JPS62275834A - Torque distribution control device for four-wheel drive vehicle - Google Patents

Torque distribution control device for four-wheel drive vehicle

Info

Publication number
JPS62275834A
JPS62275834A JP11948686A JP11948686A JPS62275834A JP S62275834 A JPS62275834 A JP S62275834A JP 11948686 A JP11948686 A JP 11948686A JP 11948686 A JP11948686 A JP 11948686A JP S62275834 A JPS62275834 A JP S62275834A
Authority
JP
Japan
Prior art keywords
torque
air pressure
clutch
distribution ratio
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11948686A
Other languages
Japanese (ja)
Inventor
Midori Kubota
久保田 緑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP11948686A priority Critical patent/JPS62275834A/en
Publication of JPS62275834A publication Critical patent/JPS62275834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To lighten the burden of an abnormal tire and prevent the dislocation of a rim, and the like, and improve safety by controlling the distribution of torque so as to reduce the driving torque of an abnormal side wheel when the air pressure of a tire is abnormal. CONSTITUTION:A torque distribution ratio setting part 52 determines a torque distribution ratio alpha corresponding to a vehicle speed V from a relation between a defined distribution ratio alpha (TF/TR) and the vehicle speed V, in a control unit 42. The signal of this distribution ratio alpha is inputted into a power flow switchover part 53, which, then, outputs an operation signal to an actuator 44. Also, the signal of the distribution ratio alpha, together with the input torque Ti of an input torque sensor 40, is inputted into the clutch torque calculating part 54, and a clutch hydraulic pressure Pc corresponding to the clutch torque Tc is outputted to an actuator 43. In this case, an extreme low pressure of an air pressure is judged based on the signals from the air pressure sensors 50, 51 of front and rear wheels in an abnormality judging part 56 and, thereby, the torque of the wheel on an abnormal side is reduced by a torque distribution determining part 57.

Description

【発明の詳細な説明】[Detailed description of the invention]

3、発明の詳細な説明 「産業上の利用分野1 本発明は、センターデフ付のフルタイム式4輪駆動車に
おいて、前後輪の駆動トルク配分を任意に制御して、操
縦性または安定性m視の走行を可能にする4輪駆動車の
トルク配分制御l装置に関し、詳l)くけ、前後輪のタ
イヤ空気圧異常時の対策に関する。 (従来の技術) 従来、4輪駆動車の#J後輪トルク配分に関しては、例
えば特開昭56−43031号公報に示すように、前後
輪の駆動系の途中に油圧クラッチを設け、そのクラッチ
トルクを制御するものがある。 また、例えば特開昭55−72420号公報に示すよう
に、センターデフ装置に差動制限用として油圧クラッチ
を段けだものがある。
3. Detailed Description of the Invention "Industrial Application Field 1 The present invention is a full-time four-wheel drive vehicle with a center differential, in which drive torque distribution between the front and rear wheels is arbitrarily controlled to improve maneuverability or stability. Regarding the torque distribution control device for 4-wheel drive vehicles that enables visual driving, details 1) Measures to be taken when tire pressure is abnormal in the front and rear wheels. (Prior technology) Regarding wheel torque distribution, for example, as shown in Japanese Unexamined Patent Publication No. 56-43031, there is a system in which a hydraulic clutch is provided in the middle of the drive system of the front and rear wheels to control the clutch torque. As shown in Japanese Patent No. 72420, there is a center differential device equipped with a hydraulic clutch for differential limiting.

【発明が解決しようとする問題点1 ところで、上記先行技術の前者は、駆動系に直接介在す
る油圧クラッチにより後輪の駆動トルクを減じて、直結
式の場合の旋回時のブレーキング現象を防止する。また
先行技術の後者は、センターデフ付において前後輪の一
方がスリップした場合の緊急脱出用として、油圧クラッ
チによりデフロックするものであり、いずれも前後輪の
トルク配分を、前輪側が多い、または後輪側が多い配分
状態に積極的に制御する構成にはなっていない。 ここで、4輪駆動走行において前後輪のトルク配分を変
えると、安定性または操縦性の点で良くなることが知ら
れている。また、走行中にタイヤ空気圧が異常に低下す
ると、タイヤのリムが外れたり、(g走を生じて危険を
招くことが知られている。このことから、前後輪のトル
ク配分制御により4輪駆動の走行性能を向上し、更にタ
イヤ空気圧異常時の安全対策を図ることが望まれる。 本発明は、このような点に鑑みてなされたもので、前後
輪のトルク配分制御により、タイヤ空気圧異常時の安全
性を図るようにした4輪駆動車のトルク配分制御装置を
提供することを目的としている。 【問題点を解決するための手段] 上記目的を達成するため、本発明は、前後輪のトルク配
分を、前輪側が多い、または後輪側が多い配分状態に制
御する制御系において、前後輪のタイヤ空気圧を検出す
るセンサ、センサ信号によりタイヤ空気圧の異常を判断
する異常判定部を有し、タイヤ空気圧の異常の場合は、
トルク配分決定部で異常側車輪の駆動トルクを減じるよ
うにトルク配分するように構成されてい乞。 【作   用】 上記構成に基づき、#J侵輪の一方のタイヤがバンク等
の異常を生じると、そのタイヤの駆動トルクが減じて負
担を軽減するようになる。 こうして本発明では、異常タイヤの車輪には無理な駆動
トルクがかからなくなり、リムの脱落等には至らないで
安全性を保つことが可能となる。 〔実 施 例1 以下、本発明の実施例を図面に基づいて説明する。 第1図において、センターデフ付4輪駆動車の伝動系の
概略について説明すると、符号1はエンジン、2は変速
機、3はトランスファ装置であり、トランスファ装置3
において変速機2の出力軸4が、一対のトランスフ7ギ
Ay 5を介してヒンターデフ装M6のデフケース7に
連結する。センターデフ装置6は、デフケース7に軸支
したビニオン8にサイドギヤ9,10が噛合って成り、
一方のサイドギヤ9からのフロントドライブ軸11が車
体前方に取出され、中間軸12や継手13を介してフロ
ントデフ8114に伝動構成される。また、他方のサイ
ドギヤ10からのリヤドライブ軸15が車体後方に取出
され、プロペラ軸16や継手17を介してリヤデフ装置
18に伝動構成されるのであり、かがるセンターデフ装
置6により変速R2の動力を前後輪に撮り分け、かつ前
後輪の回転差を吸収するようになっている。 そこで、上記トランスファ装置3において、センターデ
フ’[16にトルク分配装置20がバイパスして設(プ
られる。トルク分配装置2oはフロントドライブ軸11
に一対の変速ギヤ21が設けられ、そのドリブンギヤ2
1aにバイパス軸22が結合する。また、リヤドライブ
軸15には2組の変速ギヤ23.24が設(]られ、こ
れらのドリブンギヤ23a 、 24aの間に切換クラ
ッチ25が設けである。 切換クラッチ25は噛合い式のもので、ドリブンギヤ2
3a 、 24aに対し回転自在な軸26にハブ27を
有し、このハブ27のスリーブ28がギヤ23a 、 
24aのスプライン29.301.:選択的に噛合って
いずれか一方に切換ねるように構成される。そして、バ
イパス軸22と軸26が伝達トルク可変の油圧クラッチ
31を介して連結している。 ここで、ギヤ21の増速ギヤ比gfとギA723,24
の増速ギヤ比Qr1. (lrzは、例えばgf> Q
rlに設定されて後輪側のトルク配分を多くし、Of<
(lrzに設定されて逆に前輪側のトルク配分を多くす
るようになっている。 制御系について説明すると、入力トルクセンサ40、 
R1速センサ41を有し、これらのセンサ信号が制御ユ
ニット42に入力して、入力トルクと走行状態から動作
モードを定める。そして制御ユニット42の出力信号で
アクチュエータ43により、油圧クラッチ31のクラッ
チ油圧を変化し、アクチュエータ44により、切換レバ
ー45を介して切換クラッチ25のスリーブ28を移動
する。 また、タイヤ空気圧の異常対策として、前後輪のタイヤ
空気圧を検出する前輪空気圧センサ50゜後輪空気圧セ
ンサ51を有し、これらのセンサ信りも制御ユニット4
2に入力して異常時の対策を行うようになっている。 第2図において、制御ユニット42について説明する。 先ず、通常のトルク配分IIJ 10系として、車速信
号Vが入力するトルク配分比設定部52を有し、ここで
、第3図(2)に示す配分比α(TF /TR)と車速
■の関係から、車速Vに応じたトルク配分比αを定める
。この配分比αの信号は、肋カフロー切換部53に入力
し、α〉1とαく1の場合においてそれぞれアクチュエ
ータ44に動作信号を出力する。配分比αの信号は、入
力トルクセンサ40の入力トルクTi と共にラッヂト
ルク搾出部54に入力し、ここで、第3図の)に示すシ
フト位置とエンジン吸入管負圧による入力トルクT1と
配分比αで、f(1)・αの演算を行い、各入力トルク
で配分比に応じたクラッチトルクTOを定める。そして
このクラッチトルクTCに応じたクラッチ油圧Pcをク
ラッチ油圧設定部55で定め、その信号を7クチユエー
タ43に出力するようになっている。 また、タイヤ空気圧異常制卸系として、前、後輪空気圧
センサ50.51の空気圧信号が入力する異常判定部5
6を有し、空気圧が極低圧の場合に異常と判断する。そ
してこの異常信号は、トルク配分決定部57に入力して
、異常側車輪のトルクを減じるように配分したトルク配
分比β、それに基づくクラッチトルクTc ”を定め、
これらの信号を動力フロー切換部53.クラッチ油圧設
定部55に出力して、非常時に動作するものである。 次いで、このように構成されたトルク配分制御O装置の
作用について説明する。 変速機2からの入力トルクTiは、ギA75を介してセ
ンターデフ装置6に入力し、そのサイドギヤ9,10で
略等しく2分割したトルクTOがフロントおよびリヤド
ライブ軸11.15に伝達する。そしてフロントドライ
ブ軸11の動力は、トルク分配装置20のギヤ21を介
してバイパス軸22.油圧クラッチ31のハブ側に入力
し、同時にリヤドライブ軸15の動力は、ギヤ23.2
4に入力する。 そこで、設定車速以下の低速域では、靭罪ユニット42
のトルク配分比設定部52でTF、<TRの配分状態で
、車速Vに応じた配分比αが設定され、動力フロー切換
部53からαく1に対応した切換信号が出力する。その
ためアクチュエータ44により、切換クラッチ25のス
リーブ28はスプライン29に噛合って、ギヤ23が選
択されることになり、こうしてドライブ軸15の動力は
、ギ!23.軸26を介して油圧クラチ31のドラム側
に入力する。ここで、ギヤ21.23のギヤ比がgf>
grlの関係であるため、油圧クラッチ31のトルクに
より、高速のクラッチハブから低速のクラッチドラムを
経て後輪に動力が流れる状態になる。 一方、配分比αと入力トルクTiにより、クラッチトル
ク算出部54でクラッチトルクTOが算出され、これに
応じたクラッチ油圧で油圧クラッチ31のトルクTCが
決められる。そこで、フロントドライブ軸11のトルク
Toのうちのクラッチトル910分だけが油圧クラッチ
経由で後輪に流れ、こうして前後輪のトルク配分は、 α=TF/TR= (To −Tc )/ (To +
Tc )になる。従って、後輪側配分量が多くなって、
操縦性重視の4輪駆動走行となる。 高速域では、切換クラッチ25によりギヤ24が選択さ
れて、油圧クラッチ31のトルク分だけ前輪側に動力が
流れることになる。従って、前輪側聞分屋が多くなって
、安定性重視の4輪駆動走行となる。 上記トルク配分での4輪駆動時に、前、後輪空気圧セン
サso、 siによりタイヤ空気圧が検出されている。 そして、例えば前輪タイヤがバンクすると、異常判定部
5Gでそのことが判断され、ト・ルク配分決定部57で
TF <TRの配分状態に決定される。そこで動力フロ
ー切換部53により、低速域の場合と同様の切換状態に
なる。一方、この場合の配分比βと入力トルクTiによ
り、クラッチトルクTc −が算出されて油圧クラッチ
31のトルクを定めるようになり、こうして前輪トルク
の大部分が後輪側に流れ、強制的にTF <TRのトル
ク配分となる。 なお、後輪タイヤがパンクした場合も同様に作用し、強
制的にTR<TFのトルク配分となる。 以上、本発明の一実施例について述べたが、dq後輪の
トルク配分を制卸する方式のいずれにも適用可能である
Problem 1 to be Solved by the Invention By the way, the former of the above-mentioned prior art reduces the drive torque of the rear wheels using a hydraulic clutch directly interposed in the drive system, thereby preventing the braking phenomenon during turning in the case of a direct coupling type. do. The latter prior art uses a hydraulic clutch to lock the differential in case one of the front and rear wheels slips when the center differential is attached. It is not configured to actively control the allocation state where there are many sides. It is known that changing the torque distribution between the front and rear wheels during four-wheel drive driving improves stability or maneuverability. Additionally, if the tire air pressure drops abnormally while driving, it is known that the tire rim may come off or the tire rim may come off (g-driving), which can be dangerous. It is desired to improve the running performance of the vehicle and also to take safety measures when the tire pressure is abnormal.The present invention was made in view of these points, and it uses torque distribution control between the front and rear wheels. An object of the present invention is to provide a torque distribution control device for a four-wheel drive vehicle that is designed to improve the safety of the vehicle. A control system that controls torque distribution so that more torque is distributed to the front wheels or more to the rear wheels.The control system includes a sensor that detects the tire air pressure of the front and rear wheels, and an abnormality determination section that determines whether there is an abnormality in the tire air pressure based on the sensor signal. In case of air pressure abnormality,
The torque distribution determining unit may be configured to distribute torque so as to reduce the driving torque of the wheel on the abnormal side. [Function] Based on the above configuration, when one tire of the #J tire causes an abnormality such as banking, the driving torque of that tire is reduced to reduce the load. In this way, in the present invention, an unreasonable driving torque is not applied to the wheel with the abnormal tire, and safety can be maintained without causing the rim to fall off. [Example 1] Hereinafter, an example of the present invention will be described based on the drawings. In FIG. 1, the outline of the transmission system of a four-wheel drive vehicle with a center differential will be explained. Reference numeral 1 is an engine, 2 is a transmission, and 3 is a transfer device.
The output shaft 4 of the transmission 2 is connected to the differential case 7 of the hinter differential system M6 via a pair of transfer gears Ay5. The center differential device 6 consists of side gears 9 and 10 meshing with a binion 8 that is pivotally supported on a differential case 7.
A front drive shaft 11 from one side gear 9 is taken out to the front of the vehicle body, and is configured to be transmitted to a front differential 8114 via an intermediate shaft 12 and a joint 13. In addition, the rear drive shaft 15 from the other side gear 10 is taken out to the rear of the vehicle body and is configured to transmit power to the rear differential device 18 via the propeller shaft 16 and coupling 17. Power is distributed between the front and rear wheels, and the difference in rotation between the front and rear wheels is absorbed. Therefore, in the transfer device 3, a torque distribution device 20 is installed in the center differential '[16] in a bypass manner.
A pair of transmission gears 21 are provided, and the driven gear 2
A bypass shaft 22 is coupled to 1a. Further, two sets of transmission gears 23 and 24 are provided on the rear drive shaft 15, and a switching clutch 25 is provided between these driven gears 23a and 24a.The switching clutch 25 is of a mesh type. driven gear 2
A hub 27 is provided on a shaft 26 that is rotatable with respect to 3a and 24a, and a sleeve 28 of this hub 27 is connected to gears 23a and 24a.
24a spline 29.301. : Constructed to selectively engage and switch to either one. The bypass shaft 22 and the shaft 26 are connected via a hydraulic clutch 31 with variable transmission torque. Here, the speed increasing gear ratio gf of gear 21 and gears A723, 24
The speed increasing gear ratio Qr1. (lrz is, for example, gf>Q
rr is set to increase the torque distribution to the rear wheels, and Of<
(The control system is set to lrz, which increases the torque distribution to the front wheels.) To explain the control system, the input torque sensor 40,
It has an R1 speed sensor 41, and these sensor signals are input to a control unit 42 to determine the operating mode from the input torque and running condition. Then, the actuator 43 changes the clutch oil pressure of the hydraulic clutch 31 based on the output signal of the control unit 42, and the actuator 44 moves the sleeve 28 of the switching clutch 25 via the switching lever 45. In addition, as a countermeasure against tire air pressure abnormalities, the control unit 4 has a front wheel air pressure sensor 50° and a rear wheel air pressure sensor 51 that detect the tire air pressure of the front and rear wheels.
2 to take measures in the event of an abnormality. In FIG. 2, the control unit 42 will be explained. First, the normal torque distribution IIJ 10 system has a torque distribution ratio setting section 52 to which the vehicle speed signal V is input, and here, the distribution ratio α (TF /TR) shown in FIG. 3 (2) and the vehicle speed ■ are set. Based on the relationship, the torque distribution ratio α according to the vehicle speed V is determined. The signal of this distribution ratio α is input to the rib cuff flow switching unit 53, which outputs an operation signal to the actuator 44 in the cases of α>1 and α<1, respectively. The signal of the distribution ratio α is inputted to the ludge torque extraction unit 54 together with the input torque Ti of the input torque sensor 40, and here, the input torque T1 and the distribution ratio due to the shift position and engine suction pipe negative pressure shown in ) in FIG. 3 are input. α calculates f(1)·α, and determines clutch torque TO according to the distribution ratio for each input torque. A clutch oil pressure setting section 55 determines a clutch oil pressure Pc corresponding to this clutch torque TC, and outputs the signal to the seventh clutch unit 43. Also, as a tire pressure abnormality control system, an abnormality determination unit 5 to which air pressure signals from front and rear wheel air pressure sensors 50 and 51 are input.
6, and if the air pressure is extremely low, it is determined to be abnormal. This abnormality signal is then input to the torque distribution determination unit 57, which determines the torque distribution ratio β distributed so as to reduce the torque of the abnormal wheel, and the clutch torque Tc'' based on the torque distribution ratio β.
These signals are transmitted to the power flow switching section 53. It is output to the clutch oil pressure setting section 55 and operated in an emergency. Next, the operation of the torque distribution control device configured as described above will be explained. Input torque Ti from transmission 2 is input to center differential device 6 via gear A75, and torque TO, which is divided into two substantially equally by side gears 9 and 10, is transmitted to front and rear drive shafts 11.15. The power of the front drive shaft 11 is then transmitted to the bypass shaft 22 through the gear 21 of the torque distribution device 20. The power is input to the hub side of the hydraulic clutch 31, and at the same time the power of the rear drive shaft 15 is input to the gear 23.2.
Enter 4. Therefore, in the low speed range below the set vehicle speed, the toughness unit 42
In the distribution state of TF, <TR, the torque distribution ratio setting section 52 sets the distribution ratio α according to the vehicle speed V, and the power flow switching section 53 outputs a switching signal corresponding to α-1. Therefore, the actuator 44 engages the sleeve 28 of the switching clutch 25 with the spline 29 to select the gear 23, and thus the power of the drive shaft 15 is transferred to the gear! 23. It is input to the drum side of the hydraulic clutch 31 via the shaft 26. Here, the gear ratio of gear 21.23 is gf>
grl relationship, the torque of the hydraulic clutch 31 causes power to flow from the high-speed clutch hub to the rear wheels via the low-speed clutch drum. On the other hand, the clutch torque TO is calculated by the clutch torque calculating section 54 based on the distribution ratio α and the input torque Ti, and the torque TC of the hydraulic clutch 31 is determined by the clutch oil pressure corresponding to this. Therefore, only 910 parts of the clutch torque of the torque To of the front drive shaft 11 flows to the rear wheels via the hydraulic clutch, and thus the torque distribution between the front and rear wheels is α=TF/TR=(To −Tc)/(To +
Tc). Therefore, the amount of distribution to the rear wheels increases,
It will be driven by four-wheel drive with an emphasis on maneuverability. In the high speed range, the gear 24 is selected by the switching clutch 25, and power flows to the front wheels by the torque of the hydraulic clutch 31. Therefore, the number of front wheels is increased, resulting in four-wheel drive driving with an emphasis on stability. During four-wheel drive with the above torque distribution, tire air pressure is detected by front and rear wheel air pressure sensors so and si. For example, when the front tires bank, the abnormality determination section 5G determines this, and the torque distribution determination section 57 determines the distribution state such that TF<TR. Therefore, the power flow switching section 53 brings about the same switching state as in the low speed range. On the other hand, the clutch torque Tc - is calculated from the distribution ratio β and the input torque Ti in this case, and the torque of the hydraulic clutch 31 is determined. In this way, most of the front wheel torque flows to the rear wheel side, forcing the TF <TR torque distribution. Note that the same effect occurs when the rear tire is punctured, forcing the torque distribution to be TR<TF. Although one embodiment of the present invention has been described above, it is applicable to any method of controlling torque distribution between d and Q rear wheels.

【発明の効果】【Effect of the invention】

以上述べてきたように、本発明によれば、4輪駆動時に
前後輪のトルク配分を制御する方式において、タイヤの
空気圧異常時に異常側のトルクを減じるようにトルク配
分制御するので、異常タイヤの負担が軽くなってリムの
外れ等を生じなくなり、安全性が向上する。 実施例のように油圧クラッチのトルク分だけ前後輪の間
でトルクのやりとりを行う構成では、異常時でも動力の
ロスがなくて好ましい。
As described above, according to the present invention, in the method of controlling the torque distribution between the front and rear wheels during four-wheel drive, when the tire air pressure is abnormal, the torque distribution is controlled so as to reduce the torque on the abnormal side. The burden is lightened, the rim does not come off, and safety is improved. The configuration in which torque is exchanged between the front and rear wheels by the torque of the hydraulic clutch as in the embodiment is preferable because there is no loss of power even in abnormal situations.

【図面の簡単な説明】[Brief explanation of drawings]

第、1図は本発明のトルク配分制即装置の実施例を示す
全体の構成図、第2図は制御ユニットのブロック図、第
3図鈴)はトルク配分の特性図、第3図の)は入力トル
クの特性図である。 G・・・センターデフ装置、20・・・トルク分配装置
、25・・・切換クラッチ、31・・・油圧クラッチ、
42・・・制御ユニット、43.44・・・アクチュエ
ータ、50・・・前輪空気圧センサ、51・・・後輪空
気圧センサ、56・・・異常判定部、57・−・トルク
配分決定部。
1 is an overall configuration diagram showing an embodiment of the torque distribution control device of the present invention, FIG. 2 is a block diagram of the control unit, and FIG. 3 is a characteristic diagram of torque distribution. is a characteristic diagram of input torque. G... Center differential device, 20... Torque distribution device, 25... Switching clutch, 31... Hydraulic clutch,
42... Control unit, 43. 44... Actuator, 50... Front wheel air pressure sensor, 51... Rear wheel air pressure sensor, 56... Abnormality determination section, 57... Torque distribution determining section.

Claims (1)

【特許請求の範囲】 前後輪のトルク配分を、前輪側が多い、または後輪側が
多い配分状態に制御する制御系において、前後輪のタイ
ヤ空気圧を検出するセンサ、センサ信号によりタイヤ空
気圧の異常を判断する異常判定部を有し、 タイヤ空気圧の異常の場合は、トルク配分決定部で異常
側車輪の駆動トルクを減じるようにトルク配分する4輪
駆動車のトルク配分制御装置。
[Scope of Claims] In a control system that controls the torque distribution between the front and rear wheels so that the torque is distributed more to the front wheels or more to the rear wheels, an abnormality in the tire air pressure is determined based on a sensor that detects the tire air pressure of the front and rear wheels and a sensor signal. A torque distribution control device for a four-wheel drive vehicle, comprising: an abnormality determination section for determining tire pressure, and in the case of an abnormality in tire air pressure, the torque distribution determining section distributes torque so as to reduce the drive torque of the wheel on the abnormal side.
JP11948686A 1986-05-23 1986-05-23 Torque distribution control device for four-wheel drive vehicle Pending JPS62275834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11948686A JPS62275834A (en) 1986-05-23 1986-05-23 Torque distribution control device for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11948686A JPS62275834A (en) 1986-05-23 1986-05-23 Torque distribution control device for four-wheel drive vehicle

Publications (1)

Publication Number Publication Date
JPS62275834A true JPS62275834A (en) 1987-11-30

Family

ID=14762465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11948686A Pending JPS62275834A (en) 1986-05-23 1986-05-23 Torque distribution control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPS62275834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275271A (en) * 1988-04-27 1989-11-02 Nissan Motor Co Ltd Running control device for vehicle
JP2007223370A (en) * 2006-02-21 2007-09-06 Honda Motor Co Ltd Control device of four-wheel driving vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275271A (en) * 1988-04-27 1989-11-02 Nissan Motor Co Ltd Running control device for vehicle
JP2007223370A (en) * 2006-02-21 2007-09-06 Honda Motor Co Ltd Control device of four-wheel driving vehicle

Similar Documents

Publication Publication Date Title
CA1197596A (en) System for controlling a power transmission of a four- wheel drive vehicle
US4781265A (en) Intermittent change-over control from two-wheel drive to four-wheel drive
US6575261B2 (en) Drive-force distribution controller
US6336069B1 (en) Front and rear wheel load distribution control unit for coupled vehicle
JPS63159135A (en) Drive operation structure for agricultural tractor
JP2001146928A (en) Work vehicle
JPS62275834A (en) Torque distribution control device for four-wheel drive vehicle
JPH03118230A (en) Unequal torque distribution control device for four-wheel drive vehicle
JPS62275835A (en) Torque distribution control device for four-wheel drive vehicle
JP3133523B2 (en) Control device for four-wheel drive system
JP3017113B2 (en) Vehicle drive system
JPS62221922A (en) Change-over device for four-wheel drive vehicle
JPH0692156A (en) Torque transmitting quantity control device for four-wheel-drive vehicle
JPS62231821A (en) Power transmission for four wheel drive vehicle
JPS6320227A (en) Torque control device for four wheel drive vehicle
JPS62203825A (en) Torque transfer controller for four wheel drive vehicle
JPH0386628A (en) Differential controller
JP2813976B2 (en) Vehicle drive system
JP2525607B2 (en) Lockup clutch control device for four-wheel drive vehicle
JPH0419231A (en) Driving force distribution switching type four-wheel drive automobile
JPH03118229A (en) Unequal torque distribution control device for four-wheel drive vehicle
JPH085335B2 (en) Torque distribution control device for four-wheel drive vehicle
JPS6246719A (en) Transmission torque controller for four-wheel-drive vehicle
JPS6274718A (en) Control device for four-wheel-drive vehicle
JPS6246720A (en) Transmission torque controller for four-wheel-drive vehicle