JPS62280236A - Fluorocarbon resin having fine cell and its production - Google Patents

Fluorocarbon resin having fine cell and its production

Info

Publication number
JPS62280236A
JPS62280236A JP12211286A JP12211286A JPS62280236A JP S62280236 A JPS62280236 A JP S62280236A JP 12211286 A JP12211286 A JP 12211286A JP 12211286 A JP12211286 A JP 12211286A JP S62280236 A JPS62280236 A JP S62280236A
Authority
JP
Japan
Prior art keywords
foam
fluororesin
cell diameter
foaming
thermoplastic fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12211286A
Other languages
Japanese (ja)
Other versions
JPH0374696B2 (en
Inventor
Masaji Noro
野呂 正司
Shigemi Mukoyama
滋美 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP12211286A priority Critical patent/JPS62280236A/en
Publication of JPS62280236A publication Critical patent/JPS62280236A/en
Publication of JPH0374696B2 publication Critical patent/JPH0374696B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title foam excelling in elasticity, tensile strength, tear strength and compression set and having good heat-insulating, electrical insulating and cushioning properties, by expanding an expandable composition of a crosslinkable thermoplastic fluorocarbon resin by heating. CONSTITUTION:An expandable composition is prepared either by subjecting a thermoplastic fluorocarbon resin to crosslinking treatment and adding a blowing agent to it or by adding a blowing agent to this fluorocarbon resin and subjecting it to crosslinking treatment. By expanding this composition by heating, the purpose fluorocarbon resin foam having fine cells of a mean cell diameter <=90mu can be obtained. This foam is required to have a mean cell diameter <=90mu. When this mean cell diameter is above 90mu, its dielectric breakdown strength, for example, is markedly decreased as compared with that of the base resin, its surface heat transfer resistance is decreased to degrade heat resistance or its surface smoothness is degraded. The preferable range of the mean cell diameter is 1-50mu.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は微細気泡を有するフッ素樹脂発泡体及びその製
造方法に関するものである。さらに詳しくいえば、本発
明は、特に表面平滑性とクッション性が要求される印刷
版用クッション材、印刷機や複写機などの転写ロール材
、ガスシール材、あるいは高周波絶縁性が要求されるコ
ンピューターや通信回線などの高速通信用絶縁材、表面
平滑性と微小研磨粒の均一分散性が要求される精密研磨
用の研磨布、輻射エネルギーの遮断性が要求され”る屋
上断熱防水材や消防服用断熱材などに有用な微細気泡を
有するフッ素樹脂発泡体、及びその製造方法に関するも
のである。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a fluororesin foam having fine cells and a method for producing the same. More specifically, the present invention is particularly applicable to cushioning materials for printing plates that require surface smoothness and cushioning properties, transfer roll materials for printing machines and copying machines, gas sealing materials, and computers that require high frequency insulation properties. Insulating materials for high-speed communications such as those used in communication lines and communication lines, abrasive cloths for precision polishing that require surface smoothness and uniform dispersion of minute abrasive particles, rooftop insulation and waterproofing materials that require radiant energy blocking, and fire protection clothing. The present invention relates to a fluororesin foam having fine cells that is useful as a heat insulating material, and a method for producing the same.

従来の技術 従来、フッ素樹脂発泡体としては、例えばポリテトラフ
ルオロエチレンの微粒子を焼結して得られる空孔率60
チ程度の多孔体(特公昭42−4974 号公報)、テ
トラフルオロエチレン−パーフルオロ−α−オレフィン
共重合体をフルオロメタンで発泡して得られた発泡体(
米国特許第3,072,583号明細書)が知られてい
る。しがしながら、前者の多孔体は、その製法上連続気
泡体となるため、電気絶縁性の一定したものが得られず
、品質上の問題を有しており、また後者の発泡体におい
ては、一般に気泡径が200〜300μmと大きく、か
つ発泡倍率も1.7〜2.5倍の範囲であって、電気絶
縁性や断熱性に劣るという欠点がある。
Conventional technology Conventionally, fluororesin foams have a porosity of 60 and are obtained by sintering fine particles of polytetrafluoroethylene, for example.
(Japanese Patent Publication No. 42-4974), a foam obtained by foaming a tetrafluoroethylene-perfluoro-α-olefin copolymer with fluoromethane
U.S. Pat. No. 3,072,583) is known. However, because the former porous material is made into an open-celled material due to its manufacturing method, it is not possible to obtain a uniform electrical insulation property, which poses a quality problem. Generally, the cell diameter is as large as 200 to 300 μm, and the expansion ratio is also in the range of 1.7 to 2.5 times, which has the drawback of poor electrical insulation and heat insulation properties.

一方、熱可塑性フッ素樹脂から成る空孔率5〜70チ、
気泡径100μm以下の発泡体(特開昭57−1770
81号公報)も開発されている。しかしながら、このも
のは、電気絶縁性及び断熱性が実用に耐えうるほど十分
であるとはいえない。
On the other hand, a porosity of 5 to 70 cm made of thermoplastic fluororesin,
Foam with a cell diameter of 100 μm or less (Japanese Patent Application Laid-Open No. 57-1770
No. 81) has also been developed. However, it cannot be said that the electrical insulation and heat insulation properties of this material are sufficient for practical use.

また、これらの発泡体は熱可塑性のフッ素樹脂を用いて
いるために、いずれも弾力性、引張強度、引裂強度、圧
縮永久歪などに劣るという欠点を有している。
Furthermore, since these foams use thermoplastic fluororesin, they all have the disadvantage of being inferior in elasticity, tensile strength, tear strength, compression set, etc.

さらに、低粘度のフッ素エラストマーに加硫剤と発泡剤
とを混合し、加圧下に加熱して得られた発泡体も知られ
て−いる(米国特許第3,868,337号明細書)。
Furthermore, a foam obtained by mixing a vulcanizing agent and a blowing agent with a low-viscosity fluoroelastomer and heating the mixture under pressure is also known (US Pat. No. 3,868,337).

しかしながら、このものは気泡が大きく、かつエラスト
マーをペースとしているために、柔らかすぎて用途が限
定されるのを免れない。
However, since this material has large bubbles and is made of elastomer, it is too soft and its uses are inevitably limited.

発明が解決しようとする問題点 本発明の目的は、このような従来のフッ素樹脂発泡体が
有する欠点を改良し、弾力性、引張強度、引裂強度、圧
縮永久歪などに優れる上に、良好な断熱性、電気絶縁性
、クッション性、表面平滑性を有するなど、優れた特徴
をもつフッ素樹脂発泡体を提供することにある。
Problems to be Solved by the Invention The purpose of the present invention is to improve the drawbacks of conventional fluororesin foams, and to create a foam that has excellent elasticity, tensile strength, tear strength, compression set, etc. The object of the present invention is to provide a fluororesin foam having excellent characteristics such as heat insulation, electrical insulation, cushioning properties, and surface smoothness.

問題点を解決するための手段 本発明者らは前記の優れた特徴を有するフッ素樹脂発泡
体を開発するために鋭意研究を重ねた結果、基材のフッ
素樹脂として、熱可塑性フッ素樹脂の架橋化物を用い、
微細な気泡が形成されるように発泡させることにより、
その目的を達成しうろことを見出し、この知見に基づい
て本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted extensive research in order to develop a fluororesin foam having the above-mentioned excellent characteristics. As a result, we have developed a crosslinked thermoplastic fluororesin as the base fluororesin. using
By foaming to form fine bubbles,
We have found a way to achieve this objective, and based on this knowledge, we have completed the present invention.

すなわち、本発明は、熱可塑性フッ素樹脂の架橋化物を
発泡させて成る平均気泡径が90μm以下の微細気泡を
有するフッ素樹脂発泡体を提供するものである。このフ
ッ素樹脂発泡体は、熱可塑性フッ素樹脂を架橋化処理し
たのち、これに発泡剤を配合するか、あるいは該フッ素
樹脂に発泡剤を配合したのち、これを架橋化処理するこ
とにより発泡性組成物を調製し、次いでこれを加熱して
発泡させることにより製造することができる。
That is, the present invention provides a fluororesin foam having fine cells with an average cell diameter of 90 μm or less, which is obtained by foaming a crosslinked thermoplastic fluororesin. This fluororesin foam can be produced by crosslinking a thermoplastic fluororesin and then adding a blowing agent thereto, or by adding a blowing agent to the fluororesin and then subjecting it to a crosslinking treatment. It can be manufactured by preparing a product and then heating and foaming it.

本発明においては、基材樹脂として熱可塑性フッ素樹脂
を架橋処理したものが用いられる。
In the present invention, a crosslinked thermoplastic fluororesin is used as the base resin.

この架橋処理されたフッ素樹脂を用いることにより、発
泡倍率が大きく、かつ気泡径が均一で、機械的強度や弾
力性に優れた発泡体が得られ、しかも広幅のシート状発
泡体を安定して製造することができる。
By using this cross-linked fluororesin, it is possible to obtain a foam with a large expansion ratio, uniform cell diameter, and excellent mechanical strength and elasticity. can be manufactured.

この架橋処理は、該フッ素樹脂に、化学架橋剤、例えば
ジベンゾイルパーオキンドのようなジアンルバーオキシ
ド、ジクミルパーオキンド、ジーを一ブチルパーオキシ
ド、t−ブチルパーオキシアセテート、七−ブテルバー
オキシイソグロビルカーボネ−)、t−プチルパーオキ
ンペンゾエートのようなパーオキシエステル類などのモ
ノパーオキン化合物、2,5−ジメチル−2,5−ジー
(1−ブチルパーオキシ)−ヘキシン−3,2,5−ジ
メチル−2,5−(t−ブチルパーオキシ)−ヘキサン
、α、α′−ビス−(t−ブチルパーオキシ)−p−ジ
イソプロピルベンゼン、2.5−ジメチル−2゜5−ジ
ー(ペンゾイルパーオキン)−ヘキサンなどのジパーオ
キン化合物などを添加し、加熱することにより、また、
該フッ素樹脂に、電離性放射線、例えばα線、β線、γ
線、中性子線、加速粒子線、X線、電子線などを空気中
、真空中、あるいはアルゴン、ヘリウム、窒素などの不
活性ガス中や水中において照射することにより、あるい
は架橋性官能基を有する共重合可能なモノマーを共重合
して成る架橋性フッ素樹脂に、該官能基を付加反応させ
る触媒を添加して加熱するか、あるいは該官能基と反応
する活性な低分子化合物を添加し、加熱することにより
行われる。
This crosslinking treatment involves applying a chemical crosslinking agent to the fluororesin, such as dianruburoxide such as dibenzoyl peroquine, dicumyl peroquine, monobutyl peroxide, t-butyl peroxyacetate, and 7-butyl peroxide. monoperoquine compounds such as peroxy esters such as t-butylperoquine penzoate, 2,5-dimethyl-2,5-di(1-butylperoxy) -Hexyne-3,2,5-dimethyl-2,5-(t-butylperoxy)-hexane, α,α'-bis-(t-butylperoxy)-p-diisopropylbenzene, 2,5-dimethyl -2゜5-di(penzoylperoquine)-By adding a diperoquine compound such as hexane and heating,
The fluororesin is exposed to ionizing radiation, such as α rays, β rays, γ rays.
By irradiating radiation, neutron beam, accelerated particle beam, X-ray, electron beam, etc. in air, vacuum, inert gas such as argon, helium, nitrogen, etc., or in water, A catalyst for an addition reaction with the functional group is added to a crosslinkable fluororesin formed by copolymerizing a polymerizable monomer, or an active low-molecular compound that reacts with the functional group is added and heated. This is done by

また、必要に応じ、アリル化合物、硫黄、有機アミン類
、メタクリレート類、アクリレート類、ジビニル化合物
、オキシム化合物などの架橋助剤を添加して架橋するこ
とも可能である。
Further, if necessary, crosslinking can be carried out by adding a crosslinking aid such as an allyl compound, sulfur, organic amines, methacrylates, acrylates, divinyl compound, or oxime compound.

このようにして、架橋化処理されたフッ素樹脂の架橋度
合は、得られる発泡体の所望性能、倍率、樹脂の種類な
どに応じ適宜選択され、その値は該樹脂の動的粘弾性の
測定によって求めることができる。一般的には、該樹脂
の融点より30℃高い温度における動的ずり貯蔵弾性率
に対する動的ずり損失弾性率の比が0.6〜0.9の範
囲にあるように架橋されたものが用いられる。この弾性
率の比が0.9を超えるものは発泡体の気泡構造が不均
一となって大きな空洞が生じ、表面も凹凸となる上、気
泡膜にピンホールや破れなどが生じて好ましくない。ま
た、0.6未謂のものでは発泡倍率が小さくなり、得ら
れる発泡体は弾力性に劣る上に、気泡膜に破れ、ピンホ
ールなどが多くて機械的強度にも劣り好ましくない。
In this way, the degree of crosslinking of the crosslinked fluororesin is appropriately selected depending on the desired performance of the obtained foam, the magnification, the type of resin, etc., and its value is determined by measuring the dynamic viscoelasticity of the resin. You can ask for it. Generally, a crosslinked resin is used such that the ratio of dynamic shear loss modulus to dynamic shear storage modulus at a temperature 30°C higher than the melting point of the resin is in the range of 0.6 to 0.9. It will be done. If the elastic modulus ratio exceeds 0.9, the cell structure of the foam becomes non-uniform, resulting in large cavities, the surface becomes uneven, and pinholes and tears occur in the cell membrane, which is undesirable. On the other hand, if it is less than 0.6, the foaming ratio will be small, and the obtained foam will not only have poor elasticity, but also have many tears and pinholes in the cell membrane, and will have poor mechanical strength, which is not preferable.

本発明において用いられる熱可塑性フッ素樹脂トシテハ
、例えばモノフルオロエチレン、i、1−ジフルオロエ
チレン、1,1.2− ) 9フルオロエチレン、モノ
クロロトリフルオロエチレン、テトラフルオロエチレン
ナトのフルオロエチレン、ペンタフルオロプロピレン、
ヘキサフルオロプロピレン、パーフルオロペ/テン−1
などのフルオロ−α−オレフィン、トリフルオロメチル
パーフルオロビニルエーテル、パーフルオコエチルバー
フルオロビニルエーテル、パーフルオロプロピルパーフ
ルオロビニルエーテルなどのフルオロアルキルフルオロ
ビニルエーテル、トリフルオロメチルビニルエーテル、
パーフルオロエチルビニルエーテル、パーフルオロプロ
ピルビニルエーテルナト(7)フルオロアルキルビニル
エーテルなどの中から選ばれた少なくとも1種のモノマ
ーを主成分として得られた含フツ素重合体が挙げられる
。また、該熱可塑性フッ素樹脂には、所望に応じ、その
好ましい特性をあまりそこなわない範囲で、例えばエチ
レン、プロピレン、ブテンなどの万レフイン、アルキル
ビニルエーテル、アクリル酸エステル、メタクリル酸エ
ステルなどの共重合可能なモノマーの単位を含ませるこ
とができる。
Thermoplastic fluororesins used in the present invention, such as monofluoroethylene, i,1-difluoroethylene, 1,1.2-)9 fluoroethylene, monochlorotrifluoroethylene, tetrafluoroethylene, fluoroethylene, pentafluoropropylene ,
Hexafluoropropylene, perfluorope/ten-1
Fluoro-α-olefins such as trifluoromethyl perfluorovinyl ether, perfluorocoethyl perfluorovinyl ether, fluoroalkyl fluorovinyl ethers such as perfluoropropyl perfluorovinyl ether, trifluoromethyl vinyl ether,
Examples include fluorine-containing polymers obtained using at least one monomer selected from perfluoroethyl vinyl ether, perfluoropropyl vinyl ether (7) fluoroalkyl vinyl ether, and the like as a main component. If desired, the thermoplastic fluororesin may be copolymerized with, for example, ethylene, propylene, butene, etc., alkyl vinyl ether, acrylic ester, methacrylic ester, etc., to the extent that its desirable properties are not significantly impaired. Possible monomer units can be included.

さらに、該熱可塑性フッ素樹脂として、所望に応じ、−
SO□F、 −〇〇F 、 −COOH、−COOR、
−CNなどの官能基を有する共重合可能なモノマー1例
えば前記官能基を有するテトラフルオコエヂルーパーフ
ルオロアルキルパーフルオロビニルエーテル、パーフル
オロアルキルパーフルオロビニルエーテルなどを0.1
〜55重量%、好ましくは1〜10重ffi%の範囲で
共重合させた樹脂も使用できる。
Furthermore, as the thermoplastic fluororesin, -
SO□F, -〇〇F, -COOH, -COOR,
Copolymerizable monomer having a functional group such as -CN 1 For example, tetrafluorocoedyl perfluoroalkyl perfluorovinyl ether, perfluoroalkyl perfluorovinyl ether, etc. having the above-mentioned functional group at 0.1
Copolymerized resins can also be used in a range of 55% by weight, preferably 1 to 10% by weight.

本発明で使用される熱可塑性フッ素樹脂の例としては、
ポリビニルフルオリド、ポリビニリデンフルオリド、エ
チレン−テトラフルオロエチレン共重合体、プロピレン
−テトラフルオロエチレン共重合体、ビニリデンフルオ
リトーチトラフルオロエチレン共重合体、ビニリデンフ
ルオリドーベンタフルオロプロピレン共重合体、ビニリ
デンフルオリドーへキサフルオロプロピレン共重合体、
テトラフルオロエチレンービニリデンフルオリドーへキ
サフルオロプロピレン共重合体、ビニリチンフルオリド
ーパ−フルオロアルキルパーフルオロビニルエーテル共
重合体、テトラフルオロニチレンーバーフルオロアルキ
ルビニルエーテル共重合体、エチレン−クロロトリフル
オロエチレン共重合体、テトラフルオロエチレンーパー
フルオロアルキルビニルエーテルービニリデンフルオリ
ト共重合体などの分子鎖中に水素原子を含有するフッ素
樹脂、テトラフルオロエチレン−パー7/lzオロアル
キルパーフルオロビニルエーテルー(2−ンアノテトラ
フルオロエチルオキシ)パーフルオロプロピルパーフル
オロビニルエーテル共重合体、テトラフルオロエチレン
−パーフルオロアルキルパーフルオロビニルエーテル−
2−ンアノパーフルオロエチルパーフルオロビニルエー
テル共重合体、テトラフルオロエチレン−パーフルオロ
アルキルパーフルオロビニルエーテル−6−クロロスル
ホニルパーフルオロプロピルパーフルオロビニルエーテ
ル共重合体など、あるいは付加反応や活性な低分子化合
物との反応により架橋する官能基をもつフッ素樹脂、さ
らにはアリル化合物、イオウ、有機アミン類、メタクリ
レート化合物、アクリレート化合物、ジビニル化合物、
オキンム化合物などの架橋助剤を添加したフッ素樹脂な
どが挙げられる。
Examples of thermoplastic fluororesins used in the present invention include:
Polyvinyl fluoride, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, propylene-tetrafluoroethylene copolymer, vinylidene fluoride trifluoroethylene copolymer, vinylidene fluoride-bentafluoropropylene copolymer, vinylidene fluoride hexafluoropropylene copolymer,
Tetrafluoroethylene-vinylidene fluoride hexafluoropropylene copolymer, vinylitine fluoride perfluoroalkyl perfluorovinyl ether copolymer, tetrafluoronylene-verfluoroalkyl vinyl ether copolymer, ethylene-chlorotrifluoroethylene copolymer , fluororesins containing hydrogen atoms in the molecular chain such as tetrafluoroethylene-perfluoroalkyl vinyl ether-vinylidene fluorite copolymer, tetrafluoroethylene-per7/lz-oloalkyl perfluorovinyl ether (2-anotetra Fluoroethyloxy) perfluoropropyl perfluorovinyl ether copolymer, tetrafluoroethylene-perfluoroalkyl perfluorovinyl ether-
2-anoperfluoroethyl perfluorovinyl ether copolymer, tetrafluoroethylene-perfluoroalkyl perfluorovinyl ether-6-chlorosulfonyl perfluoropropyl perfluorovinyl ether copolymer, or addition reaction or active low molecular compound. Fluororesins with functional groups that crosslink by reaction, as well as allyl compounds, sulfur, organic amines, methacrylate compounds, acrylate compounds, divinyl compounds,
Examples include fluororesins to which crosslinking aids such as ocimu compounds are added.

これらのフッ素樹脂は、フッ素エラストマーとは異なり
、DSC分析で吸熱ピークを有する樹脂である。また、
前記フッ素樹脂には、所望によりその物性をそこなわな
い範囲で、例えばフッ素エラストマーやフッ素系ワック
スなどを配合することもできる。この際、該配合量は通
常0.1〜50重量%の範囲で選ばれる。
These fluororesins are resins that have an endothermic peak in DSC analysis, unlike fluoroelastomers. Also,
If desired, the fluororesin may be blended with, for example, a fluoroelastomer or a fluorine wax within a range that does not impair its physical properties. At this time, the blending amount is usually selected within the range of 0.1 to 50% by weight.

このような熱可塑性フッ素樹脂の中で、分子鎖中に水素
原子を含有するフッ素樹脂は、電離性放射線の照射、あ
るいは化学架橋剤により容易に架橋化され、均一な架橋
構造を有するフッ素樹脂となり、機械的強度に優れ、か
つ弾力性に富ん絃高発泡の発泡体を形成しうるので特に
有利である。
Among such thermoplastic fluororesins, fluororesins containing hydrogen atoms in their molecular chains are easily crosslinked by irradiation with ionizing radiation or chemical crosslinking agents, resulting in fluororesins with a uniform crosslinked structure. This is particularly advantageous because it can form a foam with excellent mechanical strength and high elasticity.

本発明のフッ素樹脂発泡体は、例えば化学発泡剤、物理
発泡剤、不活性ガスなどの発泡剤や、高融点有機化合物
、無機微粉末などの核剤を用い、従来公知の方法、例え
ば押出発泡法、フラッシュ発泡法、常圧発泡法、加圧・
型内発泡法などにより製造される。この際、化学発泡剤
を使用する場合には、微粉末を用いて樹脂中に均一に分
散する必要があり、また核剤を用いる場合も、所望の気
泡径に応じて造核能に優れた微細なものを適宜選択して
使用することが重要であるが、電気特性を劣化させず、
工業的に均質な発泡体が容易に得られる点から、核剤を
用いることなく、熱可塑性フッ素樹脂の融解開始温度よ
り15℃低い温度から15℃高い温度までの範囲の臨界
温度を有する揮発性物理発泡剤を使用することが好まし
い。
The fluororesin foam of the present invention can be produced by a conventional method such as extrusion foaming using a blowing agent such as a chemical blowing agent, a physical blowing agent, or an inert gas, or a nucleating agent such as a high melting point organic compound or an inorganic fine powder. method, flash foaming method, normal pressure foaming method, pressurized
Manufactured by in-mold foaming method. At this time, when using a chemical foaming agent, it is necessary to use fine powder to uniformly disperse it in the resin, and when using a nucleating agent, it is necessary to use a fine powder with excellent nucleating ability depending on the desired bubble diameter. It is important to select and use the appropriate materials, but without deteriorating the electrical characteristics.
Since industrially homogeneous foams can be easily obtained without using a nucleating agent, a volatile material with a critical temperature ranging from 15°C lower to 15°C higher than the melting start temperature of the thermoplastic fluororesin is used. Preference is given to using physical blowing agents.

この揮発性物理発泡剤を使用することにより、本発明の
発泡体が容易に得られる理由については必ずしも明らか
ではないが、樹脂を加熱し、発泡させる過程で、樹脂自
体の結晶相からの造核作用と、それに伴う発泡剤の拡散
、ガス化、さらにこれと同時に起る樹脂の軟化、膨張が
バランスよく進行し、極めて多数の微小な気泡核が生成
して安定に膨張し、発泡体として安定化されるためと考
えられる。臨界温度が前記範囲外の物理発泡剤を使用す
ると、気泡径が90μm より大きくなったり、大きな
空洞が生じるため好ましくない。
The reason why the foam of the present invention can be easily obtained by using this volatile physical foaming agent is not necessarily clear, but in the process of heating and foaming the resin, nucleation occurs from the crystalline phase of the resin itself. The action, the accompanying diffusion and gasification of the blowing agent, and the softening and expansion of the resin that occur simultaneously proceed in a well-balanced manner, producing an extremely large number of microscopic cell nuclei that expand stably and become stable as a foam. This is thought to be due to the fact that it is If a physical blowing agent having a critical temperature outside the above range is used, the cell diameter may become larger than 90 μm or large cavities may be formed, which is not preferable.

このような揮発性物理発泡剤としては、使用するフッ素
樹脂の性質、特に融解開始温度に応じ、慣用されている
ものの中から適当に選択されるが、一般的にはプロパン
、ブタン、ペンタンなどの炭化水素、クロロホルム、塩
化メチノベ塩化メチレン、四塩化炭素などの塩化炭化水
素、ジクロロジフルオロメタン、ジクロロフルオロメタ
ン、トリクロロモノフルオロメタン、トリクロロトリフ
ルオロエタン、テトラクロロジフルオロエタン、クロロ
ジフルオロエタン、ジフルオロエタン、オクタフルオロ
シクロブタン、クロコベンタフルオロエタンなどのフッ
化塩化炭化水素などが用いられる。これらはそれぞれ単
独で用いてもよいし、2種以上組み合わせて用いてもよ
く、またこれらを少なくとも50モル係含有する他の揮
発性有機化合物との混合物として用いてもよい。
Such volatile physical blowing agents are appropriately selected from commonly used ones depending on the properties of the fluororesin used, especially the melting start temperature, but generally propane, butane, pentane, etc. Hydrocarbons, chloroform, chlorinated hydrocarbons such as methylene chloride, carbon tetrachloride, dichlorodifluoromethane, dichlorofluoromethane, trichloromonofluoromethane, trichlorotrifluoroethane, tetrachlorodifluoroethane, chlorodifluoroethane, difluoroethane, octafluorocyclobutane, Fluorochlorinated hydrocarbons such as crocobentafluoroethane are used. Each of these may be used alone or in combination of two or more, or may be used as a mixture with another volatile organic compound containing at least 50 moles.

物理発泡剤を含有させる方法としては、例えば耐圧容器
内に樹脂と発泡剤を入れて、密閉して加熱する方法、あ
るいは押出成形機の出口側に設けた注入装置により溶融
した樹脂に圧入して冷却しなから押出成形する方法など
が適宜用いられる。
Methods for incorporating a physical foaming agent include, for example, placing the resin and foaming agent in a pressure-resistant container, sealing it, and heating it, or press-fitting it into the molten resin using an injection device installed on the exit side of an extrusion molding machine. A method such as extrusion molding after cooling may be used as appropriate.

本発明のフッ素樹脂発泡体は、熱可塑性フッ素樹脂を前
記のようにして架橋化処理したのち、これに発泡剤を配
合して発泡性組成物を調製し、次いでこれを加熱発泡さ
せるか、あるいは該フッ素樹脂に発泡剤を配合したのち
、これを架橋化処理して発泡性組成物を調製し、次いで
これを加熱発泡させて製造することができる。すなわち
、熱可塑性のフッ素樹脂をシート状に押出したもの、あ
るいは圧縮成形したものに電離性放射線を照射して架橋
シートとし、次いでこれをオートクレーブなどの耐圧容
器内に入れ、物理発泡剤を気体状又は液体状で注入して
加圧下、加熱して含浸し、冷却したのち取り出す方法、
架橋性の官能基を有する架橋性フッ素樹脂に架橋剤を均
一に混合し、押出し、射出又は圧縮成形によって架橋フ
ッ素樹脂成形品としたのち、耐圧容器内でこれに物理発
泡剤を含浸させろ方法、シート状、糸状、フィルム状な
どに成形されたフッ素樹脂に、耐圧容器内で物理発泡剤
を含浸させ、次いで電離性放射線を照射して架橋する方
法など、その目的に応じた方法を用いて発泡性組成物を
調製し、次いで加熱発泡させる。
The fluororesin foam of the present invention can be obtained by crosslinking a thermoplastic fluororesin as described above, adding a foaming agent thereto to prepare a foamable composition, and then heating and foaming the composition. After blending a foaming agent into the fluororesin, this can be crosslinked to prepare a foamable composition, and then this can be produced by heating and foaming. That is, a thermoplastic fluororesin extruded or compression molded into a sheet is irradiated with ionizing radiation to form a crosslinked sheet, which is then placed in a pressure-resistant container such as an autoclave, and a physical blowing agent is added to the gaseous form. Or, a method in which it is injected in liquid form, impregnated by heating under pressure, and then taken out after cooling.
A method of uniformly mixing a crosslinking agent with a crosslinkable fluororesin having a crosslinkable functional group, forming a crosslinked fluororesin molded product by extrusion, injection or compression molding, and impregnating the product with a physical foaming agent in a pressure-resistant container; Foaming is performed using a method depending on the purpose, such as impregnating a fluororesin formed into a sheet, thread, or film with a physical foaming agent in a pressure-resistant container and then irradiating it with ionizing radiation to crosslink it. A synthetic composition is prepared and then heated and foamed.

この加熱発泡は、通常該樹脂の融点より30℃低い温度
から30℃高い温度までの範囲の温度に加熱することに
よって行われる。
This thermal foaming is usually carried out by heating the resin to a temperature ranging from 30° C. lower to 30° C. higher than the melting point of the resin.

本発明のフッ素樹脂発泡体は、その平均気泡径が90μ
m以下であることが必要である。この平均気泡径が90
μmを超えると、例えば絶縁破壊強さが基材樹脂のそれ
よりも著しく小さくなるし、表面熱伝達抵抗が小さくな
って断熱性が劣化し、あるいは表面平滑性が劣化する。
The fluororesin foam of the present invention has an average cell diameter of 90 μm.
It is necessary that it is less than m. This average bubble diameter is 90
If it exceeds .mu.m, for example, the dielectric breakdown strength will be significantly smaller than that of the base resin, the surface heat transfer resistance will decrease, the heat insulation properties will deteriorate, or the surface smoothness will deteriorate.

平均気泡径の好ましい範囲は1〜50μmであり、この
範囲の発泡体は、電気特性をはじめ、機械的強さ、表面
平滑性、熱伝達抵抗などの特性のバランスがとれていて
、実用上有用である。
The preferred range of average cell diameter is 1 to 50 μm, and foams in this range have well-balanced properties such as electrical properties, mechanical strength, surface smoothness, and heat transfer resistance, and are useful in practice. It is.

本発明の発泡体は、その発泡倍率が1.5〜50倍、特
に2.5〜30倍の範囲にあるものが好適である。この
発泡倍率が1.5倍未満のものは、電気絶縁性や断熱性
能に劣る上に、圧縮回復率が低く、例えば繰り返し圧縮
変形を受ける印刷版用クッション材、転写ロール材、研
磨材などの用途には好ましくない。一方50倍を超える
ものは、引張強度や引裂強度などの機械的強度が低く好
ましくない。特に発泡倍率が2.5〜30倍の範囲のも
のは、電気特性、断熱性、圧縮回復率、繰り返し圧縮回
復率、引張強度、引裂強度、圧縮永久歪などのバランス
がとれていて好ましい。
The foam of the present invention preferably has an expansion ratio of 1.5 to 50 times, particularly 2.5 to 30 times. Foaming with a foaming ratio of less than 1.5 times not only has poor electrical insulation and heat insulation performance, but also has a low compression recovery rate. Not suitable for use. On the other hand, if it exceeds 50 times, mechanical strength such as tensile strength and tear strength is low and is not preferred. In particular, those having an expansion ratio in the range of 2.5 to 30 times are preferable because they have a well-balanced electrical property, heat insulating property, compression recovery rate, repeated compression recovery rate, tensile strength, tear strength, compression set, etc.

本発明のフッ素樹脂発泡体は、その用途に応じて、シー
ト状、フィルム状、糸状、筒状、棒状などに成形され、
また、顔料、充てん剤、補強材などを含有させることも
可能である。
The fluororesin foam of the present invention can be formed into a sheet, film, string, cylinder, rod, etc. depending on its use.
It is also possible to contain pigments, fillers, reinforcing materials, etc.

発明の効果 本発明のフッ素樹脂発泡体は、熱可塑性フッ素樹脂の架
橋化物を発泡させて成る平均気泡径90μm以下の微細
気泡を有する発泡体であるため、引張強度、引裂強度、
圧縮永久歪などの機械的特性に優れ、かつ圧縮回復率が
良好で弾力性に富み、さらに気泡が微細で均一であって
、電気絶縁性、断熱性、表面平滑性などに優れている。
Effects of the Invention The fluororesin foam of the present invention is a foam made by foaming a crosslinked thermoplastic fluororesin and has fine cells with an average cell diameter of 90 μm or less, so it has high tensile strength, tear strength,
It has excellent mechanical properties such as compression set, good compression recovery rate, and is rich in elasticity.Furthermore, the bubbles are fine and uniform, and it has excellent electrical insulation, heat insulation, and surface smoothness.

したがって、本発明のフッ素樹脂発泡体は、例えば印刷
用のロール、クッション材、高周波絶縁材、電線被覆材
、精密研磨用の研磨布、輻射エネールギー遮断材、ガス
ンール材などとして有用である。
Therefore, the fluororesin foam of the present invention is useful as, for example, a printing roll, a cushioning material, a high-frequency insulating material, a wire covering material, an abrasive cloth for precision polishing, a radiant energy shielding material, a gas-n-wheel material, and the like.

実施例 次に実施例により本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

なお、各測定値は次のようにして求めた。In addition, each measurement value was calculated|required as follows.

(1)フッ素樹脂のメルトフローレートASTM D2
116−75に記載されている装置を使用して、AST
M D12311rに記載の条件(ポリビニリデンフル
オリド及び共重合体)又はASTM D3159記載の
条件(エチレン−テトラフルオロエチレン共重合体など
)で測定した。
(1) Fluororesin melt flow rate ASTM D2
AST using the apparatus described in 116-75.
It was measured under the conditions described in MD12311r (polyvinylidene fluoride and copolymers) or the conditions described in ASTM D3159 (ethylene-tetrafluoroethylene copolymer, etc.).

(2)フッ素樹脂の融点及び融解開始温度融点はAST
M D5159−73に記載の方法で測定し、融解開始
温度は、ベースライン法で融解ピークの立上り開始点を
求め、その点の温度を開始温度とした。
(2) Melting point and melting start temperature of fluororesin The melting point is AST
The melting start temperature was measured by the method described in MD5159-73, and the starting point of the melting peak was determined by the baseline method, and the temperature at that point was taken as the starting temperature.

(3)動的粘弾性特性 レオメトリックス社製ダイナミックスペクトロメーター
RDS−7700型を用い、窒素雰囲気下に樹脂の融点
より30℃高い温度において、角周波数i Q rad
ian / Sec 、歪量5係の条件で動的ずり損失
弾性率(Gつと動的ずり貯蔵弾性率(G′)を測定し、
それらの比(G“フル′)を求めた。
(3) Dynamic viscoelastic properties Using a dynamic spectrometer RDS-7700 manufactured by Rheometrics, the angular frequency i Q rad was measured in a nitrogen atmosphere at a temperature 30°C higher than the melting point of the resin.
ian/Sec, dynamic shear loss elastic modulus (G) and dynamic shear storage elastic modulus (G') were measured under the conditions of strain amount 5 factor,
Their ratio (G "full'") was determined.

なお、測定には、パラレルプレートモードラ使用し、サ
ンプルは厚み1.2 WMで直径25朋の円盤状のもの
を用いた。
Note that a parallel plate model was used for the measurement, and the sample was a disk-shaped sample with a thickness of 1.2 WM and a diameter of 25 mm.

(4)発泡倍率 サンプルの重量と水浸法で求めた体積とから計算した発
泡体の密度と樹脂の密度から次式により計算した。
(4) Expansion ratio The foam density was calculated from the weight of the sample and the volume determined by the water immersion method and the density of the resin using the following formula.

(5)平均気泡径 サンプルの厚み断面を電子顕微鏡で観察し、ランダムに
選んだ20個以上の気泡の長径及び短径を測定し、これ
らの平均値で示した。
(5) Average bubble diameter The thickness cross-section of the sample was observed with an electron microscope, and the long and short axes of 20 or more randomly selected bubbles were measured, and the average value was expressed.

(6)圧縮回復率 JISK6301  に記載の圧縮試験法で50%圧縮
歪を与え、荷重を除いた10分後の厚さを測定し、次式
により求めた。
(6) Compression recovery rate A 50% compressive strain was applied using the compression test method described in JIS K6301, and the thickness was measured 10 minutes after the load was removed, and was calculated using the following formula.

(7)表面平滑性 発泡体シートをレザーで切断し、切断面を50倍に拡大
し、ランダムに選んだシート表面の断面を複察し、表面
に接する直線と、発泡体表面との最大距離とを測定し、
以下の基準で評価した。
(7) Cut a foam sheet with a smooth surface using a razor, magnify the cut surface 50 times, carefully examine the cross section of the sheet surface selected at random, and calculate the maximum distance between the straight line touching the surface and the foam surface. measure,
Evaluation was made based on the following criteria.

02108m以下 △:10μmより太き(50lim以下×:50μmよ
り大きい (8)表面熱伝達抵抗 発泡体シートを200 X 20Q smの大きさに切
断し、その裏面と表面に熱電対を貼り付け、ASTM 
C256に準じた方法により、サンプルを通じて流れる
熱量Qa(&/h)、高温側の空気温度(θH)及び高
温側のサンプル表面温度(θH8)を測定し、次式によ
り求めた。
02108m or less △: Thicker than 10μm (50lim or less
The amount of heat Qa (&/h) flowing through the sample, the air temperature on the high temperature side (θH), and the sample surface temperature on the high temperature side (θH8) were measured by a method according to C256, and calculated using the following formula.

(9)絶縁破壊強度比 ASTM D149に記載の方法に準じ、IKV/se
cで昇圧して絶縁破壊強さを測定し、次式により基材樹
脂との比を求めた。
(9) Dielectric breakdown strength ratio IKV/se according to the method described in ASTM D149
The dielectric breakdown strength was measured by increasing the pressure at c, and the ratio to the base resin was determined using the following formula.

絶縁破壊強度比(%)= 実施例1,2 ビニリデンフルオリドーへキサフルオロプロピレン共重
合体(ペンウォルト社製、登録商標Kynar :#2
800 )を、加熱プレ、z、 テ厚さ1.2罪のシー
トに成形し、電子線照射装置で架橋処理をした。架橋フ
ッ素樹脂の動的粘弾性を測定した結果、弾性率比(G’
7G’)は0.4であり、またDSCによる融解開始温
度、及びピーク温度はそれぞれ112’(:;、146
℃であった。得られた架橋フッ素樹脂のシートを、密閉
容器に入れジクロロジフルオロメタンを圧入し、75℃
で5o時間含浸して、樹脂11当り0.65モルのジク
ロロジフルオロメタンを含有する発泡性シートを得た。
Dielectric breakdown strength ratio (%) = Examples 1, 2 Vinylidene fluoride hexafluoropropylene copolymer (manufactured by Pennwalt, registered trademark Kynar: #2
800) was heated and formed into a sheet with a thickness of 1.2 mm, and crosslinked using an electron beam irradiation device. As a result of measuring the dynamic viscoelasticity of crosslinked fluororesin, the elastic modulus ratio (G'
7G') is 0.4, and the melting start temperature and peak temperature by DSC are respectively 112'(:;, 146
It was ℃. The obtained crosslinked fluororesin sheet was placed in a sealed container, dichlorodifluoromethane was press-fitted, and the temperature was increased to 75°C.
A foamable sheet containing 0.65 mol of dichlorodifluoromethane per 11 resin was obtained.

当該シートを空気中に放置して、ジクロロジフルオロメ
タン含浸量が口、5(モル/樹脂11)となったものを
6.0kg/cyi’ゲージ圧のスチームで30秒間加
熱して発泡させた。得られた発泡体は、発泡倍率16倍
で、平均気泡径20μmの均一な気泡を有するもので、
圧縮回復率は87係、表面熱伝達抵抗0.18yr+”
h・’C/1a11絶縁破壊強さ23 KV /myテ
強度強度比ハロ00チれた特性を有するものであった。
The sheet was left in the air and the amount of dichlorodifluoromethane impregnated was 5 (mole/11 resin) and heated with steam at 6.0 kg/cyi' gauge pressure for 30 seconds to foam. The obtained foam had a foaming ratio of 16 times and uniform cells with an average cell diameter of 20 μm.
Compression recovery rate: 87, surface heat transfer resistance: 0.18yr+”
h・'C/1a11 dielectric breakdown strength 23 KV/myte strength ratio halo00.

(実施例発泡処理の加熱条件を2.5 kg / ax
2ゲージ圧スデスチーム0秒間加熱した以外は、上記と
同じ方法で発泡体を得た(実施例2)。
(The heating conditions for the example foaming treatment were 2.5 kg/ax.
A foam was obtained in the same manner as above (Example 2) except that it was heated with 2 gauge pressure steam for 0 seconds.

得られた発泡体の特性を第1表に示す。The properties of the obtained foam are shown in Table 1.

実施例3〜9 実施例1において、フッ素樹脂及び発泡剤として第1表
に示すものを使用した以外は、実施例1と同様にして発
泡体を得た。得られた発泡体は第1表に示したとおり、
優れた性能を有するものであった。
Examples 3 to 9 Foamed bodies were obtained in the same manner as in Example 1, except that the fluororesin and foaming agent shown in Table 1 were used. The obtained foam was as shown in Table 1.
It had excellent performance.

比較例1〜3 実施例1において、発泡剤を1,2−ジクロロテトラフ
ルオロエタン(比較例2)及びジクロロモノフルオロメ
タン(比較例3)に変えてそれぞれ発泡性シートを得た
。得られたノートを2.5に9/dゲージ圧のスチーム
で加熱して、発泡体を得た。
Comparative Examples 1 to 3 In Example 1, foamable sheets were obtained by changing the blowing agent to 1,2-dichlorotetrafluoroethane (Comparative Example 2) and dichloromonofluoromethane (Comparative Example 3). The resulting notebook was heated with steam at 2.5 to 9/d gauge pressure to obtain a foam.

また架橋しないこと以外は、実施例1と同様にして発泡
体を得た(比較例1)。これらの結果を第2表に示す。
Further, a foam was obtained in the same manner as in Example 1 except that it was not crosslinked (Comparative Example 1). These results are shown in Table 2.

比較例4,5 実施例7において、発泡剤をジクロロジフルオロメタン
に変えた以外は、実施例7と同様にして発泡体を得た(
比較例4)。また、発泡剤をジクロロジフルオロメタン
に変え、かつ架橋しないこと以外は、実施例7と同様に
して発泡体を得た(比較例5)。
Comparative Examples 4 and 5 A foam was obtained in the same manner as in Example 7, except that the blowing agent was changed to dichlorodifluoromethane (
Comparative example 4). Further, a foam was obtained in the same manner as in Example 7 except that the blowing agent was changed to dichlorodifluoromethane and no crosslinking was performed (Comparative Example 5).

これらの結果を第2表に示す。These results are shown in Table 2.

第1表及び第2表から明らかなように、本発明の発泡体
は圧縮回復率、表面熱伝達抵抗及び絶縁破壊強さの各位
が大きく、かつ基材樹脂とほぼ同じ破壊性を示す上に、
表面平滑性にも優れている。
As is clear from Tables 1 and 2, the foam of the present invention has a high compression recovery rate, a high surface heat transfer resistance, and a high dielectric breakdown strength, and also exhibits almost the same fracture properties as the base resin. ,
It also has excellent surface smoothness.

Claims (1)

【特許請求の範囲】 1 熱可塑性フッ素樹脂の架橋化物を発泡させて成る平
均気泡径が90μm以下の微細気泡を有するフッ素樹脂
発泡体。 2 熱可塑性フッ素樹脂がフルオロエチレン、フルオロ
−α−オレフィン、フルオロアルキルフルオロビニルエ
ーテル及びフルオロアルキルビニルエーテルの中から選
ばれた少なくとも1種のモノマーを主成分として得られ
たものである特許請求の範囲第1項記載の発泡体。 3 熱可塑性フッ素樹脂が分子鎖中に水素原子を含有す
るものである特許請求の範囲第1項又は第2項記載の発
泡体。 4 熱可塑性フッ素樹脂の架橋化物がその融点より30
℃高い温度における動的ずり貯蔵弾性率に対する動的ず
り損失弾性率の比が0.3〜0.9の範囲のものである
特許請求の範囲第1項ないし第3項のいずれかに記載の
発泡体。 5 発泡倍率が2.5〜30倍である特許請求の範囲第
1項ないし第4項のいずれかに記載の発泡体。 6 平均気泡径が1〜50μmである特許請求の範囲第
1項ないし第5項のいずれかに記載の発泡体。 7 熱可塑性フッ素樹脂を架橋化処理したのち、これに
発泡剤を配合するか、あるいは該フッ素樹脂に発泡剤を
配合したのち、これを架橋化処理することにより発泡性
組成物を調製し、次いでこれを加熱して発泡させること
を特徴とする、平均気泡径90μm以下の微細気泡を有
するフッ素樹脂発泡体の製造方法。 8 発泡剤が熱可塑性フッ素樹脂の融解開始温度より1
5℃低い温度から15℃高い温度までの範囲の臨界温度
を有する揮発性物理発泡剤である特許請求の範囲第7項
記載の製造方法。 9 熱可塑性フッ素樹脂がフルオロエチレン、フルオロ
−α−オレフィン、フルオロアルキルフルオロビニルエ
ーテル及びフルオロアルキルビニルエーテルの中から選
ばれた少なくとも1種のモノマーを主成分として得られ
たものである特許請求の範囲第7項又は第8項記載の製
造方法。 10 熱可塑性フッ素樹脂が分子鎖中に水素原子を含有
するものである特許請求の範囲第7項ないし第9項のい
ずれかに記載の製造方法。 11 架橋化処理された熱可塑性フッ素樹脂が、その融
点より30℃高い温度における動的ずり貯蔵弾性率に対
する動的ずり損失弾性率の比が0.3〜0.9の範囲の
ものである特許請求の範囲第7項ないし第10項のいず
れかに記載の製造方法。 12 2.5〜30倍の発泡倍率に発泡させる特許請求
の範囲第7項ないし第11項のいずれかに記載の製造方
法。 13 発泡体の平均気泡径が1〜50μmである特許請
求の範囲第7項ないし第12項のいずれかに記載の製造
方法。
[Scope of Claims] 1. A fluororesin foam having fine cells with an average cell diameter of 90 μm or less, which is obtained by foaming a crosslinked thermoplastic fluororesin. 2. Claim 1, in which the thermoplastic fluororesin is obtained mainly from at least one monomer selected from fluoroethylene, fluoro-α-olefin, fluoroalkyl fluorovinyl ether, and fluoroalkyl vinyl ether. Foam as described in Section. 3. The foam according to claim 1 or 2, wherein the thermoplastic fluororesin contains a hydrogen atom in its molecular chain. 4 The crosslinked product of thermoplastic fluororesin is 30% lower than its melting point.
Claims 1 to 3, wherein the ratio of dynamic shear loss modulus to dynamic shear storage modulus at a high temperature of 0.3 to 0.9 is in the range of 0.3 to 0.9. foam. 5. The foam according to any one of claims 1 to 4, which has an expansion ratio of 2.5 to 30 times. 6. The foam according to any one of claims 1 to 5, having an average cell diameter of 1 to 50 μm. 7. A foamable composition is prepared by crosslinking a thermoplastic fluororesin and then adding a foaming agent thereto, or by adding a foaming agent to the fluororesin and subjecting it to a crosslinking treatment, and then A method for producing a fluororesin foam having fine cells with an average cell diameter of 90 μm or less, the method comprising heating and foaming the foam. 8 The blowing agent is 1 higher than the melting start temperature of the thermoplastic fluororesin.
8. The method of claim 7, which is a volatile physical blowing agent having a critical temperature ranging from 5° C. lower to 15° C. higher. 9. Claim 7, wherein the thermoplastic fluororesin is obtained with at least one monomer selected from fluoroethylene, fluoro-α-olefin, fluoroalkyl fluorovinyl ether, and fluoroalkyl vinyl ether as a main component. The manufacturing method described in item 1 or item 8. 10. The manufacturing method according to any one of claims 7 to 9, wherein the thermoplastic fluororesin contains a hydrogen atom in its molecular chain. 11 A patent in which the crosslinked thermoplastic fluororesin has a ratio of dynamic shear loss modulus to dynamic shear storage modulus at a temperature 30°C higher than its melting point, in the range of 0.3 to 0.9. The manufacturing method according to any one of claims 7 to 10. 12. The manufacturing method according to any one of claims 7 to 11, wherein foaming is performed to an expansion ratio of 2.5 to 30 times. 13. The manufacturing method according to any one of claims 7 to 12, wherein the foam has an average cell diameter of 1 to 50 μm.
JP12211286A 1986-05-29 1986-05-29 Fluorocarbon resin having fine cell and its production Granted JPS62280236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12211286A JPS62280236A (en) 1986-05-29 1986-05-29 Fluorocarbon resin having fine cell and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12211286A JPS62280236A (en) 1986-05-29 1986-05-29 Fluorocarbon resin having fine cell and its production

Publications (2)

Publication Number Publication Date
JPS62280236A true JPS62280236A (en) 1987-12-05
JPH0374696B2 JPH0374696B2 (en) 1991-11-27

Family

ID=14827933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12211286A Granted JPS62280236A (en) 1986-05-29 1986-05-29 Fluorocarbon resin having fine cell and its production

Country Status (1)

Country Link
JP (1) JPS62280236A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814409A (en) * 1994-05-10 1998-09-29 Asahi Kasei Kogyo Kabushiki Kaisha Expanded fluorine type resin products and a preparation process thereof
EP0893629A1 (en) * 1997-07-22 1999-01-27 Bamberger Kaliko GmbH Yarn for sealing
JP2001088013A (en) * 1999-09-21 2001-04-03 Toyobo Co Ltd Polishing pad
JP2001232554A (en) * 2000-02-22 2001-08-28 Toyobo Co Ltd Polishing pad and method for manufacturing thereof
CN112592549A (en) * 2020-11-23 2021-04-02 深圳市长园特发科技有限公司 Radiation crosslinking polyvinylidene fluoride foam material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193268A (en) * 1984-08-14 1986-05-12 ユナイテツド・テクノロジ−ズ・デイ−ゼル・システムズ・インコ−ポレイテツド Constantly opened type valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193268A (en) * 1984-08-14 1986-05-12 ユナイテツド・テクノロジ−ズ・デイ−ゼル・システムズ・インコ−ポレイテツド Constantly opened type valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814409A (en) * 1994-05-10 1998-09-29 Asahi Kasei Kogyo Kabushiki Kaisha Expanded fluorine type resin products and a preparation process thereof
EP0893629A1 (en) * 1997-07-22 1999-01-27 Bamberger Kaliko GmbH Yarn for sealing
JP2001088013A (en) * 1999-09-21 2001-04-03 Toyobo Co Ltd Polishing pad
JP4542647B2 (en) * 1999-09-21 2010-09-15 東洋ゴム工業株式会社 Polishing pad
JP2001232554A (en) * 2000-02-22 2001-08-28 Toyobo Co Ltd Polishing pad and method for manufacturing thereof
JP4591980B2 (en) * 2000-02-22 2010-12-01 東洋ゴム工業株式会社 Polishing pad and manufacturing method thereof
CN112592549A (en) * 2020-11-23 2021-04-02 深圳市长园特发科技有限公司 Radiation crosslinking polyvinylidene fluoride foam material and preparation method thereof

Also Published As

Publication number Publication date
JPH0374696B2 (en) 1991-11-27

Similar Documents

Publication Publication Date Title
US4737526A (en) Expandable fluorine-contained polymer compositions and foams of fluorine-contained polymer obtained from the compositions
JP5175543B2 (en) Fluoropolymer foam, its production method and its application
US3072583A (en) Foamable composition comprising a copolymer of tetrafluoroethylene and a perfluoro-alpha-olefin containing therein a fluoromethane and process for making same
JP5967181B2 (en) Modified fluorine-containing copolymer and fluororesin molded product
US8227521B2 (en) Fluoropolymer foams prepared with the use of blowing agents and applications thereof
CA1127800A (en) Soft ethylenic polymer blend foams
WO2016117492A1 (en) Method for producing modified molded product of fluororesin
JPWO2006059697A1 (en) Ethylene-tetrafluoroethylene copolymer molded product and method for producing the same
KR910008773B1 (en) Expandable vinyliden chloride composition
JPS62280236A (en) Fluorocarbon resin having fine cell and its production
EP2746307B1 (en) Polyvinylidene fluoride resin expanded beads, method for producing polyvinylidene fluoride resin expanded beads, and molded articles of polyvinylidene fluoride resin expanded beads
JPS62252435A (en) Fluorocarbon resin foam, its production and sealing member prepared therefrom
JP2015034255A (en) Foam and production method thereof
JP2008239765A (en) Heat-resistant foam having low heat-conductivity and method for producing the same
JPH0726050A (en) Non-cross-linked fluororesin foam
JPS5911340A (en) Production of fluororesin foam
JPH10231375A (en) Production of foamed film of fluorocarbon resin
JP3380312B2 (en) Method for producing fluororesin foam
JP2015183137A (en) Polyvinylidene fluoride-based resin expanded particle, production method and molded product thereof
JPS62280284A (en) Sealing member made of micro-cellular fluororesin foam
JP4064811B2 (en) Method for producing expanded polypropylene resin particles
WO2023139194A1 (en) Polymer foams based on blends of poly(vinylidene fluoride) and poly(meth)acrylimide
JPS63280747A (en) Synthetic resin foam
JPS60127333A (en) Expandable vinylidene chloride resin particles
WO2023139195A1 (en) Polymer foams based on poly(meth)acrylimide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees