JPS62275836A - Torque distribution control device for four-wheel drive vehicle - Google Patents

Torque distribution control device for four-wheel drive vehicle

Info

Publication number
JPS62275836A
JPS62275836A JP11948886A JP11948886A JPS62275836A JP S62275836 A JPS62275836 A JP S62275836A JP 11948886 A JP11948886 A JP 11948886A JP 11948886 A JP11948886 A JP 11948886A JP S62275836 A JPS62275836 A JP S62275836A
Authority
JP
Japan
Prior art keywords
torque distribution
traveling
torque
driving
inputted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11948886A
Other languages
Japanese (ja)
Other versions
JPH08504B2 (en
Inventor
Yoichi Idesaki
出先 洋一
Midori Kubota
久保田 緑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP11948886A priority Critical patent/JPH08504B2/en
Publication of JPS62275836A publication Critical patent/JPS62275836A/en
Publication of JPH08504B2 publication Critical patent/JPH08504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To simplify control and improve stability, etc. by judging plural traveling modes such as an urban district traveling, a mountain road traveling, a suburbs traveling, a freeway traveling, etc. from a traveling condition for a defined period of time and controlling the torque distribution of front and rear wheels for each of said traveling modes. CONSTITUTION:In a control unit 42, a means value is obtained by each of a mean vehicle speed detectig part 50 into which the vehicle speed V of a vehicle sensor 41 is inputted and a means steering quantity detecting part 51 into which the steering quantity theta of a steering angle sensor 46 is inputted. And, a mean vehicle speed Vm and a means steering quantity thetam are inputted into a traveling mode judging part 52 and, from the relation between both, various traveling mode parts 53a-53d are judged and a torque distribution ratio alpha (TF/TR) is determined by various torque distribution setting parts 54a-54d. Also, the various torque distribution signals are inputted into a power flow switchover part 55, which outputs an operation signal to an actuator 44. Further, the various torque distribution signals, together with an input torque Ti and a vehicle speed V, are inputted into a clutch torque control part 56, which outputs a defined clutch hydraulic pressure signal to an actuator 43.

Description

【発明の詳細な説明】[Detailed description of the invention]

3、発明の詳細な説明 3. Detailed description of the invention

【産業上の利用分野】[Industrial application field]

本発明は、センターデフ付のフルタイム式4輪駆!i7
J車において、前後輪の駆動トルク配分を任急に制御し
て、操縦性または安定性m視の走行を可能にする4輪駆
動車のトルク配分制御211装置に関し、詳しくは、各
種走行モードを判別してこれに適したトルク配分を行う
ものに関する。
The present invention is full-time 4-wheel drive with center differential! i7
Regarding the torque distribution control 211 device for a four-wheel drive vehicle that quickly controls the drive torque distribution between the front and rear wheels of a J vehicle to enable driving with improved maneuverability or stability, please refer to the following for details. This invention relates to a device that makes a determination and distributes torque appropriately.

