JPS62283676A - Vertical field-effect transistor - Google Patents

Vertical field-effect transistor

Info

Publication number
JPS62283676A
JPS62283676A JP12845986A JP12845986A JPS62283676A JP S62283676 A JPS62283676 A JP S62283676A JP 12845986 A JP12845986 A JP 12845986A JP 12845986 A JP12845986 A JP 12845986A JP S62283676 A JPS62283676 A JP S62283676A
Authority
JP
Japan
Prior art keywords
drain
source
effect transistor
field effect
vertical field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12845986A
Other languages
Japanese (ja)
Inventor
Tomohiro Ito
伊東 朋弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12845986A priority Critical patent/JPS62283676A/en
Publication of JPS62283676A publication Critical patent/JPS62283676A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8122Vertical transistors

Abstract

PURPOSE:To perform a vertical field effect transistor having high performance, high withstanding voltage and high output operating with microwave and millimeter wave range by continuously reducing the impurity density of an N-type semiconductor layer from a source toward a drain. CONSTITUTION:A semiconductor material is GaAs, and the impurity density of an N-type operating layer 11 is continuously reduced from a source toward a drain, and its distribution is continuously varied, for example, in an N-type impurity density from the source toward the drain from 10<17>cm<-3> to 3X10<16>cm<-3>. In such a structure, sufficiently small source resistance and hence large mutual conductance can be performed at the source side, a breakdown voltage can be increased by smaller impurity density from a gate toward the drain to become high field effect distribution.

Description

【発明の詳細な説明】 発明の詳細な説明 〔産業上の利用分野〕 本発明は縦形電界効果トランジスタに関し、特に化合物
半導体を用いた高耐圧・高出力の縦形電界効果トランジ
スタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vertical field effect transistor, and more particularly to a high breakdown voltage, high output vertical field effect transistor using a compound semiconductor.

〔従来の技術〕[Conventional technology]

化合物半導体を用いた縦形電界効果l・ランジスタは、
実効的なゲート長が容易に微細に形成でき、かつ大きな
チャネル電流がとれることから超高周波・高出力素子と
して極めて有望であり、各所で研究・開発が活発に行な
われている。第3図は従来構造の縦形電界効果トランジ
スタの一例を示す断面図で、半導体としてGaAsを用
い、31はN型半導体層であるN形動布層、32.33
はN+コンタクト層、34はソース電極、35はドレイ
ン電極、36は制御電極、37は空乏層領域を示す。
Vertical field effect l transistor using compound semiconductor is
Since the effective gate length can be easily formed to a fine size and a large channel current can be obtained, it is extremely promising as an ultra-high frequency/high output device, and research and development are being actively conducted in various places. FIG. 3 is a cross-sectional view showing an example of a vertical field effect transistor with a conventional structure, in which GaAs is used as the semiconductor, 31 is an N-type dynamic layer which is an N-type semiconductor layer, 32.33
34 is a source electrode, 35 is a drain electrode, 36 is a control electrode, and 37 is a depletion layer region.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記構造の従来の縦形電界効果トランジスタを高耐圧・
高出力の超高周波トランジスタとして使用する場合、良
好な高周波性能を得るためにはソースと制御電極間の抵
抗を十分小さくし大きな相互コンダクタンスを得る必要
があり、この為にはN形半導体動作層の不純物濃度をあ
る程度大きくしなければならない。一方、ドレインにパ
イアスを印加した状態では制御電極からドレイン電極に
向って大きな電界が生じるために、この領域の不純物濃
度が大きいと降伏現象が生じて、ある程度以上の高耐圧
・高出力化が計れないという問題があった。
The conventional vertical field effect transistor with the above structure has a high breakdown voltage.
When used as a high-power ultra-high frequency transistor, in order to obtain good high-frequency performance, it is necessary to sufficiently reduce the resistance between the source and control electrodes and obtain large mutual conductance. The impurity concentration must be increased to some extent. On the other hand, when a bias is applied to the drain, a large electric field is generated from the control electrode to the drain electrode, so if the impurity concentration in this region is large, a breakdown phenomenon will occur, making it difficult to achieve high breakdown voltage and high output beyond a certain level. The problem was that there was no.

本発明の目的は、この様な問題点を解消し、高耐圧・高
出力で超高周波特性の優れた縦形電界効果トランジスタ
な提供することにある。
An object of the present invention is to solve these problems and provide a vertical field effect transistor that has high breakdown voltage, high output, and excellent ultra-high frequency characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の縦形電界効果トランジスタは、N形半導体層を
挟んで上端及び下端にN+コンタクト層が形成され、前
記N形半導体層中に制御電極が埋め込まれ、前記N+コ
ンタクト層の一方にソース電極、他方にドレイン電極を
有する縦形電界効果トランジスタにおいて、前記N形半
導体層の不純物濃度をソースからドレインに向って連続
的に減少させたことを特徴として構成される。
In the vertical field effect transistor of the present invention, N+ contact layers are formed at the upper and lower ends with an N-type semiconductor layer in between, a control electrode is embedded in the N-type semiconductor layer, a source electrode is provided in one of the N+ contact layers, and a control electrode is embedded in the N-type semiconductor layer. A vertical field effect transistor having a drain electrode on the other hand is characterized in that the impurity concentration of the N-type semiconductor layer is continuously decreased from the source to the drain.

