material is mixed in the composition ratio shown by the general formula Az 0-n (MoO,) (where A is the same as above and represents n = 1 to 2), and the crystal raw material and the flux raw material are mixed in a molar percentage. The mixture was heated to 1200 to 1400°C.
The molten material is heated and melted at 900 to 1000° C. to grow a single crystal.

結晶原料とフラックス原料との混合割合は30対70〜
10対90の割合が適当である。
The mixing ratio of crystal raw material and flux raw material is 30:70 ~
A ratio of 10:90 is appropriate.

また、900〜1000°Cまでは結晶育成のため、徐
冷することか必要である。
In addition, slow cooling is required to 900 to 1000°C for crystal growth.

以下実施例を挙げ、その結晶の特性を示す。Examples will be given below to show the characteristics of the crystals.

実施例1゜ K2 Ti+a Cr1o G a o 056粉末状
結晶体の製造 炭酸カリウム、二酸化チタン、酸化クロム、酸化ガリウ
ムの各粉末をモル比でK z CO3: T i O2
:Crz03  :Qa203 =1 :14:5 :
4の割合に混合し、この混合物約6gを白金ルツボに入
れ、1250°Cで30分焼成した。
Example 1 Production of K2 Ti+a Cr1o Gao 056 powder crystals Potassium carbonate, titanium dioxide, chromium oxide, and gallium oxide powders in molar ratio K z CO3: T i O2
:Crz03 :Qa203 =1 :14:5 :
Approximately 6 g of this mixture was placed in a platinum crucible and fired at 1250°C for 30 minutes.

この焼成物を摩砕混合し、更に1250°Cで20時間
焼成した。得られた粉末状の結晶体は粉末X線回折法で
同定し、格子定数を測定した。
This fired product was ground and mixed, and further fired at 1250°C for 20 hours. The resulting powdery crystalline material was identified by powder X-ray diffraction and its lattice constant was measured.

その結果はa=18.139人、  C=2.9978
人、単位容積■は987.30人、計算密度は4.57
g/am3であった・ また、面指数(hkl)、面間隔(6人)(dobsは
実測、dc続。は計算値)、X線に対する相対反射強度
(intensity) (%)を示すと次の通りであ
った。
The results are a=18.139 people, C=2.9978
People, unit volume ■ is 987.30 people, calculated density is 4.57
g/am3. In addition, the surface index (hkl), surface spacing (6 people) (dobs is actual measurement, DC continuous. is calculated value), and relative reflection intensity (intensity) (%) for X-rays are as follows. It was as follows.

200     9−070     9+064  
   402 2 0       6.413   
    g、4.?1        23  +  
O5,7365jコ4         204 0 
0          4.5コ5         
4+5371420     4−056     4
.057     3510        コ、55
7        3.55B         10
5 3 0          3.111     
      コ、11o         ゴ0060
0        コ、o23        コ、0
2コ         5+ 01     2.96
0     2.959     3620     
’ 1868     2.867     2530
 +      2.68B      2Jl!13
     1032 +      2.577   
  1577     15550     2.56
5     2.566     15640    
 2.5+5     2.5+5     54 +
 1     2.479     2.480   
  907 3 0         1コ82   
     2.コ81         54 3  
+         2j12        2.コ
1コ        1゜52 ゴ         
 2.241          2.240    
      151120−     1200   
  2.200      56 6 0      
   2.13B          1138561
 +      2j15     2j15    
 59  +  0         100コ   
      2.004           コア 
0 +      L96+2     1.9612
     36 5  +          1.8
366        1.8367        
 574 +       1.13001     
 +、l300i      401020     
、、 L7787     1.7790     2
950     1+7+1i18     1+76
+7     211 3  +          
1.7ココ1        1.7ココ437 6 
1         1.645コ        L
6452        40+060     1.
5554      L5555     310 +
 I       L5467     1+5467
     10なお、一般式KxTi+b−xCrvG
a(+b+x)−vo、bにおいてXの値を0.1〜2
.0まで変動させても、またYの値を0.1〜10まで
変動させても同様な′熱処理で合成できた。
200 9-070 9+064
402 2 0 6.413
g, 4. ? 1 23 +
O5,7365jko4 204 0
0 4.5ko5
4+5371420 4-056 4
.. 057 3510 Ko, 55
7 3.55B 10
5 3 0 3.111
Ko, 11o Go0060
0 ko, o23 ko, 0
2 pieces 5+ 01 2.96
0 2.959 3620
' 1868 2.867 2530
+2.68B 2Jl! 13
1032 + 2.577
1577 15550 2.56
5 2.566 15640
2.5+5 2.5+5 54 +
1 2.479 2.480
907 3 0 1ko82
2. ko81 54 3
+ 2j12 2. ko1ko 1゜52 go
2.241 2.240
151120-1200
2.200 56 6 0
2.13B 1138561
+ 2j15 2j15
59 + 0 100 pieces
2.004 core
0 + L96+2 1.9612
36 5 + 1.8
366 1.8367
574 + 1.13001
+, l300i 401020
,, L7787 1.7790 2
950 1+7+1i18 1+76
+7 211 3 +
1.7 here 1 1.7 here 437 6
1 1.645 pieces L
6452 40+060 1.
5554 L5555 310 +
I L5467 1+5467
10 Furthermore, the general formula KxTi+b-xCrvG
a(+b+x)-vo, set the value of X at b to 0.1 to 2
.. Even when the value of Y was varied up to 0, and even when the value of Y was varied from 0.1 to 10, it was possible to synthesize by the same heat treatment.