【従来の技術1 従来、4輪部I71車の前後輪トルク配分に関しては、
例えば特開昭56−43031号公報に示すように、前
後輪の駆動系の途中に油圧クラッチを設け、そのクラッ
チトルクを制御するものがある。 また、例えば特開昭55−72420号公報に示すよう
に、センターデフ装置に差初制限用として油圧クラッチ
を設けたものがある。 【発明が解決しようとする問題点1 ところで、上記先行技術の前者は、駆動系に直接介在す
る油圧クラッチにより後輪の駆動トルクを減じて、直結
式の場合の旋回時のブレーキング現象を防止する。また
先行技術の後者は、センターデフ付において前後輪の一
方がスリップした場合の緊急脱出用として、油圧クラッ
チによりデフロックするものであり、いずれも#i後輪
のトルク配分を、前輪側が多い、または後輪側が多い配
分状態に積極的に制御する構成にはなっていない。 ここで、4輪駆動走行において前後輪のトルク配分を変
えると、安定性または操縦性の点で良くなることが知ら
れている。この場合に例えば車速と舵角により走行と旋
回の状態を常に判別して、トルク配分を制御することが
考えられるが、かかる制御によると制御が非常に煩雑化
し、応答性。 システムの耐久性の点で不利である。このことから、前
後輪のトルク配分制御により4輪駆動の走行性能を向上
する場合において、各種走行モードで簡略化しつつ必要
かつ充分な制御を行うことが望まれる。 本発明は、このような点に鑑みてなされたもので、前後
輪のトルク配分制御において、制御を容易化して安定性
、操縦性の性能を的確に発揮するようにした4輪部@車
のトルク配分制御装置を提供することを目的としている
。 【問題点を解決するための手段1 上記目的を達成するため、本発明は、走行状態により前
後輪のトルクを配分する制御系において、所定時間の走
行条件により市街地走行、山道走行。 郊外走行、高速走行等の複数の走行モードに判別し、各
種走行モード毎に前後輪のトルク配分を制御するように
構成されている。 補正するように構成されている。 【作   用】 上記構成に基づき、例えば平均の車速、操舵量等から旋
回の頻度の多い市街地走行、高速直進の頻度の多い高速
走行等の各種走行モードに判別する。そして各走行モー
ドにおいて、予め設定されたトルク配分マツプに基づき
前後輪のトルク配分状態を定め、市街地走行モードでは
操縦性重視。 高速走行モードでは安定性重視というような走行パター
ンに区分けした走行を行うようになる。 こうして本発明では、各種走行モード毎のトルク配分制
御で制御が容易になり、更に各走行モードで操縦性、安
定性の一方または両方の性能を的確に得ることが可能と
なる。
[Prior art 1] Conventionally, regarding the front and rear wheel torque distribution of a four-wheeled I71 car,
For example, as shown in Japanese Unexamined Patent Publication No. 56-43031, there is a system in which a hydraulic clutch is provided in the middle of the drive system for the front and rear wheels to control the clutch torque. Furthermore, as shown in Japanese Patent Application Laid-Open No. 55-72420, for example, there is a center differential device in which a hydraulic clutch is provided for limiting the initial difference. Problem 1 to be Solved by the Invention By the way, the former of the above-mentioned prior art reduces the drive torque of the rear wheels using a hydraulic clutch directly interposed in the drive system, thereby preventing the braking phenomenon during turning in the case of a direct coupling type. do. In addition, the latter of the prior art uses a hydraulic clutch to lock the differential in case one of the front and rear wheels slips when the center differential is attached. It is not configured to actively control the distribution so that it is more distributed to the rear wheels. It is known that changing the torque distribution between the front and rear wheels during four-wheel drive driving improves stability or maneuverability. In this case, it is conceivable to control the torque distribution by constantly determining the driving and turning conditions based on the vehicle speed and steering angle, but such control would make the control extremely complicated and result in poor responsiveness. This is disadvantageous in terms of system durability. For this reason, when improving the driving performance of a four-wheel drive vehicle by controlling the torque distribution between the front and rear wheels, it is desirable to perform necessary and sufficient control while simplifying various driving modes. The present invention has been made in view of these points, and is a four-wheel part @ vehicle that facilitates control and accurately exhibits stability and maneuverability performance in torque distribution control between the front and rear wheels. The present invention aims to provide a torque distribution control device. [Means for Solving the Problems 1] In order to achieve the above object, the present invention provides a control system that distributes torque between the front and rear wheels depending on the driving condition. It is configured to discriminate between multiple driving modes, such as suburban driving and high-speed driving, and to control torque distribution between the front and rear wheels for each driving mode. configured to correct. [Function] Based on the above configuration, various driving modes are determined based on the average vehicle speed, steering amount, etc., such as city driving with frequent turns and high-speed driving with frequent high-speed straight going. In each driving mode, the torque distribution between the front and rear wheels is determined based on a preset torque distribution map, and in city driving mode, the focus is on maneuverability. In high-speed driving mode, driving is divided into driving patterns that emphasize stability. Thus, in the present invention, control is facilitated by torque distribution control for each of the various driving modes, and furthermore, it is possible to accurately obtain one or both of maneuverability and stability performance in each driving mode.