し作用〕 次に、本発明の一実施例の図面を参照して作用を説明す
る。第1図は本発明による縦形電界効果トランジスタの
一実施例の断面図である。半導体材料はGaAsで11
はN形動作層、12.13はN+コンタクト層、14は
N+基板、15はソース電極、16はドレイン電極、1
7は制御電極、18は空乏層領域を示す。11のN形動
作層の不純物濃度はソースからトレインに向って連続的
に減少させてあり、その分布の一例を第2図に示す。例
えば、第2図ではN形不純物濃度をソースからドレイン
に向って1 d’ cm3  から3×1016C11
−’まで連続的に変化させであるが、この様な構造では
ソース側では十分小さいソース抵抗、従って、大きな相
互コンダクタンスが実現でき、また高電界分布となるゲ
ートからドレイン方向へは小さな不純物濃度により降伏
電圧を大きくでき、従って、高耐圧・高出力の超高周波
縦形電界効果トランジスタが実現できる。
Operation] Next, the operation of an embodiment of the present invention will be explained with reference to the drawings. FIG. 1 is a cross-sectional view of one embodiment of a vertical field effect transistor according to the present invention. The semiconductor material is GaAs and 11
is an N-type operating layer, 12.13 is an N+ contact layer, 14 is an N+ substrate, 15 is a source electrode, 16 is a drain electrode, 1
7 is a control electrode, and 18 is a depletion layer region. The impurity concentration of the N-type active layer No. 11 is continuously decreased from the source to the train, and an example of its distribution is shown in FIG. For example, in Figure 2, the N-type impurity concentration is increased from 1 d' cm3 to 3 x 1016C11 from the source to the drain.
-', but in this structure, a sufficiently small source resistance on the source side and therefore a large mutual conductance can be achieved, and a small impurity concentration in the direction from the gate to the drain, where there is a high electric field distribution, can be achieved. The breakdown voltage can be increased, and therefore an ultra-high frequency vertical field effect transistor with high breakdown voltage and high output can be realized.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
。第1図は本発明の一実施例の断面図であり、第1図を
用いてその製造方法を説明する。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of one embodiment of the present invention, and the manufacturing method thereof will be explained using FIG.

まず、N”GaAs基板14上に例えば有機金属気相成
長法(MOCVD法)により不純物濃度1×し、さらに
第2図の分布に従ってGaAs N形動作層を0.7μ
m成長する。次に、スパッタ法などによりタングステン
を0.1μm成長しパターンニング及びエツチングによ
り17の制御電極を形成し、さらにGaAs動作層を0
.3μm成長する。次に、不純物濃度I X 1018
crrr3でN+コンタクト層を0.5μm成長し、最
後に通常の方法により、ソース及びドレイン電極を形成
すれば、第1図に示すような縦形電界効果トランジスタ
、すなわちN形半導体層11を挟んで上端及び下端にN
+コンタクト層12.13が形成され、N形半導体層1
1中に制御電極17が埋め込まれ、N+コンタクト層の
一方にソース電極15、他方にドレイン電極16を有す
る縦形電界効果トランジスタにおいて、N形半導体層1
1の不純物濃度をソースからドレインに向って連続的に
減少させたことを特徴とする構造の本発明の一実施例が
得られる。
First, an impurity concentration of 1× is formed on the N''GaAs substrate 14 by, for example, metal organic chemical vapor deposition (MOCVD), and then a GaAs N-type active layer is formed with a concentration of 0.7 μm according to the distribution shown in FIG.
m grow. Next, tungsten was grown to a thickness of 0.1 μm by sputtering or the like, and 17 control electrodes were formed by patterning and etching, and a GaAs active layer was grown to 0.1 μm.
.. Grows 3 μm. Next, the impurity concentration I x 1018
By growing an N+ contact layer of 0.5 μm using crrr3 and finally forming source and drain electrodes using the usual method, a vertical field effect transistor as shown in FIG. and N at the bottom end
+Contact layers 12 and 13 are formed, and N-type semiconductor layer 1
In a vertical field effect transistor having a control electrode 17 embedded in the N+ contact layer 1, a source electrode 15 on one side of the N+ contact layer, and a drain electrode 16 on the other side, the N-type semiconductor layer 1
An embodiment of the present invention is obtained having a structure characterized in that the impurity concentration of 1 is continuously decreased from the source to the drain.

なお、本実施例ではGaAs材料を用いた縦形電界効果
トランジスタについて説明したが、他の半導体材料につ
いても本発明による構造はすぐれた効果を提供すること
かできる。
In this embodiment, a vertical field effect transistor using GaAs material has been described, but the structure according to the present invention can also provide excellent effects on other semiconductor materials.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな様に、本発明によればN型半導
体層の不純物濃度をソースからドレインに向って連続的
に減少させることにより、マイクロ波・ミリ波領域で動
作する高性能の高耐圧・高出力の縦形電界効果トランジ
スタが実現でき、今後の通信・情報技術に寄与するとこ
ろが大である。
As is clear from the above explanation, according to the present invention, by continuously decreasing the impurity concentration of the N-type semiconductor layer from the source to the drain, it is possible to achieve high performance and high breakdown voltage operation in the microwave and millimeter wave regions.・High-output vertical field-effect transistors can be realized, which will greatly contribute to future communications and information technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による縦形電界効果トランジスタの一実
施例の断面図、第2図は本発明の一実施例のN形動作層
の不純物濃度分布図、第3図は従来技術による縦形電界
効果トランジスタの一例の断面図である。 11.31・・・N形動作層、12.13,32゜33
・・・N+コンタクト層、14・・・N+基板、15.
34・・・ソース電極、16.35・・・ドレイン電極
、17.36・・・制御電極、18.37・・・空乏層
領域。 第 7 図 距  籠         ドレイン方句第 2 図
FIG. 1 is a cross-sectional view of an embodiment of a vertical field effect transistor according to the present invention, FIG. 2 is an impurity concentration distribution diagram of an N-type active layer of an embodiment of the present invention, and FIG. 3 is a vertical field effect transistor according to the prior art. FIG. 2 is a cross-sectional view of an example of a transistor. 11.31...N-type operating layer, 12.13, 32°33
...N+ contact layer, 14...N+ substrate, 15.
34... Source electrode, 16.35... Drain electrode, 17.36... Control electrode, 18.37... Depletion layer region. Fig. 7 Drain phrase Fig. 2

Claims (1)

【特許請求の範囲】[Claims]  N形半導体層を挟んで上端及び下端にN^+コンタク
ト層が形成され、前記N形半導体層中に制御電極が埋め
込まれ、前記N^+コンタクト層の一方にソース電極、
他方にドレイン電極を有する縦形電界効果トランジスタ
において、前記N形半導体層の不純物濃度をソースから
ドレインに向って連続的に減少させたことを特徴とする
縦形電界効果トランジスタ。
N^+ contact layers are formed at the upper and lower ends of the N-type semiconductor layer, a control electrode is embedded in the N-type semiconductor layer, and a source electrode is formed in one of the N^+ contact layers.
A vertical field effect transistor having a drain electrode on the other side, wherein the impurity concentration of the N-type semiconductor layer is continuously decreased from the source to the drain.
JP12845986A 1986-06-02 1986-06-02 Vertical field-effect transistor Pending JPS62283676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12845986A JPS62283676A (en) 1986-06-02 1986-06-02 Vertical field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12845986A JPS62283676A (en) 1986-06-02 1986-06-02 Vertical field-effect transistor

Publications (1)

Publication Number Publication Date
JPS62283676A true JPS62283676A (en) 1987-12-09

Family

ID=14985233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12845986A Pending JPS62283676A (en) 1986-06-02 1986-06-02 Vertical field-effect transistor

Country Status (1)

Country Link
JP (1) JPS62283676A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524753B1 (en) * 1966-10-19 1977-02-07
JPS5363875A (en) * 1976-11-18 1978-06-07 Mitsubishi Electric Corp Field effect semiconductor device
JPS5384570A (en) * 1976-12-29 1978-07-26 Fujitsu Ltd Field effect semiconductor device and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524753B1 (en) * 1966-10-19 1977-02-07
JPS5363875A (en) * 1976-11-18 1978-06-07 Mitsubishi Electric Corp Field effect semiconductor device
JPS5384570A (en) * 1976-12-29 1978-07-26 Fujitsu Ltd Field effect semiconductor device and its manufacture

Similar Documents

Publication Publication Date Title
US10886393B2 (en) High electron mobility transistor with tunable threshold voltage
JP2001060684A (en) Semiconductor device
JPH10209178A (en) Field-effect transistor and its manufacture
US3804681A (en) Method for making a schottky-barrier field effect transistor
US4106044A (en) Field effect transistor having unsaturated characteristics
JPH06204253A (en) Field-effect semiconductor device
JPS62283676A (en) Vertical field-effect transistor
JPH08321515A (en) Semiconductor device and its manufacture
JPS63244779A (en) Field effect transistor
JPS62115781A (en) Field-effect transistor
JPH0855861A (en) Field-effect transistor and its manufacture
JPS62232969A (en) Vertical field-effect transistor
KR100303173B1 (en) Pseudomorphic High Electron Mobility Transistor and method for manufacturing thereof
KR100349368B1 (en) Extremely high frequency semiconductor device and method of manufacturing the same
JP3106747B2 (en) Method for manufacturing compound semiconductor FET
JPH11176839A (en) Semiconductor device and its manufacture
JP3073685B2 (en) Method for manufacturing field effect transistor
JPH039340Y2 (en)
JPS63281474A (en) Semiconductor device
JPH01179460A (en) Field-effect transistor
JPS6239076A (en) Manufacture of field effect transistor
JPS6394686A (en) Manufacture of silicon thin film transistor
JPH03133143A (en) Field effect transistor and manufacture thereof
JPS6323367A (en) Schottky gate field-effect transistor and manufacture thereof
JPH03141650A (en) Manufacture of semiconductor device