また、Kの代りにRb、Csを用いても同様にそれぞれ
対応した結晶体が得られた。
Further, even when Rb and Cs were used in place of K, corresponding crystals were similarly obtained.

実施例2゜ KzTi+4ALGa+206.粉末状結晶体ノ製3j
a炭酸カリウム、二酸化チタン、酸化アルミニウム、酸
化ガリウムの粉末を、モル比でK z CO:1: T
i0z  : A!□o:+  : Ga20z = 
1 : 14 :3二6の割合で混合した。その混合物
6gを白金ルツボに入れ、1250°Cで30分焼成し
た。この焼成物を摩砕混合して更に1250’cで20
時間焼成して製造した。
Example 2゜KzTi+4ALGa+206. Made of powdered crystal 3j
a Powders of potassium carbonate, titanium dioxide, aluminum oxide, and gallium oxide in a molar ratio of K z CO:1:T
i0z: A! □o:+: Ga20z=
They were mixed in a ratio of 1:14:326. 6 g of the mixture was placed in a platinum crucible and fired at 1250°C for 30 minutes. This fired product was ground and mixed and further heated at 1250'c for 20
Manufactured by baking for hours.

得られた粉末状結晶体は粉末X線回折法で同定し、格子
←定数を測定した。その結果はa−18,057(人)
 、  c =2.9813 (入)、単位容積Vは9
72.12 (人3)、計算密度は4.51 (g/c
m3)であった。
The obtained powdered crystalline material was identified by powder X-ray diffraction method, and the lattice constant was measured. The result is a-18,057 (people)
, c = 2.9813 (in), unit volume V is 9
72.12 (person 3), calculated density is 4.51 (g/c
m3).

また、その面指数1面間隔、相対強度は次の表の通りで
あった。
Further, the plane index, plane spacing, and relative strength were as shown in the following table.

なお、一般式K XT i+b −xA Iv G a
(+b ? X)−yO6,において、Xの値を0.1
〜2.0.Yの値を0.1〜10まで変動させても同様
な熱処理で合成できた。また、カリウムに代えてRh、
Csを用いても同様にそれぞれ対応した結晶体が合成で
きた。
In addition, the general formula K XT i+b −xA Iv Ga
(+b?X)-yO6, set the value of X to 0.1
~2.0. Even if the value of Y was varied from 0.1 to 10, the synthesis could be performed using the same heat treatment. Also, instead of potassium, Rh,
Corresponding crystals were similarly synthesized using Cs.

実施例3゜ K2Ti+4FetCra+aOsb粉状結晶体の製造
炭酸カリウム、二酸化チタン、酸化鉄、酸化ガリウムの
粉末を、モル比でKzCOz  : Ti0z  ’F
ezO3:GazOs =t : 14 : 2 : 
7の割合で混合した。その混合物6gを白金ルツボに入
れ、1250℃で30分間焼成した。
Example 3 Production of K2Ti+4FetCra+aOsb powder crystals Powders of potassium carbonate, titanium dioxide, iron oxide, and gallium oxide were mixed in a molar ratio of KzCOz:Ti0z'F
ezO3:GazOs=t: 14: 2:
They were mixed at a ratio of 7. 6 g of the mixture was placed in a platinum crucible and fired at 1250° C. for 30 minutes.

この焼成物を摩砕混合して更に1250℃で20時間焼
成して製造した。
This fired product was ground and mixed, and then fired at 1250° C. for 20 hours to produce a product.

得られた粉末状結晶体は粉末X線回折法で同定し、その
格子定数を測定した。
The obtained powdered crystalline material was identified by powder X-ray diffraction method, and its lattice constant was measured.

その結果はa =18.182 (人) 、  c =
2.979 (人)。
The result is a = 18.182 (people), c =
2.979 (people).

単位容積■は984.95 (人3)、計算密度は4.
79(g/am’ )であった。
The unit volume ■ is 984.95 (3 people), and the calculated density is 4.
79 (g/am').

また、その面指数1面間隔、相対強度は次の表の通りで
あった。
Further, the plane index, plane spacing, and relative strength were as shown in the following table.

1 1 0      12.86       12
.87        520 0       9.
091       9.100       452
20       6.42B       6.43
9       13 1 0       5.75
0       5.748       1s420
       4.066       4.062 
      25 1 0       3.566 
      3.567       55 3 0 
      3.118       3.118  
    1006 0 0       3.030 
      3.029        51 0 1
       2.940       2.940 
       56 20       1875  
     2.875       205 5 0 
      2.571       2.573  
     156 4 0       2.521 
      2.521        57 3 0
       2.387       2.386 
       58 2 0       1205 
      2.205        56 6 0
       2.143       2j43  
      57 5 0       2.114 
      2.113        39 1 0
       2.008       1009  
      210 2 0       1.7B2
9      1.7821        29 5
 0       1.7660      1.76
57       28 8 0       1.6
071      1.6081       210
 6 0       1.5591       1
.5587       1なお1一般式K)(Tj、
+6− 、FeYG a(16+ X)−vO2,にお
いて、Xの値を0.1〜2.0.Yの値を0.1〜10
まで変動しても同様な熱処理で合成できた。
1 1 0 12.86 12
.. 87 520 0 9.
091 9.100 452
20 6.42B 6.43
9 13 1 0 5.75
0 5.748 1s420
4.066 4.062
25 1 0 3.566
3.567 55 3 0
3.118 3.118
1006 0 0 3.030
3.029 51 0 1
2.940 2.940
56 20 1875
2.875 205 5 0
2.571 2.573
156 4 0 2.521
2.521 57 3 0
2.387 2.386
58 2 0 1205
2.205 56 6 0
2.143 2j43
57 5 0 2.114
2.113 39 1 0
2.008 1009
210 2 0 1.7B2
9 1.7821 29 5
0 1.7660 1.76
57 28 8 0 1.6
071 1.6081 210
6 0 1.5591 1
.. 5587 1 Note 1 General formula K) (Tj,
+6-, FeYG a(16+X)-vO2, the value of X is 0.1-2.0. Y value from 0.1 to 10
It was possible to synthesize by the same heat treatment even if the temperature was changed to .

また、Kの代りにRb、C3を用いても同様にそれぞれ
対応した結晶体が得られた。
Furthermore, even when Rb and C3 were used instead of K, corresponding crystals were similarly obtained.

実施例4゜ K 1. oT its A lz G a oO6h
針状単結晶の製造炭酸カリウム、二酸化チタン、酸化ア
ルミニウム、酸化ガリウムの粉末を、モル比でに2CO
,:TiOx  : Al2O:l  : GazOi
 = l : 1 :0.4  :0.6の割合で混合
して結晶成分とした。
Example 4゜K 1. oT its A lz G aoO6h
Production of acicular single crystals Powders of potassium carbonate, titanium dioxide, aluminum oxide, and gallium oxide were mixed in a molar ratio of 2CO
, :TiOx : Al2O:l : GazOi
= l : 1 : 0.4 : 0.6 ratio was mixed to obtain a crystal component.

一方、炭酸カリウムと酸化モリブデンの粉末を、モル比
でK2CO2: Moot = l :1.5の割合で
混合してフラックス成分とした。
On the other hand, powders of potassium carbonate and molybdenum oxide were mixed at a molar ratio of K2CO2:Moot=l:1.5 to form a flux component.

結晶成分とフラックス成分をモル百分率で20:80の
割合で混合して出発原料とした。
A starting material was prepared by mixing a crystal component and a flux component at a molar percentage of 20:80.

その出発原料150gを白金ルツボに入れ、炭化珪素発
熱体電気炉で、1300°Cに10時間保持して溶解し
、その後、1000℃まで1時間4°C/hの速度で徐
冷した。徐冷後はルツボを取出して大気中で放冷した。
150 g of the starting material was placed in a platinum crucible, held at 1300°C for 10 hours to melt in a silicon carbide heating element electric furnace, and then gradually cooled to 1000°C for 1 hour at a rate of 4°C/h. After slow cooling, the crucible was taken out and left to cool in the atmosphere.

該ルツボを沸とう水で処理してフラックスを溶解して結
晶を取出した。
The crucible was treated with boiling water to dissolve the flux and take out the crystals.

得られた結晶体はX線粉末回折法で同定した結Tie−
xo+6の単結晶とα−A1□03の粉末状結な単結晶
は長さ10龍、直径100μmであった。
The obtained crystalline material was identified by X-ray powder diffraction method.
The single crystal of xo+6 and the powdered single crystal of α-A1□03 had a length of 10 mm and a diameter of 100 μm.

なお、AIに代えFe、Crを用いても同様に育成でき
、また、KzO(7)代りにRbzO,C5zOを用い
てもそれぞれ対応した結晶体が得られた。
It should be noted that similar growth was possible using Fe and Cr instead of AI, and corresponding crystals were obtained when RbzO and C5zO were used instead of KzO(7).

発明の効果 本発明は、陽イオン伝導体、イオン交換体、耐熱性断熱
材料、触媒等として有用な新規化合物を安価に提供し得
られる優れた効果を有する。
Effects of the Invention The present invention has the excellent effect of providing novel compounds useful as cation conductors, ion exchangers, heat-resistant heat insulating materials, catalysts, etc. at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明化合物の結晶構造図で、aは全体の結晶
構造図、bはTie、配位体で示すルチル構造単位、C
はMob(M=G a 、 AI 、  Cr 。 Fe)とGaO2の配位体で示すβ−ガリア構造単位を
示す。 後   藤     優°−0: 娼)fニー”1l−il、I ・!
FIG. 1 is a diagram of the crystal structure of the compound of the present invention, in which a is the overall crystal structure, b is Tie, a rutile structural unit represented by a coordinate, and C
indicates a β-gallium structural unit represented by a coordination of Mob (M=Ga, AI, Cr.Fe) and GaO2. Yu Goto°-0: prostitute) f knee”1l-il, I・!

Claims (1)

【特許請求の範囲】 1)一般式 A_XTi_1_6_−_XM_YGa_(_1_6_
+_X_)_−_YO_5_6(ただし、AはK、Rb
及びCsから選ばれた1種または2種以上のアルカリ金
属、MはAl、Fe、及びCrから選ばれた1種または
2種以上の3価金属、X=0.1〜2.0、Y=0.1
〜10を表わす)で示される正方晶系のトンネル構造を
有する化合物。 2)K_2O、Rb_2O及びCs_2Oから選ばれた
アルカリ金属酸化物あるいは加熱により該アルカリ金属
酸化物に分解される化合物と、酸化チタンあるいは加熱
により酸化チタンに分解される化合物と、酸化ガリウム
あるいは加熱により酸化ガリウムに分解される化合物と
、酸化アルミニウム、酸化鉄及び酸化クロムから選ばれ
た三価金属化合物あるいは加熱により該三価金属酸化物
に分解される化合物とを、一般式 A_XTi_1_6_−_XM_YGa_(_1_6_
+_X_)_−_YO_5_6(ただし、A、M、X、
Yは前記と同じものを表わす)で示される組成割合に混
合し、該混合物を1000℃以上の温度で焼成すること
を特徴とする一般式 A_XTi_1_6_−_XM_YGa_(_1_6_
+_X_)_−_YO_5_6(ただし、A、M、X、
Yは前記と同じものを表わす)で示される正方晶系のト
ンネル構造を有する化合物の製造法。 3)K_2O、Rb_2O及びCs_2Oから選ばれた
アルカリ金属酸化物あるいは加熱により該アルカリ金属
酸化物に分解される化合物と、 TiO_2あるいは加熱によりTiO_2に分解される
化合物と、Ga_2O_3あるいは加熱によりGa_2
O_3に分解される化合物と、Al_2O_3、Fe_
2O_3及びCr_2O_3から選ばれた三価金属酸化
物あるいは加熱により該三価金属酸化物とを、一般式 (A_2O)_a(TiO_2)_b(M_2O_3)
_c(Ga_2O_3)_d (ただし、A、Mは前記と同じ、a、b= 0.1〜2.0、c、d=0.1〜1.0を表わす)で
示される組成割合に混合したものを結晶原料とし、一方
MoO_3あるいは加熱によりMoO_3に分解される
化合物と、K、Rb、及びCsから選ばれたアルカリ金
属酸化物あるいは加熱により該アルカリ金属酸化物に分
解される化合物とを、一般式A_2O・n (MoO_3)(ただし、Aは前記と同じ、n=1〜2
を表わす)で示される組成割合に混合したものをフラッ
クス原料とし、結晶原料とフラックス原料とをモル百分
率が30対70〜10対90の割合になるように混合し
、該混合物を1200〜1400℃で加熱溶融し、該溶
融体を900〜1000℃まで徐冷して単結晶を育成す
ることを特徴とするA_XTi_1_6_−_XM_Y
Ga_(_1_6_+_X_)_−_YO_5_6(た
だし、A、M、X、Yは前記と同じものを表わす)で示
される正方晶系のトンネル構造を有する化合物の製造法
[Claims] 1) General formula A_XTi_1_6_-_XM_YGa_(_1_6_
+_X_)_-_YO_5_6 (However, A is K, Rb
and one or more alkali metals selected from Cs, M is one or more trivalent metals selected from Al, Fe, and Cr, X = 0.1 to 2.0, Y =0.1
~10) having a tetragonal tunnel structure. 2) An alkali metal oxide selected from K_2O, Rb_2O, and Cs_2O or a compound decomposed into the alkali metal oxide by heating, titanium oxide or a compound decomposed into titanium oxide by heating, and gallium oxide or a compound decomposed into titanium oxide by heating. A compound decomposed into gallium and a trivalent metal compound selected from aluminum oxide, iron oxide, and chromium oxide or a compound decomposed into the trivalent metal oxide by heating are expressed by the general formula A_XTi_1_6_-_XM_YGa_(_1_6_
+_X_)_-_YO_5_6 (However, A, M, X,
The general formula A_XTi_1_6_-_XM_YGa_(_1_6_
+_X_)_-_YO_5_6 (However, A, M, X,
A method for producing a compound having a tetragonal tunnel structure represented by (Y represents the same as above). 3) An alkali metal oxide selected from K_2O, Rb_2O and Cs_2O or a compound decomposed into the alkali metal oxide by heating, TiO_2 or a compound decomposed into TiO_2 by heating, and Ga_2O_3 or Ga_2 by heating.
Compounds decomposed into O_3, Al_2O_3, Fe_
A trivalent metal oxide selected from 2O_3 and Cr_2O_3 or the trivalent metal oxide by heating, with the general formula (A_2O)_a(TiO_2)_b(M_2O_3)
_c(Ga_2O_3)_d (A, M are the same as above, a, b = 0.1 to 2.0, c, d = 0.1 to 1.0) were mixed at the composition ratio shown. On the other hand, MoO_3 or a compound decomposed into MoO_3 by heating, and an alkali metal oxide selected from K, Rb, and Cs or a compound decomposed into the alkali metal oxide by heating are used as crystal raw materials. Formula A_2O・n (MoO_3) (where A is the same as above, n = 1 to 2
) is used as a flux raw material, the crystal raw material and the flux raw material are mixed so that the molar percentage is 30:70 to 10:90, and the mixture is heated to 1200 to 1400 ° C. A_XTi_1_6_-_XM_Y characterized by heating and melting at 900 to 1000°C and slowly cooling the melt to grow a single crystal.
A method for producing a compound having a tetragonal tunnel structure represented by Ga_(_1_6_+_X_)_-_YO_5_6 (A, M, X, and Y represent the same as above).
JP12409586A 1986-02-14 1986-05-29 Tetragonal compound represented by axti16-xmyga16+x)-yo56 and having tunnel structure Granted JPS62283815A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12409586A JPS62283815A (en) 1986-05-29 1986-05-29 Tetragonal compound represented by axti16-xmyga16+x)-yo56 and having tunnel structure
US07/013,433 US4818735A (en) 1986-02-14 1987-02-11 Tetragonal system tunnel-structured compound AX(GA8MYGA(8+X)-YTI16-X0 56), and cation conductor and heat insulating material composed thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12409586A JPS62283815A (en) 1986-05-29 1986-05-29 Tetragonal compound represented by axti16-xmyga16+x)-yo56 and having tunnel structure

Publications (2)

Publication Number Publication Date
JPS62283815A true JPS62283815A (en) 1987-12-09
JPH0242772B2 JPH0242772B2 (en) 1990-09-26

Family

ID=14876799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12409586A Granted JPS62283815A (en) 1986-02-14 1986-05-29 Tetragonal compound represented by axti16-xmyga16+x)-yo56 and having tunnel structure

Country Status (1)

Country Link
JP (1) JPS62283815A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277823A (en) * 1989-04-19 1990-11-14 Natl Inst For Res In Inorg Mater Production of fiber or filmy product of compound with tetragonal tunnel structure represented by axga16+xti16-xo56
JPH0333219A (en) * 1989-06-27 1991-02-13 Natl Inst For Res In Inorg Mater Production of fiber or film of barium titanogallate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277823A (en) * 1989-04-19 1990-11-14 Natl Inst For Res In Inorg Mater Production of fiber or filmy product of compound with tetragonal tunnel structure represented by axga16+xti16-xo56
JPH0478735B2 (en) * 1989-04-19 1992-12-14 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
JPH0333219A (en) * 1989-06-27 1991-02-13 Natl Inst For Res In Inorg Mater Production of fiber or film of barium titanogallate
JPH0478736B2 (en) * 1989-06-27 1992-12-14 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho

Also Published As

Publication number Publication date
JPH0242772B2 (en) 1990-09-26

Similar Documents

Publication Publication Date Title
JPS62283815A (en) Tetragonal compound represented by axti16-xmyga16+x)-yo56 and having tunnel structure
Obbade et al. Two new lithium uranyl tungstates Li2 (UO2)(WO4) 2 and Li2 (UO2) 4 (WO4) 4O with framework based on the uranophane sheet anion topology
Parkin et al. Alternative solid state routes to mixed metal oxides (LnCrO3, LnFeO3)
KR20170133157A (en) Friction material comprising potassium titanate and method for preparing the same by melting method
JPS6011228A (en) Heat-resistant heat-insulating material of octotitanate
JPH05221795A (en) Production of monoclinic plate crystal having layer structure represented by axmyti2-yo4
JPS6163529A (en) Production of titanium compound fiber
Chong et al. Synthesis and crystal structure of a neodymium borosilicate, Nd3BSi2O10
JPS63210026A (en) Fibrous compound having orthorhombic tunnel structure expressed by a1-xti2+xm5-xo12 and its production
JPS6011227A (en) Manufacture of fibrous barium titanate having hollandite type structure
JPS62191424A (en) A compound of mxti16-xga16+xo56 with tetragonal tunnel structure and its production
JPS5943424B2 (en) Compound having hexagonal layered structure represented by TmFeCuO↓4 and method for producing the same
JPH04154620A (en) Compound expressed by naxgaxti6-xo12 and having monoclinic tunnel structure and its production
JP2004196579A (en) Single crystal of multiple system transition metal multiple oxide and method of manufacturing the same
JPS63201017A (en) Compound having layer structure of hexagonal system shown in tmfeznmgo5 and its production
JPS5945607B2 (en) Lithium iron tin double oxide and its manufacturing method
Terebilenko et al. The current progress in the synthesis and luminescence properties of doped bismuth complex oxides
JPH01167232A (en) Compound having cubic spinel-type structure expressed by incrmn2o5 and production thereof
JP2535781B2 (en) Priderite type compound and its synthesis method
JPH0432768B2 (en)
JPS63195121A (en) Compound having hexagonal laminar structure expressed by inalznmgo5 and production thereof
JPS63277516A (en) Compound having hexagonal layer structure expressed by lualzn7o10 and production thereof
JPS6285B2 (en)
JPS6041622B2 (en) Compound having hexagonal layered structure represented by LuGaCoO↓4 and method for producing the same
JPS5943418B2 (en) Compound having hexagonal layered structure represented by YbFeCuO↓4 and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term