【実 施 例1 以下、本発明の実施例を図面に基づいて説明する。 第1図において、センターデフ付4輪駆動車の伝動系の
a!j[略について説明すると、符号1はエンジン、2
は変速機、3はトランスファ装置であり、トランスファ
装置3に、13いて変速機2の出力軸4が、一対のトラ
ンスファギヤ5を介してセンターデフ装置6のデフケー
ス7に連結する。センターデフ装!Jjl 6は、デフ
ケース7に軸支したビニオン8にサイドギヤ9,10が
噛合って成り、一方のサイドギヤ9からのフロントドラ
イブ@11が車体前方に取出され、中間軸12や継手1
3を介してフロントデフ装置14に伝動構成される。ま
た、他方のサイドギヤ10からのりA7ドライブ軸15
が車体後方に取出され、プロペラ軸16や継手17を介
してリヤデフ装置18に伝1itl構成されるのであり
、かかるセンターデフ装置6により変速機2の動力を前
後輪に振り分(プ、かつ前後輪の回転差を吸収するよう
になっている。 そこで、上記トしンスファ装置3において、センターデ
フ装置6にトルク分配装jl120がバイパスして設け
られる。トルク分配装置20はフロントドライブ軸11
に一対の変速ギヤ21が設けられ、そのドリブンギp2
1aにバイパス軸22が結合する。また、リヤドライブ
軸15には2組の変速ギヤ23.24が設けられ、これ
らのドリブンギヤ23a 、 24aの間に切換クラッ
チ25が設けである。 切換クラッチ25は噛合い式のもので、ドリブンギヤ2
3a 、 24aに対し回転自在な軸26にハブ27を
有し、このハブ27のスリーブ28がギヤ23a 、 
24aのスプライン29.301%:選択的に噛合って
いずれか一方に切換ねるように構成される。そして、バ
イパス軸22と軸2Gが伝達トルク可変の油圧クラッチ
31を介して連結している。 ここで、ギ1〕21の増速ギヤ比gfとギヤ23.24
の増速ギヤ比qr1. (Irzは、例えばgf>gr
1ニ設定されて後輪側のトルク配分を多くし、g f 
<91・、に設定されて逆に前輪側のトルク配分を多く
するようになっている。 制御系について説明すると、入力トルクセンサ40、車
速センサ41.舵角センサ4Gを有し、これらのセンサ
信号が制御ユニット42に入力して、入力トルクと走行
状態から動作モードを定める。(して制御ユニット42
の出力信号でアクチュエータ43により、油圧クラッチ
31のクラッチ油圧を変化し、アクチュエータ44によ
り、切換レバ〜45を介して切換クラッチ25のスリー
ブ28を移動する。 第2図において、制御ユニット42について説明する。 先ず、車速センサ41の車速■が入力する平均車速検出
部50.舵角センサ4θの操舵層θが入力する平均操舵
量検出部51を有し、これらの検出部50゜51で所定
時間サンプリングしてその平均値を求める。この平均車
速Vn+、平均操舵量θmの値は、走行モード判定部5
2に入力して、両方の関係から各梯走行モードを判別す
る。即ち、第3図(2)の走行モードマツプに基づき、
低速域では市街地走行モード部53a、中速域で平均操
舵量が少ない場合は郊外走行モード53b、この走行条
件で平均操舵量が多い場合は山道走行モード部53C1
高速域では高速走行モード53dを選択する。 これらの各走行モード部53a @いし53dには、そ
れぞれトルク配分設定部54aないし54dがあり、こ
こで第3図Φ)に示すトルク配分マツプに基づいてトル
ク配分比α(TF /TR)を定める。即ち、市街走行
モードではTF (TRのトルク配分で操縦性重視、高
速走行モードでは逆にTF:′−TRのトルク配分で安
定性重視になっている。また、操舵の比較的少ない郊外
走行上−ドではTF″4TRのトルク配分で両性能の中
立状態であり、操舵の比較的多い山道走行モードでは丁
F〈丁Rのトルク配分で操縦性が考慮されている。 そしてこれらの設定部54aないし54clのトルク配
分信号は、動力フロー切換部55に入力し、α〉1とα
く1の場合においてそれぞれアクチュエータ44に動作
信号を出力する。また、センサ40.41の入力トルク
T1.車速Vと共にクラッチトルク制御部56に入力し
、ここで各入力トルク、車速で配分比に応じたクラッチ
トルクTcを定め、これに対応したクラッチ油圧信号を
アクチュエータ43に出力するようになっている。 次いで、このように構成されたトルク配分制御装πの作
用について説明する。 変速12からの入力トルクTtは、ギヤ5を介してセン
ターデフ装置6に入力し、そのサイドギヤ9.10で略
等しく2分割したトルクTOがフロントおよびリヤドラ
イブ軸11.15に伝達する。そしてフロントドライブ
軸11の動力は、トルク分配装@20のギヤ21を介し
てバイパス軸22.油圧クラッヂ31のハブ側に入力し
、同時にリヤドライブ軸15の動力は、ギヤ23.24
に入力する。 一方、車両走行時の平均重速と平均操舵量から走行モー
ド判定部52で走行モードが判定され、低速域では市街
地走行モード部53aが選択され、そのトルク配分設定
部54aでTF <TRのトルク配分に設定される。そ
こで、勅カフロー切換部55からα・ぐ1に対応した切
換信号が出力する。そのためアクチュエータ44により
、切換クラッチ25のスリーブ2Bはスプライン29に
噛合って、ギヤ23が選択されることになり、こうして
ドライブ軸15の動力は、ギψ23.軸26を介して油
圧クラチ31のドラム側に入力する。ここで、ギl’1
.23のギヤ比がgf>grlの関係であるため、油圧
クラッチ31のトルクにより、高速のクラッチハブから
低速のクラッチドラムを経て後輪に動力が流れる状態に
なる。 また、配分比αと入力トルクT1により、クラッチトル
ク制御部56でクラッチトルクTCが大きい値に算出さ
れ、これに応じたクラッチ油圧で油圧クラッチ31のト
ルクTOが決められる。そこで、フロントドライブ軸1
1のトルクToのうちのクラッチトルク10分だけが油
圧クラッチ経由で後輪に流れ、こうして前後輪のトルク
配分は、α−TF /TR= (To −7c ) /
 (To +TC)になる。従って、後輪側配分量が多
くなって、操縦性重視の4輪駆動走行となる。 山道走行モードでは、上述と同じ動力フロー状態でクラ
ッチトルク制御部56におけるクラッチ1ヘルク7cの
値を上述より小さい1直に設定して1−制御される。そ
こで、後輪に流れるトルクが少なくなって、TF <T
Rのトルク配分になる。 郊外走行モードでは、更にクラッチトルクTCの値を小
さく制御され、TF #TRのトルク配分になる。 次いで高速走行モードでは、設定部54(1でTF>T
pのトルク配分に設定される。そこで、動力フロー切換
部55からα〉1に対応した切換信号が出力し、切換ク
ラッチ25によりギヤ24が選択される。そのため、ギ
ヤ21.24のギヤ比により、今度は逆に油圧クラッチ
31のトルク分だけ前輪側に動力が流れることになる。 そしてクラッチトルク制御tf BB 56でこの場合
のクラッチトルクTcが設定されることで、前輪側のト
ルク配分めが多くなって、安定性重視の4輪駆φ力走行
となる。 なお、上記各走行モードでのトルク配分は、それぞれ固
定値でもよいが、第3図の〉のマツプのように車速によ
り可変制陣することで、各性能が有効に発揮される。ま
た、各走行モードの間に過渡モードを定めると、モーI
S切換時の移行をスムーズに行い得る。 Lス上、本発明の一実施例について述べたが、前後輪の
トルク配分を制卸するものであれば、いかなる構成にも
適用可能である。 走行モードは実施例に限定されるものではなく、モード
判定には、エンジンの運転状態、ブレーキ頻度、パワー
ステアリング液圧等を用いても良い。 【発明の効果】 以上)ホベてきたように、本発明によれば、走行状態に
より各種走行モードを定めてトルク配分制卸する方式で
あるから、制御系が簡素化し、各走行モードでの性能を
確実に発揮し得る。 トルク配分の大幅な変動がなくなってルリ罪がし易くな
り、各走行モード毎のレベルでの制御であるので応答性
が向上し、耐久性の点でも有利である。
[Example 1] Hereinafter, an example of the present invention will be described based on the drawings. In Figure 1, a! of the transmission system of a four-wheel drive vehicle with a center differential. j [To explain the abbreviations, code 1 is the engine, 2
1 is a transmission; 3 is a transfer device; an output shaft 4 of the transmission 2 is connected to the differential case 7 of a center differential device 6 via a pair of transfer gears 5; Center differential equipped! Jjl 6 consists of side gears 9 and 10 meshing with a binion 8 that is pivotally supported on a differential case 7, and a front drive @ 11 from one side gear 9 is taken out to the front of the vehicle body, and is connected to an intermediate shaft 12 and a joint 1.
3 to the front differential device 14. Also, from the other side gear 10, the A7 drive shaft 15
is taken out to the rear of the vehicle body and transmitted to the rear differential device 18 via the propeller shaft 16 and joint 17.The center differential device 6 distributes the power of the transmission 2 to the front and rear wheels. It is designed to absorb the difference in rotation between the wheels.Therefore, in the above-mentioned transfer device 3, a torque distribution device jl120 is provided to bypass the center differential device 6.The torque distribution device 20 is connected to the front drive shaft 11.
is provided with a pair of transmission gears 21, and its driven gear p2
A bypass shaft 22 is coupled to 1a. Further, two sets of transmission gears 23 and 24 are provided on the rear drive shaft 15, and a switching clutch 25 is provided between these driven gears 23a and 24a. The switching clutch 25 is of a meshing type, and is connected to the driven gear 2.
A hub 27 is provided on a shaft 26 that is rotatable with respect to 3a and 24a, and a sleeve 28 of this hub 27 is connected to gears 23a and 24a.
Spline 29.301% of 24a: configured to selectively engage and switch to either side. The bypass shaft 22 and the shaft 2G are connected via a hydraulic clutch 31 with variable transmission torque. Here, the speed-up gear ratio gf of gear 1]21 and gear 23.24
The speed increasing gear ratio qr1. (Irz is, for example, gf>gr
1 is set to increase the torque distribution to the rear wheels, and g f
<91., conversely, the torque distribution to the front wheels is increased. To explain the control system, an input torque sensor 40, a vehicle speed sensor 41. It has a steering angle sensor 4G, and these sensor signals are input to the control unit 42, which determines the operating mode from the input torque and the running state. (The control unit 42
The actuator 43 changes the clutch oil pressure of the hydraulic clutch 31 in response to the output signal, and the actuator 44 moves the sleeve 28 of the switching clutch 25 via the switching lever 45. In FIG. 2, the control unit 42 will be explained. First, the average vehicle speed detecting section 50 receives the vehicle speed ■ of the vehicle speed sensor 41. It has an average steering amount detecting section 51 into which the steering layer θ of the steering angle sensor 4θ is input, and these detecting sections 50 and 51 perform sampling for a predetermined period of time to obtain the average value. The values of the average vehicle speed Vn+ and the average steering amount θm are determined by the driving mode determination unit 5.
2, and each ladder running mode is determined from the relationship between the two. That is, based on the driving mode map in FIG. 3 (2),
In a low speed range, the city driving mode section 53a is used, when the average steering amount is small in a medium speed range, the suburban driving mode 53b is used, and when the average steering amount is large in this driving condition, the mountain road driving mode section 53C1 is used.
In the high speed range, the high speed driving mode 53d is selected. Each of these driving mode sections 53a to 53d has a torque distribution setting section 54a to 54d, which determines the torque distribution ratio α (TF/TR) based on the torque distribution map shown in Fig. 3 Φ). . In other words, in city driving mode, TF (TR) torque distribution emphasizes maneuverability, while in high-speed driving mode, TF:'-TR torque distribution emphasizes stability. - mode, the torque distribution of TF''4TR is a neutral state for both performances, and in the mountain road driving mode, where there is a relatively large amount of steering, maneuverability is taken into consideration with the torque distribution of TF'' and 4TR. The torque distribution signal of 54 cl to 54 cl is input to the power flow switching unit 55,
In each case, an operation signal is output to the actuator 44. In addition, the input torque T1 of the sensor 40.41. It is inputted together with the vehicle speed V to the clutch torque control section 56, where the clutch torque Tc corresponding to the distribution ratio is determined for each input torque and vehicle speed, and a clutch oil pressure signal corresponding to this is outputted to the actuator 43. Next, the operation of the torque distribution control device π configured as described above will be explained. The input torque Tt from the transmission 12 is input to the center differential device 6 via the gear 5, and the torque TO, which is divided into two substantially equally by the side gears 9.10, is transmitted to the front and rear drive shafts 11.15. The power of the front drive shaft 11 is then transmitted to the bypass shaft 22 through the gear 21 of the torque distribution system @20. The power is input to the hub side of the hydraulic clutch 31, and at the same time the power of the rear drive shaft 15 is input to the gear 23.24.
Enter. On the other hand, the driving mode determining section 52 determines the driving mode from the average heavy speed and the average steering amount when the vehicle is running, and in the low speed range, the city driving mode section 53a is selected, and the torque distribution setting section 54a selects the torque where TF < TR. Set to allocation. Therefore, a switching signal corresponding to α.g1 is output from the flow switching unit 55. Therefore, the sleeve 2B of the switching clutch 25 is engaged with the spline 29 by the actuator 44, and the gear 23 is selected, and thus the power of the drive shaft 15 is transferred to the gear ψ23. It is input to the drum side of the hydraulic clutch 31 via the shaft 26. Here, Gil'1
.. 23 has a relationship of gf>grl, the torque of the hydraulic clutch 31 causes power to flow from the high-speed clutch hub to the low-speed clutch drum to the rear wheels. Further, the clutch torque control unit 56 calculates the clutch torque TC to a large value based on the distribution ratio α and the input torque T1, and the torque TO of the hydraulic clutch 31 is determined by the clutch oil pressure corresponding to this. Therefore, front drive shaft 1
Only 10 minutes of the clutch torque out of the total torque To flows to the rear wheels via the hydraulic clutch, and the torque distribution between the front and rear wheels is thus α-TF /TR= (To -7c) /
(To +TC). Therefore, the amount distributed to the rear wheels increases, resulting in four-wheel drive driving with emphasis on maneuverability. In the mountain road driving mode, 1-control is performed by setting the clutch 1-herc 7c value in the clutch torque control section 56 to 1 shift, which is smaller than the above-mentioned value, in the same power flow state as described above. Therefore, the torque flowing to the rear wheels decreases, and TF < T
The torque distribution will be R. In suburban driving mode, the value of clutch torque TC is controlled to be even smaller, resulting in torque distribution of TF #TR. Next, in the high-speed driving mode, the setting section 54 (1 sets TF>T
The torque distribution is set to p. Therefore, a switching signal corresponding to α>1 is output from the power flow switching unit 55, and the gear 24 is selected by the switching clutch 25. Therefore, depending on the gear ratio of the gears 21 and 24, power flows to the front wheels by the torque of the hydraulic clutch 31. Then, by setting the clutch torque Tc in this case with the clutch torque control tf BB 56, the torque distribution to the front wheels increases, resulting in four-wheel drive φ power driving with emphasis on stability. Note that the torque distribution in each of the above driving modes may be set to a fixed value, but each performance can be effectively exhibited by varying the torque distribution depending on the vehicle speed as shown in the map shown in Fig. 3. In addition, if a transient mode is defined between each driving mode, the mode I
A smooth transition can be made when switching to S. Although one embodiment of the present invention has been described above, it can be applied to any configuration as long as it controls the torque distribution between the front and rear wheels. The driving mode is not limited to the embodiment, and the engine operating state, brake frequency, power steering hydraulic pressure, etc. may be used for mode determination. [Effects of the Invention] As described above, according to the present invention, various driving modes are determined depending on the driving condition and torque distribution is controlled, so the control system is simplified and the performance in each driving mode is improved. can be demonstrated reliably. This eliminates large fluctuations in torque distribution, making it easier to make mistakes, and since control is performed at a level for each driving mode, responsiveness improves, and it is also advantageous in terms of durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のトルク配分制御06置の実施例を示す
全体の構成図、第2図は制御ユニットのブロック図、第
3図(2)は走行モードのマツプを示す図、第3図(b
)は各モードのトルク配分特性図である。 6・・・センターデフ装置、20・・・トルク分配装置
、25・・・切換クラッチ、31・・・油圧クラッチ、
41・・・車速センサ42・・・制卸ユニット、43.
44・−・アクチュエータ、46・・・舵角センサ、5
2・・・走行モード判定部、53aないし53d・・・
各走行モード部、54aないし54d・・・各トルク配
分設定部、55・・・動力フロー切換部、56・・・ク
ラッチトルク制御部。 特許出願人    富士重工業株式会社代理人 弁理モ
  小 橋 信 浮 量  弁理士  村 井   進 第3図 (0,2 (b) 奉L
Fig. 1 is an overall configuration diagram showing an embodiment of the torque distribution control unit 06 of the present invention, Fig. 2 is a block diagram of the control unit, Fig. 3 (2) is a diagram showing a map of driving modes, Fig. 3 (b
) is a torque distribution characteristic diagram of each mode. 6... Center differential device, 20... Torque distribution device, 25... Switching clutch, 31... Hydraulic clutch,
41... Vehicle speed sensor 42... Control unit, 43.
44... Actuator, 46... Rudder angle sensor, 5
2... Driving mode determination section, 53a to 53d...
Each driving mode section, 54a to 54d... Each torque distribution setting section, 55... Power flow switching section, 56... Clutch torque control section. Patent Applicant Fuji Heavy Industries Co., Ltd. Agent Nobu Kobashi Patent Attorney Susumu Murai Figure 3 (0, 2 (b) Bō L

Claims (1)

【特許請求の範囲】 走行状態により前後輪のトルクを配分する制御系におい
て、 所定時間の走行条件により市街地走行、山道走行、郊外
走行、高速走行等の複数の走行モードに判別し、 各種走行モード毎に前後輪のトルク配分を制御する4輪
駆動車のトルク配分制御装置。
[Claims of patents] In a control system that distributes torque between front and rear wheels depending on driving conditions, a plurality of driving modes such as city driving, mountain road driving, suburban driving, and high-speed driving are discriminated depending on driving conditions at a predetermined time, and various driving modes are determined. Torque distribution control device for four-wheel drive vehicles that controls torque distribution between front and rear wheels.
JP11948886A 1986-05-23 1986-05-23 Torque distribution control device for four-wheel drive vehicle Expired - Fee Related JPH08504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11948886A JPH08504B2 (en) 1986-05-23 1986-05-23 Torque distribution control device for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11948886A JPH08504B2 (en) 1986-05-23 1986-05-23 Torque distribution control device for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPS62275836A true JPS62275836A (en) 1987-11-30
JPH08504B2 JPH08504B2 (en) 1996-01-10

Family

ID=14762510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11948886A Expired - Fee Related JPH08504B2 (en) 1986-05-23 1986-05-23 Torque distribution control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPH08504B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170000A (en) * 1991-12-25 1993-07-09 Hino Motors Ltd Control device for differential motion limiting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170000A (en) * 1991-12-25 1993-07-09 Hino Motors Ltd Control device for differential motion limiting device

Also Published As

Publication number Publication date
JPH08504B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
GB2308344A (en) Coupling device between right and left wheels of a vehicle
JPH0470186B2 (en)
JP3004283B2 (en) Unequal torque distribution control device for four-wheel drive vehicle
JPS61155027A (en) Four wheel-drive vehicle
JPS62275836A (en) Torque distribution control device for four-wheel drive vehicle
JPS6189126A (en) Drive power transmission unit for vehicle
JPS6313824A (en) Torque distribution control device for four-wheel drive vehicle
JP2531514B2 (en) Control device for four-wheel drive vehicle
JPS62275835A (en) Torque distribution control device for four-wheel drive vehicle
JPH0516687A (en) Device for operating off-road dump truck
JP2544295B2 (en) 4-wheel drive vehicle
CA2484819C (en) Coupling device between left and right wheels of vehicle
JPS62203826A (en) Torque transfer controller for four wheel drive vehicle
JPS62275834A (en) Torque distribution control device for four-wheel drive vehicle
JP2631850B2 (en) Four-wheel steering four-wheel drive vehicle
JP2527936B2 (en) Torque distribution control device for four-wheel drive vehicle
JP2813976B2 (en) Vehicle drive system
JP2690099B2 (en) Transmission torque control device for four-wheel drive vehicle
JPS62198524A (en) Torque distribution control device for four-wheel drive vehicle
JPS62279134A (en) Four-wheel drive vehicle
JP2525607B2 (en) Lockup clutch control device for four-wheel drive vehicle
JP2550682B2 (en) Front and rear wheel differential control device for four-wheel drive vehicle
JPS6364832A (en) Control device for shifting four wheel drive vehicle
JPS62234730A (en) Torque distribution control device of four-wheel drive vehicle
JP2003127698A (en) Four-wheel drive/two-wheel drive switching device and vehicle mounted therewith

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees